1
|
Hassannejad Z, Fendereski K, Daryabari SS, Tanourlouee SB, Dehnavi M, Kajbafzadeh AM. Advancing Myocardial Infarction Treatment: Harnessing Multi-Layered Recellularized Cardiac Patches with Fetal Myocardial Scaffolds and Acellular Amniotic Membrane. Cardiovasc Eng Technol 2024; 15:679-690. [PMID: 39133349 DOI: 10.1007/s13239-024-00744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE Myocardial infarction (MI) is a leading cause of irreversible functional cardiac tissue loss, requiring novel regenerative strategies. This study assessed the potential therapeutic efficacy of recellularized cardiac patches, incorporating fetal myocardial scaffolds with rat fetal cardiomyocytes and acellular human amniotic membrane, in adult Wistar rat models of MI. METHODS Decellularized myocardial tissue was obtained from 14 to 16 week-old human fetuses that had been aborted. Chemical detergents (0.1% EDTA and 0.2% sodium dodecyl sulfate) were used to prepare the fetal extracellular matrix (ECM), which was characterized for bio-scaffold microstructure and biocompatibility via scanning electron microscopy (SEM) and MTT assay, respectively. Neonatal cardiomyocytes were extracted from the ventricles of one-day-old Wistar rats' littermates and characterized through immunostaining against Connexin-43 and α-smooth muscle actin. The isolated cells were seeded onto decellularized tissues and covered with decellularized amniotic membrane. Sixteen healthy adult Wistar rats were systematically allocated to control and MI groups. MI was induced via arterial ligation. Fourteen days post-operation, the MI group was received the engineered patches. Following a two-week post-implantation period, the animals were euthanized, and the hearts were harvested for the graft evaluation. RESULTS Histological analysis, DAPI staining, and ultra-structural examination corroborated the successful depletion of cellular elements, while maintaining the integrity of the fetal ECM and architecture. Subsequent histological and immunohistochemichal (IHC) evaluations confirmed effective cardiomyocyte seeding on the scaffolds. The application of these engineered patches in MI models resulted in increased angiogenesis, reduced fibrosis, and restricted scar tissue formation, with the implanted cardiomyocytes remaining viable at graft sites, indicating prospective in vivo cell viability. CONCLUSIONS This study suggests that multi-layered recellularized cardiac patches are a promising surgical intervention for myocardial infarction, showcasing significant potential by promoting angiogenesis, mitigating fibrosis, and minimizing scar tissue formation in MI models. These features are pivotal for enhancing the therapeutic outcomes in MI patients, focusing on the restoration of the myocardial structure and function post-infarction.
Collapse
Affiliation(s)
- Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran.
| | - Kiarad Fendereski
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Seyedeh Sima Daryabari
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Saman Behboodi Tanourlouee
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Mehrshad Dehnavi
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran.
| |
Collapse
|
2
|
Mei R, Wan Z, Yang C, Shen X, Wang R, Zhang H, Yang R, Li J, Song Y, Su H. Advances and clinical challenges of mesenchymal stem cell therapy. Front Immunol 2024; 15:1421854. [PMID: 39100671 PMCID: PMC11294097 DOI: 10.3389/fimmu.2024.1421854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
In recent years, cell therapy has provided desirable properties for promising new drugs. Mesenchymal stem cells are promising candidates for developing genetic engineering and drug delivery strategies due to their inherent properties, including immune regulation, homing ability and tumor tropism. The therapeutic potential of mesenchymal stem cells is being investigated for cancer therapy, inflammatory and fibrotic diseases, among others. Mesenchymal stem cells are attractive cellular carriers for synthetic nanoparticles for drug delivery due to their inherent homing ability. In this review, we comprehensively discuss the various genetic and non-genetic strategies of mesenchymal stem cells and their derivatives in drug delivery, tumor therapy, immune regulation, tissue regeneration and other fields. In addition, we discuss the current limitations of stem cell therapy and the challenges in clinical translation, aiming to identify important development areas and potential future directions.
Collapse
Affiliation(s)
- Ruiyan Mei
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xiangjing Shen
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haihua Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Rui Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
3
|
Fagoonee S, Shukla SP, Dhasmana A, Birbrair A, Haque S, Pellicano R. Routes of Stem Cell Administration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:63-82. [PMID: 35389198 DOI: 10.1007/5584_2022_710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cells are very promising for the treatment of a plethora of human diseases. Numerous clinical studies have been conducted to assess the safety and efficacy of various stem cell types. Factors that ensure successful therapeutic outcomes in patients are cell-based parameters such as source, viability, and number, as well as frequency and timing of intervention and disease stage. Stem cell administration routes should be appropriately chosen as these can affect homing and engraftment of the cells and hence reduce therapeutic effects, or compromise safety, resulting in serious adverse events. In this chapter, we will describe the use of stem cells in organ repair and regeneration, in particular, the liver and the available routes of cell delivery in the clinic for end-stage liver diseases. Factors affecting homing and engraftment of stem cells for each administration route will be discussed.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center, Turin, Italy.
| | - Shiv Poojan Shukla
- Department of Dermatology & Cutaneous Biology, Sydney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA
- Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Nilüfer, Bursa, Turkey
| | | |
Collapse
|
4
|
Jing Y, Liang W, Zhang L, Tang J, Huang Z. The Role of Mesenchymal Stem Cells in the Induction of Cancer-Stem Cell Phenotype. Front Oncol 2022; 12:817971. [PMID: 35251985 PMCID: PMC8891610 DOI: 10.3389/fonc.2022.817971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) modify and form their microenvironment by recruiting and activating specific cell types such as mesenchymal stem cells (MSCs). Tumor-infiltrating MSCs help to establish a suitable tumor microenvironment for the restoration of CSCs and tumor progression. In addition, crosstalk between cancer cells and MSCs in the microenvironment induces a CSC phenotype in cancer cells. Many mechanisms are involved in crosstalk between CSCs/cancer cells and MSCs including cell-cell interaction, secretion of exosomes, and paracrine secretion of several molecules including inflammatory mediators, cytokines, and growth factors. Since this crosstalk may contribute to drug resistance, metastasis, and tumor growth, it is suggested that blockade of the crosstalk between MSCs and CSCs/cancer cells can provide a new avenue to improving the cancer therapeutic tools. In this review, we will discuss the role of MSCs in the induction of cancer stem cell phenotype and the restoration of CSCs. We also discuss targeting the crosstalk between MSCs and CSCs/cancer cells as a therapeutic strategy.
Collapse
Affiliation(s)
- Yuanming Jing
- Department of Gastrointestinal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Junjun Tang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zongliang Huang, ; Junjun Tang ,
| | - Zongliang Huang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zongliang Huang, ; Junjun Tang ,
| |
Collapse
|
5
|
Wruck W, Graffmann N, Spitzhorn LS, Adjaye J. Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Acquire Rejuvenation and Reduced Heterogeneity. Front Cell Dev Biol 2021; 9:717772. [PMID: 34604216 PMCID: PMC8481886 DOI: 10.3389/fcell.2021.717772] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the uniform selection criteria for the isolation of human mesenchymal stem cells (MSCs), considerable heterogeneity exists which reflects the distinct tissue origins and differences between individuals with respect to their genetic background and age. This heterogeneity is manifested by the variabilities seen in the transcriptomes, proteomes, secretomes, and epigenomes of tissue-specific MSCs. Here, we review literature on different aspects of MSC heterogeneity including the role of epigenetics and the impact of MSC heterogeneity on therapies. We then combine this with a meta-analysis of transcriptome data from distinct MSC subpopulations derived from bone marrow, adipose tissue, cruciate, tonsil, kidney, umbilical cord, fetus, and induced pluripotent stem cells derived MSCs (iMSCs). Beyond that, we investigate transcriptome differences between tissue-specific MSCs and pluripotent stem cells. Our meta-analysis of numerous MSC-related data sets revealed markers and associated biological processes characterizing the heterogeneity and the common features of MSCs from various tissues. We found that this heterogeneity is mainly related to the origin of the MSCs and infer that microenvironment and epigenetics are key drivers. The epigenomes of MSCs alter with age and this has a profound impact on their differentiation capabilities. Epigenetic modifications of MSCs are propagated during cell divisions and manifest in differentiated cells, thus contributing to diseased or healthy phenotypes of the respective tissue. An approach used to reduce heterogeneity caused by age- and tissue-related epigenetic and microenvironmental patterns is the iMSC concept: iMSCs are MSCs generated from induced pluripotent stem cells (iPSCs). During iMSC generation epigenetic and chromatin remodeling result in a gene expression pattern associated with rejuvenation thus allowing to overcome age-related shortcomings (e.g., limited differentiation and proliferation capacity). The importance of the iMSC concept is underlined by multiple clinical trials. In conclusion, we propose the use of rejuvenated iMSCs to bypass tissue- and age-related heterogeneity which are associated with native MSCs.
Collapse
Affiliation(s)
- Wasco Wruck
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nina Graffmann
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lucas-Sebastian Spitzhorn
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - James Adjaye
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Novel Techniques to Improve Precise Cell Injection. Int J Mol Sci 2021; 22:ijms22126367. [PMID: 34198683 PMCID: PMC8232276 DOI: 10.3390/ijms22126367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
We noted recently that the injection of cells with a needle through a cystoscope in the urethral sphincter muscle of pigs failed to deposit them nearby or at the intended target position in about 50% of all animals investigated (n > 100). Increasing the chance for precise cell injection by shotgun approaches employing several circumferential injections into the sphincter muscle bears the risk of tissue injury. In this study, we developed and tested a novel needle-free technique to precisely inject cells in the urethral sphincter tissue, or other tissues, using a water-jet system. This system was designed to fit in the working channels of endoscopes and cystoscopes, allowing a wide range of minimally invasive applications. We analyze key features, including the physical parameters of the injector design, pressure ranges applicable for tissue penetration and cell injections and biochemical parameters, such as different compositions of injection media. Our results present settings that enable the high viability of cells post-injection. Lastly, the method is suitable to inject cells in the superficial tissue layer and in deeper layers, required when the submucosa or the sphincter muscle of the urethra is targeted.
Collapse
|
7
|
Mooney R, Abidi W, Batalla-Covello J, Ngai HW, Hyde C, Machado D, Abdul-Majid A, Kang Y, Hammad M, Flores L, Copeland G, Dellinger T, Han E, Berlin J, Aboody KS. Allogeneic human neural stem cells for improved therapeutic delivery to peritoneal ovarian cancer. Stem Cell Res Ther 2021; 12:205. [PMID: 33761999 PMCID: PMC7992793 DOI: 10.1186/s13287-021-02226-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immortalized, clonal HB1.F3.CD 21 human neural stem/progenitor cells (NSCs), loaded with therapeutic cargo prior to intraperitoneal (IP) injection, have been shown to improve the delivery and efficacy of therapeutic agents in pre-clinical models of stage III ovarian cancer. In previous studies, the distribution and efficacy of the NSC-delivered cargo has been examined; however, the fate of the NSCs has not yet been explored. METHODS To monitor NSC tropism, we used an unconventional method of quantifying endocytosed gold nanorods to overcome the weaknesses of existing cell-tracking technologies. RESULTS Here, we report efficient tumor tropism of HB1.F3.CD 21 NSCs, showing that they primarily distribute to the tumor stroma surrounding individual tumor foci within 3 h after injection, reaching up to 95% of IP metastases without localizing to healthy tissue. Furthermore, we demonstrate that these NSCs are non-tumorigenic and non-immunogenic within the peritoneal setting. CONCLUSIONS Their efficient tropism, combined with their promising clinical safety features and potential for cost-effective scale-up, positions this NSC line as a practical, off-the-shelf platform to improve the delivery of a myriad of peritoneal cancer therapeutics.
Collapse
Affiliation(s)
- Rachael Mooney
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| | - Wafa Abidi
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jennifer Batalla-Covello
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Hoi Wa Ngai
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Caitlyn Hyde
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Diana Machado
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Asma Abdul-Majid
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Yanan Kang
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA.,Department of Molecular Medicine, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Mohamed Hammad
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Linda Flores
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Greg Copeland
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Thanh Dellinger
- Division of Gynecologic Surgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Ernest Han
- Division of Gynecologic Surgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jacob Berlin
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Karen S Aboody
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| |
Collapse
|
8
|
Krizek J, De Goumoëns F, Delrot P, Moser C. Needle-free delivery of fluids from compact laser-based jet injector. LAB ON A CHIP 2020; 20:3784-3791. [PMID: 32902554 DOI: 10.1039/d0lc00646g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Jet injection devices have been studied and developed for transdermal drug delivery to avoid the use of needles. Due to bulky actuation mechanisms, they are limited to body areas that are easy to reach such as skin. Here, we demonstrate a thin and long liquid delivery system (e.g. flexible and 30 cm long with 1.2 mm outer diameter) compatible with minimally invasive surgical procedures. The actuation mechanism is based on optical cavitation in a capillary nozzle where a laser pulse is delivered via a multimode optical fibre. We show good controllability of the jet speed by varying the actuation laser fluence. The generated jets can successfully penetrate into a 1% agarose gel which is representative of the mechanical properties of several soft body tissues. We further observe that when the system is used in a low laser energy regime (<60 μJ), the ejection is in the form of the single droplet which is promising for fluid delivery with high volume precision or drop-on-demand inkjet printing. The jet injection system we propose has the potential to deliver heat-sensitive therapeutics as we show processing of biomolecules without altering their functionality.
Collapse
Affiliation(s)
- Jan Krizek
- School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 17, 1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
9
|
Weber M, Fech A, Jäger L, Steinle H, Bühler L, Perl RM, Martirosian P, Mehling R, Sonanini D, Aicher WK, Nikolaou K, Schlensak C, Enderle MD, Wendel HP, Linzenbold W, Avci-Adali M. Hydrojet-based delivery of footprint-free iPSC-derived cardiomyocytes into porcine myocardium. Sci Rep 2020; 10:16787. [PMID: 33033281 PMCID: PMC7546722 DOI: 10.1038/s41598-020-73693-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022] Open
Abstract
The reprogramming of patient´s somatic cells into induced pluripotent stem cells (iPSCs) and the consecutive differentiation into cardiomyocytes enables new options for the treatment of infarcted myocardium. In this study, the applicability of a hydrojet-based method to deliver footprint-free iPSC-derived cardiomyocytes into the myocardium was analyzed. A new hydrojet system enabling a rapid and accurate change between high tissue penetration pressures and low cell injection pressures was developed. Iron oxide-coated microparticles were ex vivo injected into porcine hearts to establish the application parameters and the distribution was analyzed using magnetic resonance imaging. The influence of different hydrojet pressure settings on the viability of cardiomyocytes was analyzed. Subsequently, cardiomyocytes were delivered into the porcine myocardium and analyzed by an in vivo imaging system. The delivery of microparticles or cardiomyocytes into porcine myocardium resulted in a widespread three-dimensional distribution. In vitro, 7 days post-injection, only cardiomyocytes applied with a hydrojet pressure setting of E20 (79.57 ± 1.44%) showed a significantly reduced cell viability in comparison to the cells applied with 27G needle (98.35 ± 5.15%). Furthermore, significantly less undesired distribution of the cells via blood vessels was detected compared to 27G needle injection. This study demonstrated the applicability of the hydrojet-based method for the intramyocardial delivery of iPSC-derived cardiomyocytes. The efficient delivery of cardiomyocytes into infarcted myocardium could significantly improve the regeneration.
Collapse
Affiliation(s)
- Marbod Weber
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Andreas Fech
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Luise Jäger
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Heidrun Steinle
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Louisa Bühler
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Regine Mariette Perl
- Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Petros Martirosian
- Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Roman Mehling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Dominik Sonanini
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Wilhelm K Aicher
- Department of Urology, ZMF, University Hospital Tuebingen, Waldhoernlestr. 22, 72072, Tuebingen, Germany
| | - Konstantin Nikolaou
- Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Markus D Enderle
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Walter Linzenbold
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany.
| |
Collapse
|
10
|
Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, De Biasio M, Heinelt M, Reeve B, Abdi R, Alturki M, Fallatah M, Almalik A, Alhasan AH, Shah K, Karp JM. Shattering barriers toward clinically meaningful MSC therapies. SCIENCE ADVANCES 2020; 6:eaba6884. [PMID: 32832666 PMCID: PMC7439491 DOI: 10.1126/sciadv.aba6884] [Citation(s) in RCA: 385] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/05/2020] [Indexed: 05/11/2023]
Abstract
More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.
Collapse
Affiliation(s)
- Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erika M. J. Siren
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Deepak Bhere
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuka Milton
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Nabeel Nissar
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael De Biasio
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Martina Heinelt
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meshael Alturki
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mohanad Fallatah
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulaziz Almalik
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Ali H. Alhasan
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Khalid Shah
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
11
|
Ng NN, Thakor AS. Locoregional delivery of stem cell-based therapies. Sci Transl Med 2020; 12:eaba4564. [PMID: 32522806 DOI: 10.1126/scitranslmed.aba4564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Interventional regenerative medicine (IRM) uses image-guided, minimally invasive procedures for the targeted delivery of stem cell-based therapies to regenerate, replace, or repair damaged organs. Although many cellular therapies have shown promise in the preclinical setting, clinical results have been suboptimal. Most intravenously delivered cells become trapped in the lungs and reticuloendothelial system, resulting in little therapy reaching target tissues. IRM aims to increase the efficacy of cell-based therapies by locoregional stem cell delivery via endovascular, endoluminal, or direct injection into tissues. This review highlights routes of delivery, disease states, and mechanisms of action involved in the targeted delivery of stem cells.
Collapse
Affiliation(s)
- Nathan Norton Ng
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Avnesh Sinh Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| |
Collapse
|
12
|
Jäger L, Linzenbold W, Fech A, Enderle M, Abruzzese T, Stenzl A, Aicher WK. A novel waterjet technology for transurethral cystoscopic injection of viable cells in the urethral sphincter complex. Neurourol Urodyn 2019; 39:594-602. [PMID: 31873953 DOI: 10.1002/nau.24261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022]
Abstract
AIMS In a recent preclinical study, we noticed that injection of cells in the urethral sphincter by needle through a cystoscope under visual control frequently yielded in misplacement or loss of cells. We, therefore, investigated if a needle-free waterjet device delivers viable cells under defined settings, including injection volume and pressure, fluid velocity and transportation media, precisely through the urothelium and connective tissue close to the sphincter muscle without full penetration of the sphincter apparatus. METHODS Mesenchymal stromal cells (MSCs) were prepared for needle-free waterjet injections. Upon injections into liquids cell viability and yield were investigated by trypan blue dye exclusion. Upon injection into cadaveric urethral tissue samples, cells were isolated from the urethrae and expanded to prove that this novel method delivered viable cells into the tissue. MSC injections by William's needle served as controls. RESULTS Waterjet injections of MSCs into isotonic cell culture medium resulted in equal or better yields of viable cells when compared with needle injections. Upon injection in urethral tissue samples, the waterjet technology facilitated fast and precise injections of viable cells through urothelial, mucosal and submucosal layers to reach the sphincter muscle. By controlling the injection pressure, loss of cells due to insufficient thrust or unintended full penetration was avoided. CONCLUSIONS Needle-free waterjet injections deliver cells in the urethra faster and more precisely when compared with needle injections without compromising their viability. This is the first proof-of-concept study providing evidence that a waterjet transports viable cells precisely into the targeted tissue.
Collapse
Affiliation(s)
- Luise Jäger
- ERBE Elektromedizin GmbH, Tuebingen, Germany
| | | | | | | | - Tanja Abruzzese
- Department of Urology, University of Tuebingen Hospital, University of Tuebingen, Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen Hospital, University of Tuebingen, Tuebingen, Germany
| | - Wilhelm K Aicher
- Department of Urology, University of Tuebingen Hospital, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
13
|
Pagano F, Picchio V, Chimenti I, Sordano A, De Falco E, Peruzzi M, Miraldi F, Cavarretta E, Zoccai GB, Sciarretta S, Frati G, Marullo AGM. On the Road to Regeneration: "Tools" and "Routes" Towards Efficient Cardiac Cell Therapy for Ischemic Cardiomyopathy. Curr Cardiol Rep 2019; 21:133. [PMID: 31673821 DOI: 10.1007/s11886-019-1226-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Cardiac regenerative medicine is a field bridging together biotechnology and surgical science. In this review, we present the explored surgical roads to cell delivery and the known effects of each delivery method on cell therapy efficiency. We also list the more recent clinical trials, exploring the safety and efficacy of delivery routes used for cardiac cell therapy approaches. RECENT FINDINGS There is no consensus in defining which way is the most suitable for the delivery of the different therapeutic cell types to the damaged heart tissue. In addition, it emerged that the "delivery issue" has not been systematically addressed in each clinical trial and for each and every cell type capable of cardiac repair. Cardiac damage occurring after an ischemic insult triggers a cascade of cellular events, eventually leading to heart failure through fibrosis and maladaptive remodelling. None of the pharmacological or medical interventions approved so far can rescue or reverse this phenomenon, and cardiovascular diseases are still the leading cause of death in the western world. Therefore, for nearly 20 years, regenerative medicine approaches have focused on cell therapy as a promising road to pursue, with numerous preclinical and clinical testing of cell-based therapies being studied and developed. Nonetheless, consistent clinical results are still missing to reach consensus on the most effective strategy for ischemic cardiomyopathy, based on patient selection, diagnosis and stage of the disease, therapeutic cell type, and delivery route.
Collapse
Affiliation(s)
- Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Alessia Sordano
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | | | - Fabio Miraldi
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological, and Geriatric Sciences, Sapienza University of Rome, Latina, Italy
| | - Elena Cavarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Antonino G M Marullo
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| |
Collapse
|
14
|
Grankvist R, Jensen-Urstad M, Clarke J, Lehtinen M, Little P, Lundberg J, Arnberg F, Jonsson S, Chien KR, Holmin S. Superselective endovascular tissue access using trans-vessel wall technique: feasibility study for treatment applications in heart, pancreas and kidney in swine. J Intern Med 2019; 285:398-406. [PMID: 30289186 DOI: 10.1111/joim.12841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES With the emergence of targeted cell transplantation and gene therapy, there is a need for minimally invasive tissue access to facilitate delivery of therapeutic substrate. The objective of this study was to demonstrate the suitability of an endovascular device which is able to directly access tissue and deliver therapeutic agent to the heart, kidney and pancreas without need to seal the penetration site. METHODS In vivo experiments were performed in 30 swine, including subgroups with follow-up to evaluate complications. The previously described trans-vessel wall (VW) device was modified to be sharper and not require tip detachment to seal the VW. Injections into targets in the heart (n = 13, 24-h follow-up n = 5, 72-h follow-up n = 3), kidney (n = 8, 14-day follow-up n = 3) and pancreas (n = 5) were performed. Some animals were used for multiple organ injections. Follow-up consisted of clinical monitoring, angiography and necropsy. Transvenous (in heart) and transarterial approaches (in heart, kidney and pancreas) were used. Injections were targeted towards the subepicardium, endomyocardium, pancreas head and tail, and kidney subcapsular space and cortex. RESULTS Injections were successful in target organs, visualized by intraparenchymal contrast on fluoroscopy and by necropsy. No serious complications (defined as heart failure or persistent arrhythmia, haemorrhage requiring treatment or acute kidney injury) were encountered over a total of 157 injections. CONCLUSIONS The trans-VW device can achieve superselective injections to the heart, pancreas and kidney for delivery of therapeutic substances without tip detachment. All parts of these organs including the subepicardium, pancreas tail and renal subcapsular space can be efficiently reached.
Collapse
Affiliation(s)
- R Grankvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - M Jensen-Urstad
- Department of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J Clarke
- Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Lehtinen
- Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, Stockholm, Sweden
| | - P Little
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - J Lundberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - F Arnberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - S Jonsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, Sweden
| | - K R Chien
- Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, Stockholm, Sweden
| | - S Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A. Minimally Invasive and Regenerative Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804041. [PMID: 30565732 PMCID: PMC6709364 DOI: 10.1002/adma.201804041] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Indexed: 05/03/2023]
Abstract
Advances in biomaterial synthesis and fabrication, stem cell biology, bioimaging, microsurgery procedures, and microscale technologies have made minimally invasive therapeutics a viable tool in regenerative medicine. Therapeutics, herein defined as cells, biomaterials, biomolecules, and their combinations, can be delivered in a minimally invasive way to regenerate different tissues in the body, such as bone, cartilage, pancreas, cardiac, skeletal muscle, liver, skin, and neural tissues. Sophisticated methods of tracking, sensing, and stimulation of therapeutics in vivo using nano-biomaterials and soft bioelectronic devices provide great opportunities to further develop minimally invasive and regenerative therapeutics (MIRET). In general, minimally invasive delivery methods offer high yield with low risk of complications and reduced costs compared to conventional delivery methods. Here, minimally invasive approaches for delivering regenerative therapeutics into the body are reviewed. The use of MIRET to treat different tissues and organs is described. Although some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients. Finally, some future perspective and challenges for this emerging field are highlighted.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mario El Tahchi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- LBMI, Department of Physics, Lebanese University - Faculty of Sciences 2, PO Box 90656, Jdeidet, Lebanon
| | - Junmin Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Kasinan Suthiwanich
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Amir Sheikhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Rahmi Oklu
- Division of Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Curley CJ, Dolan EB, Otten M, Hinderer S, Duffy GP, Murphy BP. An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure. Drug Deliv Transl Res 2018; 9:1-13. [DOI: 10.1007/s13346-018-00601-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Sánchez-Alonso S, Alcaraz-Serna A, Sánchez-Madrid F, Alfranca A. Extracellular Vesicle-Mediated Immune Regulation of Tissue Remodeling and Angiogenesis After Myocardial Infarction. Front Immunol 2018; 9:2799. [PMID: 30555478 PMCID: PMC6281951 DOI: 10.3389/fimmu.2018.02799] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Myocardial ischemia-related disorders constitute a major health problem, being a leading cause of death in the world. Upon ischemia, tissue remodeling processes come into play, comprising a series of inter-dependent stages, including inflammation, cell proliferation and repair. Neovessel formation during late phases of remodeling provides oxygen supply, together with cellular and soluble components necessary for an efficient myocardial reconstruction. Immune system plays a central role in processes aimed at repairing ischemic myocardium, mainly in inflammatory and angiogenesis phases. In addition to cellular components and soluble mediators as chemokines and cytokines, the immune system acts in a paracrine fashion through small extracellular vesicles (EVs) release. These vesicular structures participate in multiple biological processes, and transmit information through bioactive cargoes from one cell to another. Cell therapy has been employed in an attempt to improve the outcome of these patients, through the promotion of tissue regeneration and angiogenesis. However, clinical trials have shown variable results, which put into question the actual applicability of cell-based therapies. Paracrine factors secreted by engrafted cells partially mediate tissue repair, and this knowledge has led to the hypothesis that small EVs may become a useful tool for cell-free myocardial infarction therapy. Current small EVs engineering strategies allow delivery of specific content to selected cell types, thus revealing the singular properties of these vesicles for myocardial ischemia treatment.
Collapse
Affiliation(s)
- Santiago Sánchez-Alonso
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Alcaraz-Serna
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| |
Collapse
|
18
|
Dolan EB, Kovarova L, O'Neill H, Pravda M, Sulakova R, Scigalkova I, Velebny V, Daro D, Braun N, Cooney GM, Bellavia G, Straino S, Cavanagh BL, Flanagan A, Kelly HM, Duffy GP, Murphy BP. Advanced Material Catheter (AMCath), a minimally invasive endocardial catheter for the delivery of fast-gelling covalently cross-linked hyaluronic acid hydrogels. J Biomater Appl 2018; 33:681-692. [PMID: 30354912 DOI: 10.1177/0885328218805878] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Injectable hydrogels that aim to mechanically stabilise the weakened left ventricle wall to restore cardiac function or to deliver stem cells in cardiac regenerative therapy have shown promising data. However, the clinical translation of hydrogel-based therapies has been limited due to difficulties injecting them through catheters. We have engineered a novel catheter, Advanced Materials Catheter (AMCath), that overcomes translational hurdles associated with delivering fast-gelling covalently cross-linked hyaluronic acid hydrogels to the myocardium. We developed an experimental technique to measure the force required to inject such hydrogels and determined the mechanical/viscoelastic properties of the resulting hydrogels. The preliminary in vivo feasibility of delivering fast-gelling hydrogels through AMCath was demonstrated by accessing the porcine left ventricle and showing that the hydrogel was retained in the myocardium post-injection (three 200 μL injections delivered, 192, 204 and 183 μL measured). However, the mechanical properties of the hydrogels were reduced by passage through AMCath (≤20.62% reduction). We have also shown AMCath can be used to deliver cardiopoietic adipose-derived stem cell-loaded hydrogels without compromising the viability (80% viability) of the cells in vitro. Therefore, we show that hydrogel/catheter compatibility issues can be overcome as we have demonstrated the minimally invasive delivery of a fast-gelling covalently cross-linked hydrogel to the beating myocardium.
Collapse
Affiliation(s)
- Eimear B Dolan
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland.,3 Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & the Royal College of Surgeons Ireland, Dublin, Ireland.,4 School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,5 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Lenka Kovarova
- 6 R&D department, Contipro, Dolni Dobrouc, Czech Republic.,7 Brno University of Technology, Faculty of Chemistry, Institute of Physical Chemistry, Purkynova Brno, Czech Republic
| | - Hugh O'Neill
- 5 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Martin Pravda
- 6 R&D department, Contipro, Dolni Dobrouc, Czech Republic
| | | | | | | | | | | | - Gerard M Cooney
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | | | | | - Brenton L Cavanagh
- 10 Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aiden Flanagan
- 11 Boston Scientific, Ballybrit Business Park, Ballybrit, Galway, Ireland
| | - Helena M Kelly
- 4 School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,5 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Garry P Duffy
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,3 Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & the Royal College of Surgeons Ireland, Dublin, Ireland.,5 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,12 Discipline of Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Bruce P Murphy
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland.,3 Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & the Royal College of Surgeons Ireland, Dublin, Ireland
| |
Collapse
|
19
|
Naderi-Meshkin H, Ahmadiankia N. Cancer metastasis versus stem cell homing: Role of platelets. J Cell Physiol 2018; 233:9167-9178. [PMID: 30105746 DOI: 10.1002/jcp.26937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
One of the major obstacles in achieving a successful stem cell therapy is insufficient homing of transplanted cells. To overcome this obstacle, understanding the underlying mechanisms of stem cell homing is of obvious importance. Central to this review is the concept that cancer metastasis can be viewed as a role model to build up a comprehensive concept of stem cell homing. In this novel perspective, the prosurvival choices of the cancerous cells in the bloodstream, their arrest, extravasation, and proliferation at the secondary site can be exploited in favor of targeted stem cell homing. To date, tumor cells have been found to employ a wide variety of strategies to promote metastasis. One of these strategies is through their ability to activate platelets and subsequently activated platelets serve cancer cell survival and metastasis. Accordingly, in the first part of this review the roles of platelets in cancer metastasis as well as stem cell homing are discussed. Next, we provide some lessons learned from cancer metastasis in favor of developing strategies for improvement of stem cell homing with emphasis on the role of platelets. Based on direct or indirect evidence from metastasis, strategies such as manipulation of stem cells to enhance interaction with platelets, preconditioning-pretreatment of stem cells with platelets in vitro, and coinjection of both stem cells and platelets are proposed to improve stem cell homing.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Naghmeh Ahmadiankia
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
20
|
Kopan C, Tucker T, Alexander M, Mohammadi MR, Pone EJ, Lakey JRT. Approaches in Immunotherapy, Regenerative Medicine, and Bioengineering for Type 1 Diabetes. Front Immunol 2018; 9:1354. [PMID: 29963051 PMCID: PMC6011033 DOI: 10.3389/fimmu.2018.01354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances on using immune and stem cells as two-pronged approaches for type 1 diabetes mellitus (T1DM) treatment show promise for advancement into clinical practice. As T1DM is thought to arise from autoimmune attack destroying pancreatic β-cells, increasing treatments that use biologics and cells to manipulate the immune system are achieving better results in pre-clinical and clinical studies. Increasingly, focus has shifted from small molecule drugs that suppress the immune system nonspecifically to more complex biologics that show enhanced efficacy due to their selectivity for specific types of immune cells. Approaches that seek to inhibit only autoreactive effector T cells or enhance the suppressive regulatory T cell subset are showing remarkable promise. These modern immune interventions are also enabling the transplantation of pancreatic islets or β-like cells derived from stem cells. While complete immune tolerance and body acceptance of grafted islets and cells is still challenging, bioengineering approaches that shield the implanted cells are also advancing. Integrating immunotherapy, stem cell-mediated β-cell or islet production and bioengineering to interface with the patient is expected to lead to a durable cure or pave the way for a clinical solution for T1DM.
Collapse
Affiliation(s)
- Christopher Kopan
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - Tori Tucker
- Department of Cell and Molecular Biosciences, University of California Irvine, Irvine, CA, United States
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - M. Rezaa Mohammadi
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, CA, United States
| | - Egest J. Pone
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, United States
| | - Jonathan Robert Todd Lakey
- Department of Surgery, University of California Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
21
|
Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir. Nat Biomed Eng 2018; 2:416-428. [DOI: 10.1038/s41551-018-0247-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/09/2018] [Indexed: 12/12/2022]
|
22
|
A direct tissue-grafting approach to increasing endogenous brown fat. Sci Rep 2018; 8:7957. [PMID: 29785004 PMCID: PMC5962549 DOI: 10.1038/s41598-018-25866-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
There is widespread evidence that increasing functional mass of brown adipose tissue (BAT) via browning of white adipose tissue (WAT) could potentially counter obesity and diabetes. However, most current approaches focus on administration of pharmacological compounds which expose patients to highly undesirable side effects. Here, we describe a simple and direct tissue-grafting approach to increase BAT mass through ex vivo browning of subcutaneous WAT, followed by re-implantation into the host; this cell-therapy approach could potentially act synergistically with existing pharmacological approaches. With this process, entitled "exBAT", we identified conditions, in both mouse and human tissue, that convert whole fragments of WAT to BAT via a single step and without unwanted off-target pharmacological effects. We show that ex vivo, exBAT exhibited UCP1 immunostaining, lipid droplet formation, and mitochondrial metabolic activity consistent with native BAT. In mice, exBAT exhibited a highly durable phenotype for at least 8 weeks. Overall, these results enable a simple and scalable tissue-grafting strategy, rather than pharmacological approaches, for increasing endogenous BAT and studying its effect on host weight and metabolism.
Collapse
|
23
|
Annamalai RT, Naik T, Prout H, Putnam AJ, Stegemann JP. Biofabrication of injectable fibrin microtissues for minimally-invasive therapies: application of surfactants. ACTA ACUST UNITED AC 2018. [PMID: 29536947 DOI: 10.1088/1748-605x/aab66f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microtissues created from the protein fibrin and containing embedded cells can be used in modular tissue engineering approaches to create larger, hierarchical and complex tissue structures. In this paper we demonstrate an emulsification-based method for the production of such fibrin microtissues containing fibroblasts (FB) and endothelial cells (EC) and designed to promote tissue vascularization. Surfactants can be beneficial in the microtissue fabrication process to reduce aggregation and to facilitate recovery of microtissues from the emulsion, thereby increasing yield. The nonionic surfactants Pluronic L101® and Tween 20® both increased microtissue yield in a dose-dependent fashion. Cell viability of both human FB and human EC remained high after exposure to low surfactant concentrations but decreased with increasing surfactant concentration. L101 was markedly less cytotoxic than Tween, and therefore was the surfactant of choice in this application. The yield of cell-laden microtissues increased with increasing L101 concentration, though microtissues were slightly larger at low concentrations. The total metabolic activity of cells in retrieved microtissues was bimodal and was highest at an L101 concentration of 0.10% wt/vol. Network formation by EC in microtissues embedded in surrounding 3D fibrin hydrogels was also most extensive in microtissues made using an L101 concentration of 0.10% wt/vol. Minimally-invasive delivery of microtissue populations was demonstrated by injection through a standard 18 G needle, and the ability to form robust endothelial networks was maintained in injected microtissue populations. Taken together, these data demonstrate a facile emulsification-based method to create modular, cell-laden hydrogel microtissues that can be delivered by injection to promote tissue regeneration. Appropriate selection of the type and concentration of surfactant used in the process can be used to maximize viability and specialized function of the embedded cells. Such biomaterial-based microtissues may have broad applicability in cell-based therapies and tissue engineering.
Collapse
|
24
|
Bakaic E, Smeets NMB, Badv M, Dodd M, Barrigar O, Siebers E, Lawlor M, Sheardown H, Hoare T. Injectable and Degradable Poly(Oligoethylene glycol methacrylate) Hydrogels with Tunable Charge Densities as Adhesive Peptide-Free Cell Scaffolds. ACS Biomater Sci Eng 2017; 4:3713-3725. [PMID: 33429602 DOI: 10.1021/acsbiomaterials.7b00397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Injectable, dual-responsive, and degradable poly(oligo ethylene glycol methacrylate) (POEGMA) hydrogels are demonstrated to offer potential for cell delivery. Charged groups were incorporated into hydrazide and aldehyde-functionalized thermoresponsive POEGMA gel precursor polymers via the copolymerization of N,N'-dimethylaminoethyl methacrylate (DMAEMA) or acrylic acid (AA) to create dual-temperature/pH-responsive in situ gelling hydrogels that can be injected via narrow gauge needles. The incorporation of charge significantly broadens the swelling, degradation, and rheological profiles achievable with injectable POEGMA hydrogels without significantly increasing nonspecific protein adsorption or chronic inflammatory responses following in vivo subcutaneous injection. However, significantly different cell responses are observed upon charge incorporation, with charged gels significantly improving 3T3 mouse fibroblast cell adhesion in 2D and successfully delivering viable and proliferating ARPE-19 human retinal epithelial cells via an "all-synthetic" matrix that does not require the incorporation of cell-adhesive peptides.
Collapse
Affiliation(s)
| | | | | | | | | | - Emily Siebers
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Michael Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | | | | |
Collapse
|
25
|
Mahmoudi M, Yu M, Serpooshan V, Wu JC, Langer R, Lee RT, Karp JM, Farokhzad OC. Multiscale technologies for treatment of ischemic cardiomyopathy. NATURE NANOTECHNOLOGY 2017; 12:845-855. [PMID: 28875984 PMCID: PMC5717755 DOI: 10.1038/nnano.2017.167] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/13/2017] [Indexed: 05/02/2023]
Abstract
The adult mammalian heart possesses only limited capacity for innate regeneration and the response to severe injury is dominated by the formation of scar tissue. Current therapy to replace damaged cardiac tissue is limited to cardiac transplantation and thus many patients suffer progressive decay in the heart's pumping capacity to the point of heart failure. Nanostructured systems have the potential to revolutionize both preventive and therapeutic approaches for treating cardiovascular disease. Here, we outline recent advancements in nanotechnology that could be exploited to overcome the major obstacles in the prevention of and therapy for heart disease. We also discuss emerging trends in nanotechnology affecting the cardiovascular field that may offer new hope for patients suffering massive heart attacks.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Mikyung Yu
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Vahid Serpooshan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Department of Medicine, Division of Cardiology, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts 02138, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Omid C. Farokhzad
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| |
Collapse
|
26
|
Zhu Y, Matsumura Y, Wagner WR. Ventricular wall biomaterial injection therapy after myocardial infarction: Advances in material design, mechanistic insight and early clinical experiences. Biomaterials 2017; 129:37-53. [PMID: 28324864 PMCID: PMC5827941 DOI: 10.1016/j.biomaterials.2017.02.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 12/11/2022]
Abstract
Intramyocardial biomaterial injection therapy for myocardial infarction has made significant progress since concept initiation more than 10 years ago. The interim successes and progress in the first 5 years have been extensively reviewed. During the last 5 years, two phase II clinical trials have reported their long term follow up results and many additional biomaterial candidates have reached preclinical and clinical testing. Also in recent years deeper investigations into the mechanisms behind the beneficial effects associated with biomaterial injection therapy have been pursued, and a variety of process and material parameters have been evaluated for their impact on therapeutic outcomes. This review explores the advances made in this biomaterial-centered approach to ischemic cardiomyopathy and discusses potential future research directions as this therapy seeks to positively impact patients suffering from one of the world's most common sources of mortality.
Collapse
Affiliation(s)
- Yang Zhu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Yasumoto Matsumura
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
27
|
Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, O'Connor MI. A Prospective, Single-Blind, Placebo-Controlled Trial of Bone Marrow Aspirate Concentrate for Knee Osteoarthritis. Am J Sports Med 2017; 45:82-90. [PMID: 27566242 DOI: 10.1177/0363546516662455] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone marrow aspirate concentrate (BMAC) is increasingly used as a regenerative therapy for musculoskeletal pathological conditions despite limited evidence-based support. HYPOTHESIS BMAC will prove feasible, safe, and efficacious for the treatment of pain due to mild to moderate degenerative joint disease of the knee. STUDY DESIGN Randomized controlled trial; Level of evidence, 2. METHODS In this prospective, single-blind, placebo-controlled trial, 25 patients with bilateral knee pain from bilateral osteoarthritis were randomized to receive BMAC into one knee and saline placebo into the other. Fifty-two milliliters of bone marrow was aspirated from the iliac crests and concentrated in an automated centrifuge. The resulting BMAC was combined with platelet-poor plasma for an injection into the arthritic knee and was compared with a saline injection into the contralateral knee, thereby utilizing each patient as his or her own control. Safety outcomes, pain relief, and function as measured by Osteoarthritis Research Society International (OARSI) measures and the visual analog scale (VAS) score were tracked initially at 1 week, 3 months, and 6 months after the procedure. RESULTS There were no serious adverse events from the BMAC procedure. OARSI Intermittent and Constant Osteoarthritis Pain and VAS pain scores in both knees decreased significantly from baseline at 1 week, 3 months, and 6 months ( P ≤ .019 for all). Pain relief, although dramatic, did not differ significantly between treated knees ( P > .09 for all). CONCLUSION Early results show that BMAC is safe to use and is a reliable and viable cellular product. Study patients experienced a similar relief of pain in both BMAC- and saline-treated arthritic knees. Further study is required to determine the mechanisms of action, duration of efficacy, optimal frequency of treatments, and regenerative potential. Registration: ClinicalTrials.gov record 12-004459.
Collapse
Affiliation(s)
- Shane A Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Shari E Kazmerchak
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Mary I O'Connor
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA.,Musculoskeletal Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
28
|
O'Neill HS, Gallagher LB, O'Sullivan J, Whyte W, Curley C, Dolan E, Hameed A, O'Dwyer J, Payne C, O'Reilly D, Ruiz-Hernandez E, Roche ET, O'Brien FJ, Cryan SA, Kelly H, Murphy B, Duffy GP. Biomaterial-Enhanced Cell and Drug Delivery: Lessons Learned in the Cardiac Field and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5648-5661. [PMID: 26840955 DOI: 10.1002/adma.201505349] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Heart failure is a significant clinical issue. It is the cause of enormous healthcare costs worldwide and results in significant morbidity and mortality. Cardiac regenerative therapy has progressed considerably from clinical and preclinical studies delivering simple suspensions of cells, macromolecule, and small molecules to more advanced delivery methods utilizing biomaterial scaffolds as depots for localized targeted delivery to the damaged and ischemic myocardium. Here, regenerative strategies for cardiac tissue engineering with a focus on advanced delivery strategies and the use of multimodal therapeutic strategies are reviewed.
Collapse
Affiliation(s)
- Hugh S O'Neill
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Laura B Gallagher
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Janice O'Sullivan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - William Whyte
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Clive Curley
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Eimear Dolan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Joanne O'Dwyer
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Christina Payne
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Daniel O'Reilly
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Eduardo Ruiz-Hernandez
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Ellen T Roche
- Department of Biomedical Engineering, Eng-2053, Engineering Building, National University of Ireland, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally Ann Cryan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Helena Kelly
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Bruce Murphy
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
29
|
Tharp KM, Jha AK, Kraiczy J, Yesian A, Karateev G, Sinisi R, Dubikovskaya EA, Healy KE, Stahl A. Matrix-Assisted Transplantation of Functional Beige Adipose Tissue. Diabetes 2015; 64:3713-24. [PMID: 26293504 PMCID: PMC4613967 DOI: 10.2337/db15-0728] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Novel, clinically relevant, approaches to shift energy balance are urgently needed to combat metabolic disorders such as obesity and diabetes. One promising approach has been the expansion of brown adipose tissues that express uncoupling protein (UCP) 1 and thus can uncouple mitochondrial respiration from ATP synthesis. While expansion of UCP1-expressing adipose depots may be achieved in rodents via genetic and pharmacological manipulations or the transplantation of brown fat depots, these methods are difficult to use for human clinical intervention. We present a novel cell scaffold technology optimized to establish functional brown fat-like depots in vivo. We adapted the biophysical properties of hyaluronic acid-based hydrogels to support the differentiation of white adipose tissue-derived multipotent stem cells (ADMSCs) into lipid-accumulating, UCP1-expressing beige adipose tissue. Subcutaneous implantation of ADMSCs within optimized hydrogels resulted in the establishment of distinct UCP1-expressing implants that successfully attracted host vasculature and persisted for several weeks. Importantly, implant recipients demonstrated elevated core body temperature during cold challenges, enhanced respiration rates, improved glucose homeostasis, and reduced weight gain, demonstrating the therapeutic merit of this highly translatable approach. This novel approach is the first truly clinically translatable system to unlock the therapeutic potential of brown fat-like tissue expansion.
Collapse
Affiliation(s)
- Kevin M Tharp
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | - Amit K Jha
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | - Judith Kraiczy
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA
| | - Alexandra Yesian
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA
| | - Grigory Karateev
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Riccardo Sinisi
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elena A Dubikovskaya
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA
| | - Andreas Stahl
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
30
|
Caplan AI. Adult Mesenchymal Stem Cells: When, Where, and How. Stem Cells Int 2015; 2015:628767. [PMID: 26273305 PMCID: PMC4529977 DOI: 10.1155/2015/628767] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/14/2015] [Indexed: 12/20/2022] Open
Abstract
Adult mesenchymal stem cells (MSCs) have profound medicinal effects at body sites of tissue injury, disease, or inflammation as either endogenously or exogenously supplied. The medicinal effects are either immunomodulatory or trophic or both. When to deliver these mediators of regeneration, where, and by what delivery apparatus or mechanism will directly determine their medical efficacy. The MSCs help manage the innate regenerative capacity of almost every body tissue and the MSCs have only recently been fully appreciated. Perhaps the most skilled physician-manager of the body's innate regenerative capacity is in orthopedics where the vigorous regeneration and repair capacity of bone through local MSCs-titers is expertly managed by the orthopaedic physician. The challenge is to extend MSCs expertise to address other tissue dysfunctions and diseases. The medicine of tomorrow will encompass optimizing the tissues' intrinsic regenerative potential through management of local MSCs.
Collapse
Affiliation(s)
- Arnold I. Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Hastings CL, Roche ET, Ruiz-Hernandez E, Schenke-Layland K, Walsh CJ, Duffy GP. Drug and cell delivery for cardiac regeneration. Adv Drug Deliv Rev 2015; 84:85-106. [PMID: 25172834 DOI: 10.1016/j.addr.2014.08.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/24/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022]
Abstract
The spectrum of ischaemic cardiomyopathy, encompassing acute myocardial infarction to congestive heart failure is a significant clinical issue in the modern era. This group of diseases is an enormous source of morbidity and mortality and underlies significant healthcare costs worldwide. Cardiac regenerative therapy, whereby pro-regenerative cells, drugs or growth factors are administered to damaged and ischaemic myocardium has demonstrated significant potential, especially preclinically. While some of these strategies have demonstrated a measure of success in clinical trials, tangible clinical translation has been slow. To date, the majority of clinical studies and a significant number of preclinical studies have utilised relatively simple delivery methods for regenerative therapeutics, such as simple systemic administration or local injection in saline carrier vehicles. Here, we review cardiac regenerative strategies with a particular focus on advanced delivery concepts as a potential means to enhance treatment efficacy and tolerability and ultimately, clinical translation. These include (i) delivery of therapeutic agents in biomaterial carriers, (ii) nanoparticulate encapsulation, (iii) multimodal therapeutic strategies and (iv) localised, minimally invasive delivery via percutaneous transcatheter systems.
Collapse
|
32
|
Vogel R, Hussein EA, Mousa SA. Stem cells in the management of heart failure: what have we learned from clinical trials? Expert Rev Cardiovasc Ther 2014; 13:75-83. [PMID: 25434419 DOI: 10.1586/14779072.2015.988142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Research shows that various types of stem cells (SCs) have the ability to rebuild damaged heart tissue. The TIME and Late TIME human trials shed light on the optimum timing of SC therapy administration after myocardial damage. The FOCUS study failed to show a substantial positive effect of bone marrow-derived mononuclear cells in patients suffering from ischemic heart failure; however, some completed human trials do show promise, with improvement in cardiac function. Recent clinical trials have identified a subset of marrow cells that was able to stimulate endogenous adult cardiac SCs where cardiac SCs administration showed promise in the SCIPIO trial. This review addresses some of the lessons learned from clinical trials with SC therapy in ischemic heart failure.
Collapse
Affiliation(s)
- Rebecca Vogel
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | | | | |
Collapse
|
33
|
Abstract
Stem cells have emerged as promising tools for the treatment of incurable neural and heart diseases and tissue damage. However, the survival of transplanted stem cells is reported to be low, reducing their therapeutic effects. The major causes of poor survival of stem cells in vivo are linked to anoikis, potential immune rejection, and oxidative damage mediating apoptosis. This review investigates novel methods and potential molecular mechanisms for stem cell preconditioning in vitro to increase their retention after transplantation in damaged tissues. Microenvironmental preconditioning (e.g., hypoxia, heat shock, and exposure to oxidative stress), aggregate formation, and hydrogel encapsulation have been revealed as promising strategies to reduce cell apoptosis in vivo while maintaining biological functions of the cells. Moreover, this review seeks to identify methods of optimizing cell dose preparation to enhance stem cell survival and therapeutic function after transplantation.
Collapse
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory , CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| |
Collapse
|