1
|
Wang S, Fan S, Gan Y, Zhang Y, Gao Y, Xue T, Xie H, Ma R, Zhang Q, Zhao B, Wang Y, Zhu G, Yang A, Jiang Y, Meng F, Zhang J. Efficacy and safety of combined deep brain stimulation with capsulotomy for comorbid motor and psychiatric symptoms in Tourette's syndrome: Experience and evidence. Asian J Psychiatr 2024; 94:103960. [PMID: 38368692 DOI: 10.1016/j.ajp.2024.103960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVES To evaluate the efficacy and safety of combined deep brain stimulation (DBS) with capsulotomy for comorbid motor and psychiatric symptoms in patients with Tourette's syndrome (TS). METHODS This retrospective cohort study consecutively enrolled TS patients with comorbid motor and psychiatric symptoms who were treated with combined DBS and anterior capsulotomy at our center. Longitudinal motor, psychiatric, and cognitive outcomes and quality of life were assessed. In addition, a systematic review and meta-analysis were performed to summarize the current experience with the available evidence. RESULTS In total, 5 eligible patients in our cohort and 26 summarized patients in 6 cohorts were included. After a mean 18-month follow-up, our cohort reported that motor symptoms significantly improved by 62.4 % (P = 0.005); psychiatric symptoms of obsessive-compulsive disorder (OCD) and anxiety significantly improved by 87.7 % (P < 0.001) and 78.4 % (P = 0.009); quality of life significantly improved by 61.9 % (P = 0.011); and no significant difference was found in cognitive function (all P > 0.05). Combined surgery resulted in greater improvements in psychiatric outcomes and quality of life than DBS alone. The synthesized findings suggested significant improvements in tics (MD: 57.92, 95 % CI: 41.28-74.56, P < 0.001), OCD (MD: 21.91, 95 % CI: 18.67-25.15, P < 0.001), depression (MD: 18.32, 95 % CI: 13.26-23.38, P < 0.001), anxiety (MD: 13.83, 95 % CI: 11.90-15.76, P < 0.001), and quality of life (MD: 48.22, 95 % CI: 43.68-52.77, P < 0.001). Individual analysis revealed that the pooled treatment effects on motor symptoms, psychiatric symptoms, and quality of life were 78.6 %, 84.5-87.9 %, and 83.0 %, respectively. The overall pooled rate of adverse events was 50.0 %, and all of these adverse events were resolved or alleviated with favorable outcomes. CONCLUSIONS Combined DBS with capsulotomy is effective for relieving motor and psychiatric symptoms in TS patients, and its safety is acceptable. However, the optimal candidate should be considered, and additional experience is still necessary.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Shiying Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuan Zhang
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yuan Gao
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yanwen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; Beijing Key Laboratory of Neurostimulation, Beijing 100070, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; Beijing Key Laboratory of Neurostimulation, Beijing 100070, China.
| |
Collapse
|
2
|
Chou CY, Agin-Liebes J, Kuo SH. Emerging therapies and recent advances for Tourette syndrome. Heliyon 2023; 9:e12874. [PMID: 36691528 PMCID: PMC9860289 DOI: 10.1016/j.heliyon.2023.e12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Tourette syndrome is the most prevalent hyperkinetic movement disorder in children and can be highly disabling. While the pathomechanism of Tourette syndrome remains largely obscure, recent studies have greatly improved our knowledge about this disease, providing a new perspective in our understanding of this condition. Advances in electrophysiology and neuroimaging have elucidated that there is a reduction in frontal cortical volume and reduction of long rage connectivity to the frontal lobe from other parts of the brain. Several genes have also been identified to be associated with Tourette syndrome. Treatment of Tourette syndrome requires a multidisciplinary approach which includes behavioral and pharmacological therapy. In severe cases surgical therapy with deep brain stimulation may be warranted, though the optimal location for stimulation is still being investigated. Studies on alternative therapies including traditional Chinese medicine and neuromodulation, such as transcranial magnetic stimulation have shown promising results, but still are being used in an experimental basis. Several new therapies have also recently been tested in clinical trials. This review provides an overview of the latest findings with regards to genetics and neuroimaging for Tourette syndrome as well as an update on advanced therapeutics.
Collapse
Affiliation(s)
- Chih-Yi Chou
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Julian Agin-Liebes
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Corresponding author. 650 West 168th Street, Room 305, New York, NY, 10032, USA. Fax: +(212) 305 1304.
| |
Collapse
|
3
|
Cui ZQ, Wang J, Mao ZQ, Pan LS, Jiang C, Gao QY, Ling ZP, Xu BN, Yu XG, Zhang JN, Chen T. Long-term efficacy, prognostic factors, and safety of deep brain stimulation in patients with refractory Tourette syndrome: A single center, single target, retrospective study. J Psychiatr Res 2022; 151:523-530. [PMID: 35636027 DOI: 10.1016/j.jpsychires.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/11/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND To evaluate the long-term efficacy, prognostic factors, and safety of posteroventral globus pallidus internus deep brain stimulation (DBS) in patients with refractory Tourette syndrome (RTS). METHODS This retrospective study recruited 61 patients with RTS who underwent posteroventral globus pallidus internus (GPi) DBS from January 2010 to December 2020 at the Chinese People's Liberation Army General Hospital. The Yale Global Tic Severity Scale (YGTSS), Yale-Brown Obsessive-Compulsive Scale (YBOCS), Beck Depression Inventory (BDI), Gilles de la Tourette Syndrome Quality-of-Life Scale (GTS-QOL) were used to evaluate the preoperative and postoperative clinical condition in all patients. Prognostic factors and adverse events following surgery were analyzed. RESULTS Patient follow up was conducted for an average of 73.33 ± 28.44 months. The final postoperative YGTSS (32.39 ± 22.34 vs 76.61 ± 17.07), YBOCS (11.26 ± 5.57 vs 18.31 ± 8.55), BDI (14.36 ± 8.16 vs 24.79 ± 11.03) and GTS-QOL (39.69 ± 18.29 vs 78.08 ± 14.52) scores at the end of the follow-up period were significantly lower than those before the surgery (p < 0.05). While age and the duration of follow-up were closely related to prognosis, the disease duration and gender were not. No serious adverse events were observed and only one patient exhibited symptomatic deterioration. CONCLUSIONS Posteroventral-GPI DBS provides long-term effectiveness, acceptable safety and can improve the quality of life in RTS patients. Moreover, DBS is more successful among younger patients and with longer treatment duration.
Collapse
Affiliation(s)
- Zhi-Qiang Cui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jian Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhi-Qi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Long-Sheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Jiang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Qing-Yao Gao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Zhi-Pei Ling
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bai-Nan Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xin-Guang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jian-Ning Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tong Chen
- Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
4
|
Tomskiy AA, Poddubskaya AA, Gamaleya AA, Zaitsev OS. Neurosurgical management of Tourette syndrome: A literature review and analysis of a case series treated with deep brain stimulation. PROGRESS IN BRAIN RESEARCH 2022; 272:41-72. [PMID: 35667806 DOI: 10.1016/bs.pbr.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tourette syndrome (TS) is a heterogeneous disorder, which clinical presentation includes both multiple motor and vocal tics and commonly associated psychiatric conditions (obsessive-compulsive disorder, attention deficit hyperactivity disorder, depression, anxiety, etc.). Treatment options primarily consist of non-pharmacological interventions (habit reversal training, relaxation techniques, cognitive behavioral therapy, and social rehabilitation) and pharmacotherapy. In case of the intractable forms, neurosurgical treatment may be considered, primarily deep brain stimulation (DBS). DBS appear to be effective in medically intractable TS patients, although, the preferential brain target is still not defined. The majority of studies describe small number of cases and the issues of appropriate patient selection and ethics remain to be clarified. In this article, we review the main points in management of TS, discuss possible indications and contraindications for neurosurgical treatment, and analyze our experience of DBS in a case series of refractory TS patients with the focus on target selection and individual outcomes.
Collapse
Affiliation(s)
- Alexey A Tomskiy
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation.
| | - Anna A Poddubskaya
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation; Psychiatry Research Group, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Anna A Gamaleya
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Oleg S Zaitsev
- Psychiatry Research Group, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| |
Collapse
|
5
|
De Salles A, Lucena L, Paranhos T, Ferragut MA, de Oliveira-Souza R, Gorgulho A. Modern neurosurgical techniques for psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2022; 270:33-59. [PMID: 35396030 DOI: 10.1016/bs.pbr.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Psychosurgery refers to an ensemble of more or less invasive techniques designed to reduce the burden caused by psychiatric diseases in patients who have failed to respond to conventional therapy. While most surgeries are designed to correct apparent anatomical abnormalities, no discrete cerebral anatomical lesion is evident in most psychiatric diseases amenable to invasive interventions. Finding the optimal surgical targets in mental illness is troublesome. In general, contemporary psychosurgical procedures can be classified into one of two primary modalities: lesioning and stimulation procedures. The first group is divided into (a) thermocoagulation and (b) stereotactic radiosurgery or recently introduced transcranial magnetic resonance-guided focused ultrasound, whereas stimulation techniques mainly include deep brain stimulation (DBS), cortical stimulation, and the vagus nerve stimulation. The most studied psychiatric diseases amenable to psychosurgical interventions are severe treatment-resistant major depressive disorder, obsessive-compulsive disorder, Tourette syndrome, anorexia nervosa, schizophrenia, and substance use disorder. Furthermore, modern neuroimaging techniques spurred the interest of clinicians to identify cerebral regions amenable to be manipulated to control psychiatric symptoms. On this way, the concept of a multi-nodal network need to be embraced, enticing the collaboration of psychiatrists, psychologists, neurologists and neurosurgeons participating in multidisciplinary groups, conducting well-designed clinical trials.
Collapse
Affiliation(s)
- Antonio De Salles
- University of California Los Angeles (UCLA), Los Angeles, CA, United States; NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil.
| | - Luan Lucena
- NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil
| | - Thiago Paranhos
- Hospital Rede D'Or, São Luiz, SP, Brazil; Federal University of Rio De Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Ricardo de Oliveira-Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Federal University of the State of Rio De Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Szejko N, Worbe Y, Hartmann A, Visser-Vandewalle V, Ackermans L, Ganos C, Porta M, Leentjens AFG, Mehrkens JH, Huys D, Baldermann JC, Kuhn J, Karachi C, Delorme C, Foltynie T, Cavanna AE, Cath D, Müller-Vahl K. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part IV: deep brain stimulation. Eur Child Adolesc Psychiatry 2022; 31:443-461. [PMID: 34605960 PMCID: PMC8940783 DOI: 10.1007/s00787-021-01881-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022]
Abstract
In 2011 the European Society for the Study of Tourette Syndrome (ESSTS) published its first European clinical guidelines for the treatment of Tourette Syndrome (TS) with part IV on deep brain stimulation (DBS). Here, we present a revised version of these guidelines with updated recommendations based on the current literature covering the last decade as well as a survey among ESSTS experts. Currently, data from the International Tourette DBS Registry and Database, two meta-analyses, and eight randomized controlled trials (RCTs) are available. Interpretation of outcomes is limited by small sample sizes and short follow-up periods. Compared to open uncontrolled case studies, RCTs report less favorable outcomes with conflicting results. This could be related to several different aspects including methodological issues, but also substantial placebo effects. These guidelines, therefore, not only present currently available data from open and controlled studies, but also include expert knowledge. Although the overall database has increased in size since 2011, definite conclusions regarding the efficacy and tolerability of DBS in TS are still open to debate. Therefore, we continue to consider DBS for TS as an experimental treatment that should be used only in carefully selected, severely affected and otherwise treatment-resistant patients.
Collapse
Affiliation(s)
- Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Bioethics, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, USA.
| | - Yulia Worbe
- Department on Neurophysiology, Saint Antoine Hospital, Sorbonne Université, Paris, France
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
| | - Andreas Hartmann
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christos Ganos
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mauro Porta
- Department of Neurosurgery and Neurology, IRCCS Instituto Ortopedico Galeazzi, Milan, Italy
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan-Hinnerk Mehrkens
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Carine Karachi
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
- Department of Neurology, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Cécile Delorme
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea E Cavanna
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Danielle Cath
- Department of Specialist Trainings, GGZ Drenthe Mental Health Institution, Assen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, Rijks University Groningen, Groningen, The Netherlands
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
MacLean JA, Ferman D, Chu JK, Liker MA, Sanger TD. Transient Complete Resolution of Tourette Syndrome Symptoms Following Personalized Depth Electrode Placement. Brain Sci 2021; 11:1559. [PMID: 34942861 PMCID: PMC8699357 DOI: 10.3390/brainsci11121559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Treatment refractory Tourette syndrome has been shown to be improved with deep brain stimulation, but with multiple possible stimulation locations and variable and incomplete benefit. This study presents a single case of complete amelioration of motor and verbal tics in a patient with Tourette syndrome during placement of 12 stereo-EEG electrodes to identify optimal targets for permanent stimulating electrodes. Subsequently, substantial improvement in motor and verbal tic frequency occurred with placement and programming of permanent electrodes in bilateral globus pallidus internus and nucleus accumbens, but without the complete resolution seen during depth electrode placement. We suggest that simultaneous stimulation at multiple patient-specific targets could provide effective control of Tourette symptomatology, but further study will be needed.
Collapse
Affiliation(s)
- Jennifer A. MacLean
- Department of Neurology, Children’s Health of Orange County, Orange, CA 92868, USA;
| | - Diana Ferman
- Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA;
| | - Jason K. Chu
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA; (J.K.C.); (M.A.L.)
- Department of Neurosurgery, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
| | - Mark A. Liker
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA; (J.K.C.); (M.A.L.)
- Department of Neurosurgery, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
| | - Terence D. Sanger
- Department of Neurology, Children’s Health of Orange County, Orange, CA 92868, USA;
- Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Wehmeyer L, Schüller T, Kiess J, Heiden P, Visser-Vandewalle V, Baldermann JC, Andrade P. Target-Specific Effects of Deep Brain Stimulation for Tourette Syndrome: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:769275. [PMID: 34744993 PMCID: PMC8563609 DOI: 10.3389/fneur.2021.769275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Extended research has pointed to the efficacy of deep brain stimulation (DBS) in treatment of patients with treatment-refractory Tourette syndrome (TS). The four most commonly used DBS targets for TS include the centromedian nucleus-nucleus ventrooralis internus (CM-Voi) and the centromedian nucleus-parafascicular (CM-Pf) complexes of the thalamus, and the posteroventrolateral (pvIGPi) and the anteromedial portion of the globus pallidus internus (amGPi). Differences and commonalities between those targets need to be compared systematically. Objective: Therefore, we evaluated whether DBS is effective in reducing TS symptoms and target-specific differences. Methods: A PubMed literature search was conducted according to the PRISMA guidelines. Eligible literature was used to conduct a systematic review and meta-analysis. Results: In total, 65 studies with 376 patients were included. Overall, Yale Global Tic Severity Scale (YGTSS) scores were reduced by more than 50 in 69% of the patients. DBS also resulted in significant reductions of secondary outcome measures, including the total YGTSS, modified Rush Video-Based Tic Rating Scale (mRVRS), Yale-Brown Obsessive Compulsive Scale (YBOCS), and Becks Depression Inventory (BDI). All targets resulted in significant reductions of YGTSS scores and, with the exception of the CM-Pf, also in reduced YBOCS scores. Interestingly, DBS of pallidal targets showed increased YGTSS and YBOCS reductions compared to thalamic targets. Also, the meta-analysis including six randomized controlled and double-blinded trials demonstrated clinical efficacy of DBS for TS, that remained significant for GPi but not thalamic stimulation in two separate meta-analyses. Conclusion: We conclude that DBS is a clinically effective treatment option for patients with treatment-refractory TS, with all targets showing comparable improvement rates. Future research might focus on personalized and symptom-specific target selection.
Collapse
Affiliation(s)
- Laura Wehmeyer
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany,*Correspondence: Laura Wehmeyer
| | - Thomas Schüller
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jana Kiess
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Petra Heiden
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany,Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Pablo Andrade
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Acevedo N, Bosanac P, Pikoos T, Rossell S, Castle D. Therapeutic Neurostimulation in Obsessive-Compulsive and Related Disorders: A Systematic Review. Brain Sci 2021; 11:brainsci11070948. [PMID: 34356182 PMCID: PMC8307974 DOI: 10.3390/brainsci11070948] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/16/2023] Open
Abstract
Invasive and noninvasive neurostimulation therapies for obsessive-compulsive and related disorders (OCRD) were systematically reviewed with the aim of assessing clinical characteristics, methodologies, neuroanatomical substrates, and varied stimulation parameters. Previous reviews have focused on a narrow scope, statistical rather than clinical significance, grouped together heterogenous protocols, and proposed inconclusive outcomes and directions. Herein, a comprehensive and transdiagnostic evaluation of all clinically relevant determinants is presented with translational clinical recommendations and novel response rates. Electroconvulsive therapy (ECT) studies were limited in number and quality but demonstrated greater efficacy than previously identified. Targeting the pre-SMA/SMA is recommended for transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). TMS yielded superior outcomes, although polarity findings were conflicting, and refinement of frontal/cognitive control protocols may optimize outcomes. For both techniques, standardization of polarity, more treatment sessions (>20), and targeting multiple structures are encouraged. A deep brain stimulation (DBS) 'sweet spot' of the striatum for OCD was proposed, and CBT is strongly encouraged. Tourette's patients showed less variance and reliance on treatment optimization. Several DBS targets achieved consistent, rapid, and sustained clinical response. Analysis of fiber connectivity, as opposed to precise neural regions, should be implemented for target selection. Standardization of protocols is necessary to achieve translational outcomes.
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- Correspondence:
| | - Peter Bosanac
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toni Pikoos
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
| | - David Castle
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
- Centre for Addiction and Mental Health, 252 College Street, Toronto, ON M5T 1R7, Canada
| |
Collapse
|
10
|
Sun F, Zhang X, Dong S, Zhang Y, Li J, Wang Y, Zhu J. Effectiveness of Low-Frequency Pallidal Deep Brain Stimulation at 65 Hz in Tourette Syndrome. Neuromodulation 2021; 25:286-295. [PMID: 34002454 DOI: 10.1111/ner.13456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Pallidal deep brain stimulation (DBS) for refractory Tourette syndrome (TS) is often applied using a high frequency. The effectiveness of low-frequency long-term stimulation is unknown. We aimed to evaluate the clinical efficacy of low-frequency DBS applied to the globus pallidus pars internus (GPi) at 65 Hz for the treatment of TS, with long-term follow-up, to provide data for the optimization of stimulation parameters. MATERIALS AND METHODS A total of six patients with refractory TS were implanted with electrodes in the GPi and were assigned to receive low-frequency (65 Hz) DBS programming. Assessments were performed pre-DBS and at 3, 12, and a median of 34 (range 26-48) months post-DBS. The primary outcome was tic severity, as assessed by the Yale Global Tic Severity Scale (YGTSS), and the secondary outcomes were comorbid behavioral disorders, mood, functioning, and quality of life. RESULTS We noted significant differences in the YGTSS scores between the baseline and the post-DBS follow-ups (p = 0.01). At the final follow up, four of six (66.6%) patients had a greater than 50% reduction in the YGTSS score, whereas the remaining two patients showed a mild worsening of tic severity. The secondary outcome measures also showed remarkable improvements in associated behavioral disorders, mood, functioning, and quality of life. Stimulation-induced adverse effects were not reported, although a device-related complication (an uncomfortable feeling in the neck) occurred in 1 patient. CONCLUSIONS The results of this study indicated that low-frequency DBS represents an effective and practical treatment for refractory TS with comparable efficacy to high-frequency DBS.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sheng Dong
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, Beijing, China
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunpeng Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jin Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Johnson KA, Duffley G, Anderson DN, Ostrem JL, Welter ML, Baldermann JC, Kuhn J, Huys D, Visser-Vandewalle V, Foltynie T, Zrinzo L, Hariz M, Leentjens AFG, Mogilner AY, Pourfar MH, Almeida L, Gunduz A, Foote KD, Okun MS, Butson CR. Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome. Brain 2020; 143:2607-2623. [PMID: 32653920 DOI: 10.1093/brain/awaa188] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate 'reverse' tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Gordon Duffley
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Daria Nesterovich Anderson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Marie-Laure Welter
- Institut du Cerveau et de la Moelle Epiniere, Sorbonne Universités, University of Pierre and Marie Curie University of Paris, the French National Institute of Health and Medical Research U 1127, the National Center for Scientific Research 7225, Paris, France
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Johanniter Hospital Oberhausen, EVKLN, Oberhausen, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Thomas Foltynie
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Marwan Hariz
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK.,Department of Clinical Neuroscience, Umea University, Umea, Sweden
| | - Albert F G Leentjens
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alon Y Mogilner
- Center for Neuromodulation, New York University Langone Medical Center, New York, New York, USA
| | - Michael H Pourfar
- Center for Neuromodulation, New York University Langone Medical Center, New York, New York, USA
| | - Leonardo Almeida
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA.,J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA.,Departments of Neurology and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Johnson KA, Duffley G, Foltynie T, Hariz M, Zrinzo L, Joyce EM, Akram H, Servello D, Galbiati TF, Bona A, Porta M, Meng FG, Leentjens AFG, Gunduz A, Hu W, Foote KD, Okun MS, Butson CR. Basal Ganglia Pathways Associated With Therapeutic Pallidal Deep Brain Stimulation for Tourette Syndrome. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:961-972. [PMID: 33536144 DOI: 10.1016/j.bpsc.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Accepted: 11/14/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) can improve tics and comorbid obsessive-compulsive behavior (OCB) in patients with treatment-refractory Tourette syndrome (TS). However, some patients' symptoms remain unresponsive, the stimulation applied across patients is variable, and the mechanisms underlying improvement are unclear. Identifying the fiber pathways surrounding the GPi that are associated with improvement could provide mechanistic insight and refine targeting strategies to improve outcomes. METHODS Retrospective data were collected for 35 patients who underwent bilateral GPi DBS for TS. Computational models of fiber tract activation were constructed using patient-specific lead locations and stimulation settings to evaluate the effects of DBS on basal ganglia pathways and the internal capsule. We first evaluated the relationship between activation of individual pathways and symptom improvement. Next, linear mixed-effects models with combinations of pathways and clinical variables were compared in order to identify the best-fit predictive models of tic and OCB improvement. RESULTS The best-fit model of tic improvement included baseline severity and the associative pallido-subthalamic pathway. The best-fit model of OCB improvement included baseline severity and the sensorimotor pallido-subthalamic pathway, with substantial evidence also supporting the involvement of the prefrontal, motor, and premotor internal capsule pathways. The best-fit models of tic and OCB improvement predicted outcomes across the cohort and in cross-validation. CONCLUSIONS Differences in fiber pathway activation likely contribute to variable outcomes of DBS for TS. Computational models of pathway activation could be used to develop novel approaches for preoperative targeting and selecting stimulation parameters to improve patient outcomes.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Gordon Duffley
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Thomas Foltynie
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Marwan Hariz
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Clinical Neuroscience, Umea University, Umea, Sweden
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eileen M Joyce
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Harith Akram
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Domenico Servello
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Tommaso F Galbiati
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Alberto Bona
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Mauro Porta
- Tourette's Syndrome and Movement Disorders Center, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Albert F G Leentjens
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Wei Hu
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Department of Neurology, University of Utah, Salt Lake City, Utah; Department of Neurosurgery, University of Utah, Salt Lake City, Utah; Department of Psychiatry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
13
|
Xu W, Zhang X, Wang Y, Gong H, Wu Y, Sun B, Zhang C, Li D. Sustained Relief after Pallidal Stimulation Interruption in Tourette's Syndrome Treated with Simultaneous Capsulotomy. Stereotact Funct Neurosurg 2020; 99:140-149. [PMID: 33207348 DOI: 10.1159/000510946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/14/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Globus pallidus internus (GPi) deep brain stimulation (DBS) combined with anterior capsulotomy offers a promising treatment option for severe medication-refractory cases of Tourette's syndrome (TS) with psychiatric comorbidities. Several patients treated with this combined surgery experienced sustained relief after discontinuation of stimulation over the course of treatment. METHODS Retrospectively, the medical records and clinical outcomes were reviewed of 8 patients (6 men; 2 women with mean age of 20.3 years) who had undergone bilateral GPi-DBS combined with anterior capsulotomy for medically intractable TS and psychiatric comorbidities. All patients had experienced an accidental interruption or intentional withdrawal of pallidal stimulation during treatment. RESULTS The widespread clinical benefits achieved during the combined treatment were fully maintained after intentional or accidental DBS discontinuation. The improvement in overall tic symptoms achieved was on average 78% at the follow-up or close to the DBS discontinuation, while it was 83% at last follow-up (LFU). At LFU, most patients had functionally recovered; exhibited only mild tics; displayed minor or no obsessive-compulsive disorder symptoms, anxiety, or depression; and experienced a much better quality of life. CONCLUSION Bilateral GPi-DBS combined with anterior capsulotomy appears to result in marked and sustained improvements in TS symptoms and psychiatric comorbidities, which are fully maintained over time, even without pallidal stimulation.
Collapse
Affiliation(s)
- Wenying Xu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengfen Gong
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - ChenCheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, .,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Deeb W, Leentjens AFG, Mogilner AY, Servello D, Meng F, Zhang J, Galbiati TF, Okun MS. Deep brain stimulation lead removal in Tourette syndrome. Parkinsonism Relat Disord 2020; 77:89-93. [PMID: 32712563 DOI: 10.1016/j.parkreldis.2020.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Tourette syndrome (TS) is a complex neuropsychiatric disorder. A small percentage of individuals with TS can experience persistent severe, refractory, and impairing tics. Deep brain stimulation (DBS) has been increasingly used for symptom management, especially in these settings. In this article, we aim to evaluate the rate and the reasons for removal of DBS hardware in TS patients. METHODS Data was analyzed from patients enrolled in the Tourette Association of America's International Tourette Syndrome Registry and Database. RESULTS Fifteen of 269 (5.6%) patients required removal of their DBS systems. The mean age at explantation was 33.8 years. In these cases we observed a rate of 1.9 explantations per year of follow up from implantation. None of the removals took place in the immediate post-operative period. Infection was the most common cause (46.7%). Only one patient received explantation for tic resolution. There were no significant associations between explantation and the presence of specific psychiatric comorbidities, including OCD, depression, anxiety, or ADHD. DISCUSSION The rate of removal of 5.6% was lower than the previously reported rate in the TS DBS literature. Infections accounted for nearly half of the TS DBS explantations in this cohort. There was no relationship to psychiatric comorbidities.
Collapse
Affiliation(s)
- Wissam Deeb
- Norman Fixel Institute for Neurological Disease, Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alon Y Mogilner
- NYU Langone Health, New York University School of Medicine, New York, NY, USA
| | - Domenico Servello
- Tourette Clinic and Functional Neurosurgical Department, IRCCS Galeazzi Hospital, Milano, Italy
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Michael S Okun
- Norman Fixel Institute for Neurological Disease, Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Wang KL, Burns M, Xu D, Hu W, Fan SY, Han CL, Wang Q, Michitomo S, Xia XT, Zhang JG, Wang F, Meng FG. Electromyography Biomarkers for Quantifying the Intraoperative Efficacy of Deep Brain Stimulation in Parkinson's Patients With Resting Tremor. Front Neurol 2020; 11:142. [PMID: 32161571 PMCID: PMC7054231 DOI: 10.3389/fneur.2020.00142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Deep brain stimulation (DBS) is an effective therapy for resting tremor in Parkinson's disease (PD). However, quick and objective biomarkers for quantifying the efficacy of DBS intraoperatively are lacking. Therefore, we aimed to study how DBS modulates the intraoperative neuromuscular pattern of resting tremor in PD patients and to find predictive surface electromyography (sEMG) biomarkers for quantifying the intraoperative efficacy of DBS. Methods: Intraoperative sEMG of 39 PD patients with resting tremor was measured with the DBS on and off, respectively, during the intraoperative DBS testing stage. Twelve signal features (time and frequency domains) were extracted from the intraoperative sEMG data. These sEMG features were associated with the clinical outcome to evaluate the efficacy of intraoperative DBS. Also, an sEMG-based prediction model was established to predict the clinical improvement rate (IR) of resting tremor with DBS therapy. Results: A typical resting tremor with a peak frequency of 4.93 ± 0.98 Hz (mean ± SD) was measured. Compared to the baseline, DBS modulated significant neuromuscular pattern changes in most features except for the peak frequency, by decreasing the motor unit firing rate, amplitude, or power and by changing the regularity pattern. Three sEMG features were detected with significant associations with the clinical improvement rate (IR) of the tremor scale: peak frequency power (R = 0.37, p = 0.03), weighted root mean square (R = 0.42, p = 0.01), and modified mean amplitude power (R = 0.48, p = 0.003). These were adopted to train a Gaussian process regression model with a leave-one-out cross-validation procedure. The prediction values from the trained sEMG prediction model (1,000 permutations, p = 0.003) showed a good correlation (r = 0.47, p = 0.0043) with the true IR of the tremor scale. Conclusion: DBS acutely modulated the intraoperative resting tremor, mainly by suppressing the amplitude and motor unit firing rate and by changing the regularity pattern, but not by modifying the frequency pattern. Three features showed strong robustness and could be used as quick intraoperative biomarkers to quantify and predict the efficacy of DBS in PD patients with resting tremor.
Collapse
Affiliation(s)
- Kai-Liang Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurology, Fixel Center for Neurological Diseases, Program in Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Mathew Burns
- Department of Neurology, Fixel Center for Neurological Diseases, Program in Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Dan Xu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wei Hu
- Department of Neurology, Fixel Center for Neurological Diseases, Program in Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Shi-Ying Fan
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chun-Lei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Qiao Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Shimabukuro Michitomo
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xiao-Tong Xia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fan-Gang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep Brain Stimulation in Movement Disorders: From Experimental Surgery to Evidence‐Based Therapy. Mov Disord 2019; 34:1795-1810. [DOI: 10.1002/mds.27860] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Paul Krack
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Jens Volkmann
- Department of Neurology University Hospital and Julius‐Maximilian‐University Wuerzburg Germany
| | - Gerd Tinkhauser
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Günther Deuschl
- Department of Neurology University Hospital Schleswig Holstein (UKSH), Kiel Campus; Christian‐Albrechts‐University Kiel Germany
| |
Collapse
|
17
|
Johnson KA, Fletcher PT, Servello D, Bona A, Porta M, Ostrem JL, Bardinet E, Welter ML, Lozano AM, Baldermann JC, Kuhn J, Huys D, Foltynie T, Hariz M, Joyce EM, Zrinzo L, Kefalopoulou Z, Zhang JG, Meng FG, Zhang C, Ling Z, Xu X, Yu X, Smeets AY, Ackermans L, Visser-Vandewalle V, Mogilner AY, Pourfar MH, Almeida L, Gunduz A, Hu W, Foote KD, Okun MS, Butson CR. Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study. J Neurol Neurosurg Psychiatry 2019; 90:1078-1090. [PMID: 31129620 PMCID: PMC6744301 DOI: 10.1136/jnnp-2019-320379] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) can be an effective therapy for tics and comorbidities in select cases of severe, treatment-refractory Tourette syndrome (TS). Clinical responses remain variable across patients, which may be attributed to differences in the location of the neuroanatomical regions being stimulated. We evaluated active contact locations and regions of stimulation across a large cohort of patients with TS in an effort to guide future targeting. METHODS We collected retrospective clinical data and imaging from 13 international sites on 123 patients. We assessed the effects of DBS over time in 110 patients who were implanted in the centromedial (CM) thalamus (n=51), globus pallidus internus (GPi) (n=47), nucleus accumbens/anterior limb of the internal capsule (n=4) or a combination of targets (n=8). Contact locations (n=70 patients) and volumes of tissue activated (n=63 patients) were coregistered to create probabilistic stimulation atlases. RESULTS Tics and obsessive-compulsive behaviour (OCB) significantly improved over time (p<0.01), and there were no significant differences across brain targets (p>0.05). The median time was 13 months to reach a 40% improvement in tics, and there were no significant differences across targets (p=0.84), presence of OCB (p=0.09) or age at implantation (p=0.08). Active contacts were generally clustered near the target nuclei, with some variability that may reflect differences in targeting protocols, lead models and contact configurations. There were regions within and surrounding GPi and CM thalamus that improved tics for some patients but were ineffective for others. Regions within, superior or medial to GPi were associated with a greater improvement in OCB than regions inferior to GPi. CONCLUSION The results collectively indicate that DBS may improve tics and OCB, the effects may develop over several months, and stimulation locations relative to structural anatomy alone may not predict response. This study was the first to visualise and evaluate the regions of stimulation across a large cohort of patients with TS to generate new hypotheses about potential targets for improving tics and comorbidities.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - P Thomas Fletcher
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,School of Computing, University of Utah, Salt Lake City, Utah, USA
| | - Domenico Servello
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Alberto Bona
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Mauro Porta
- Tourette's Syndrome and Movement Disorders Center, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Eric Bardinet
- Institut du Cerveau et de la Moelle Epiniere, Paris, Île-de-France, France
| | - Marie-Laure Welter
- Sorbonne Universités, University of Pierre and Marie Curie University of Paris, the French National Institute of Health and Medical Research U 1127, the National Center for Scientific Research 7225, Paris, France
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Thomas Foltynie
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Marwan Hariz
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Eileen M Joyce
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Zinovia Kefalopoulou
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Jian-Guo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - ChenCheng Zhang
- Department of Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhipei Ling
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Xin Xu
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Anouk Yjm Smeets
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Alon Y Mogilner
- Center for Neuromodulation, Departments of Neurology and Neurosurgery, New York University Medical Center, New York, New York, USA
| | - Michael H Pourfar
- Center for Neuromodulation, Departments of Neurology and Neurosurgery, New York University Medical Center, New York, New York, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Aysegul Gunduz
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA.,J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Wei Hu
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Kelly D Foote
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA .,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Departments of Neurology, Neurosurgery, and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Pandey S, Dash D. Progress in Pharmacological and Surgical Management of Tourette Syndrome and Other Chronic Tic Disorders. Neurologist 2019; 24:93-108. [DOI: 10.1097/nrl.0000000000000218] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Deep stimulation in neurosurgery. КЛИНИЧЕСКАЯ ПРАКТИКА 2019. [DOI: 10.17816/clinpract10163-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The technique of deep brain stimulation is used to treat patients with various diseases of the central nervous system who are not amenable to conservative therapy, while open interventions in them are associated with a high risk of complications. In the review, we evaluate the efficiency of the deep stimulation of different regions of the brain in some pharmacoresistant forms of diseases.
Collapse
|
20
|
Rossi M, Cerquetti D, Cammarota A, Merello M. Tourette syndrome: Clinical benefit with unilateral stimulation after bilateral pallidal implant. Mov Disord 2019; 34:580-582. [PMID: 30801769 DOI: 10.1002/mds.27636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Malco Rossi
- Movement Disorders, Neurology Department, Fleni, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| | - Daniel Cerquetti
- Movement Disorders, Neurology Department, Fleni, Buenos Aires, Argentina
| | - Angel Cammarota
- Movement Disorders, Neurology Department, Fleni, Buenos Aires, Argentina
| | - Marcelo Merello
- Movement Disorders, Neurology Department, Fleni, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| |
Collapse
|
21
|
Coulombe MA, Elkaim LM, Alotaibi NM, Gorman DA, Weil AG, Fallah A, Kalia SK, Lipsman N, Lozano AM, Ibrahim GM. Deep brain stimulation for Gilles de la Tourette syndrome in children and youth: a meta-analysis with individual participant data. J Neurosurg Pediatr 2019; 23:236-246. [PMID: 30497215 DOI: 10.3171/2018.7.peds18300] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Objective Gilles de la Tourette syndrome (GTS) is a disorder characterized by motor and vocal tics. Although by definition the onset of GTS is before age 18 years, clinical trials of deep brain stimulation (DBS) have been conducted only in adults. Using individual participant data (IPD) meta-analysis methodology, the current study investigated the safety and efficacy of DBS as a treatment for GTS in children and youth. Methods A systematic review with no date or language restrictions was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. Three electronic databases were searched: PubMed, EMBASE, and Web of Science. From 843 articles screened, the IPD of 58 children and youth (ages 12–21 years) extracted from 21 articles were collected and analyzed. A mixed-effects univariable analysis followed by multivariable hierarchical regression was performed using change in the Yale Global Tic Severity Scale (YGTSS) score as the primary outcome and reported measures of comorbidities as secondary outcomes. Results The authors’ results showed an average improvement of 57.5% ± 24.6% across studies on the YGTSS. They also found that comorbid depression and stimulation pulse width each correlated negatively with outcome (p < 0.05). In patients with less severe GTS, greater improvements were evident following thalamic stimulation. More than one-quarter (n = 16, 27.6%) of participants experienced side effects, the majority of which were minor. Conclusions DBS in the pediatric population may be an effective option with a moderate safety profile for treatment of GTS in carefully selected children and youth. Large, prospective studies with long-term follow-up are necessary to understand how DBS influences tic symptoms and may alter the natural course of GTS in children.
Collapse
Affiliation(s)
| | | | - Naif M Alotaibi
- Department of Surgery, University of Toronto
- Division of Neurosurgery, Toronto Western Hospital, Krembil Neuroscience Institute, Toronto; and
| | - Daniel A Gorman
- Department of Psychiatry, The Hospital for Sick Children, University of Toronto, Ontario
| | - Alexander G Weil
- Faculty of Medicine, Université de Montréal, Quebec
- Division of Neurosurgery, Sainte Justine Hospital, Montreal, Quebec, Canada
| | - Aria Fallah
- Department of Neurosurgery, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Suneil K Kalia
- Department of Surgery, University of Toronto
- Division of Neurosurgery, Toronto Western Hospital, Krembil Neuroscience Institute, Toronto; and
| | - Nir Lipsman
- Department of Surgery, University of Toronto
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto; and
| | - Andres M Lozano
- Department of Surgery, University of Toronto
- Division of Neurosurgery, Toronto Western Hospital, Krembil Neuroscience Institute, Toronto; and
| | - George M Ibrahim
- Department of Surgery, University of Toronto
- Division of Neurosurgery, The Hospital for Sick Children, The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Casagrande SCB, Cury RG, Alho EJL, Fonoff ET. Deep brain stimulation in Tourette's syndrome: evidence to date. Neuropsychiatr Dis Treat 2019; 15:1061-1075. [PMID: 31114210 PMCID: PMC6497003 DOI: 10.2147/ndt.s139368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder that comprises vocal and motor tics associated with a high frequency of psychiatric comorbidities, which has an important impact on quality of life. The onset is mainly in childhood and the symptoms can either fade away or require pharmacological therapies associated with cognitive-behavior therapies. In rare cases, patients experience severe and disabling symptoms refractory to conventional treatments. In these cases, deep brain stimulation (DBS) can be considered as an interesting and effective option for symptomatic control. DBS has been studied in numerous trials as a therapy for movement disorders, and currently positive data supports that DBS is partially effective in reducing the motor and non-motor symptoms of TS. The average response, mostly from case series and prospective cohorts and only a few controlled studies, is around 40% improvement on tic severity scales. The ventromedial thalamus has been the preferred target, but more recently the globus pallidus internus has also gained some notoriety. The mechanism by which DBS is effective on tics and other symptoms in TS is not yet understood. As refractory TS is not common, even reference centers have difficulties in performing large controlled trials. However, studies that reproduce the current results in larger and multicenter randomized controlled trials to improve our knowledge so as to support the best target and stimulation settings are still lacking. This article will discuss the selection of the candidates, DBS targets and mechanisms on TS, and clinical evidence to date reviewing current literature about the use of DBS in the treatment of TS.
Collapse
Affiliation(s)
- Sara C B Casagrande
- Department of Neurology, School of Medicine, Movement Disorders Center, University of São Paulo, São Paulo, Brazil
| | - Rubens G Cury
- Department of Neurology, School of Medicine, Movement Disorders Center, University of São Paulo, São Paulo, Brazil
| | - Eduardo J L Alho
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil,
| | - Erich Talamoni Fonoff
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil,
| |
Collapse
|
23
|
Liu Z, Liu Y, Wan X, Yang Y, Wang L, Dou W, Guo J, Wang Y, Guo Y, Ma W, Wang R. Pallidal Deep Brain Stimulation in Patients With Chorea-Acanthocytosis. Neuromodulation 2018; 21:741-747. [DOI: 10.1111/ner.12763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Ziyuan Liu
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing People's Republic of China
| | - Yang Liu
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing People's Republic of China
| | - Xinhua Wan
- Department of Neurology; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing People's Republic of China
| | - Yingmai Yang
- Department of Neurology; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing People's Republic of China
| | - Lin Wang
- Department of Neurology; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing People's Republic of China
| | - Wanchen Dou
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing People's Republic of China
| | - Jinzhu Guo
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing People's Republic of China
| | - Yu Wang
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing People's Republic of China
| | - Yi Guo
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing People's Republic of China
| | - Wenbin Ma
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing People's Republic of China
| | - Renzhi Wang
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing People's Republic of China
| |
Collapse
|
24
|
Neudorfer C, El Majdoub F, Hunsche S, Richter K, Sturm V, Maarouf M. Deep Brain Stimulation of the H Fields of Forel Alleviates Tics in Tourette Syndrome. Front Hum Neurosci 2017; 11:308. [PMID: 28659777 PMCID: PMC5468420 DOI: 10.3389/fnhum.2017.00308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/29/2017] [Indexed: 12/29/2022] Open
Abstract
The current rationale for target selection in Tourette syndrome revolves around the notion of cortico-basal ganglia circuit involvement in the pathophysiology of the disease. However, despite extensive research, the ideal target for deep brain stimulation (DBS) is still under debate, with many structures being neglected and underexplored. Based on clinical observations and taking into account the prevailing hypotheses of network processing in Tourette syndrome, we chose the fields of Forel, namely field H1, as a target for DBS. The fields of Forel constitute the main link between the striatopallidal system and the thalamocortical network, relaying pallidothalamic projections from core anatomical structures to the thalamic ventral nuclear group. In a retrospective study we investigated two patients suffering from chronic, medically intractable Tourette syndrome who underwent bilateral lead implantation in field H1 of Forel. Clinical scales revealed significant alleviation of tics and comorbid symptoms, namely depression and anxiety, in the postoperative course in both patients.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center, Witten/Herdecke UniversityCologne, Germany
| | - Faycal El Majdoub
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center, Witten/Herdecke UniversityCologne, Germany
| | - Stefan Hunsche
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center, Witten/Herdecke UniversityCologne, Germany
| | - Klaus Richter
- Department of Psychiatry and Psychotherapy, LVR Clinics CologneCologne, Germany
| | - Volker Sturm
- Department of Neurosurgery, University Hospital of WürzburgWürzburg, Germany
| | - Mohammad Maarouf
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center, Witten/Herdecke UniversityCologne, Germany
| |
Collapse
|
25
|
Pedroarena-Leal N, Ruge D. Toward a Symptom-Guided Neurostimulation for Gilles de la Tourette Syndrome. Front Psychiatry 2017; 8:29. [PMID: 28289393 PMCID: PMC5326794 DOI: 10.3389/fpsyt.2017.00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023] Open
Abstract
Therapy resistance of approximately one-third of patients with Gilles de la Tourette syndrome (GTS) requires consideration of alternative therapeutic interventions. This article provides a condensed review of the invasive and non-invasive stimulation techniques that have been applied, to date, for treatment and investigation of GTS. Through this perspective and short review, the article discusses potential novel applications for neurostimulation techniques based on a symptom-guided approach. The concept of considering the physiological basis of specific symptoms when using stimulation techniques will provide a platform for more effective non-pharmacological neuromodulation of symptoms in GTS.
Collapse
Affiliation(s)
- Nicole Pedroarena-Leal
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Diane Ruge
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
26
|
Testini P, Min HK, Bashir A, Lee KH. Deep Brain Stimulation for Tourette's Syndrome: The Case for Targeting the Thalamic Centromedian-Parafascicular Complex. Front Neurol 2016; 7:193. [PMID: 27891112 PMCID: PMC5102892 DOI: 10.3389/fneur.2016.00193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Tourette’s syndrome (TS) is a neurologic condition characterized by both motor and phonic tics and is typically associated with psychiatric comorbidities, including obsessive-compulsive disorder/behavior and attention-deficit hyperactivity disorder, and can be psychologically and socially debilitating. It is considered a disorder of the cortico–striato–thalamo–cortical circuitry, as suggested by pathophysiology studies and therapeutic options. Among these, deep brain stimulation (DBS) of the centromedian–parafascicular nucleus (CM-Pf) of the thalamus is emerging as a valuable treatment modality for patients affected by severe, treatment-resistant TS. Here, we review the most recent experimental evidence for the pivotal role of CM-Pf in the pathophysiology of TS, discuss potential mechanisms of action that may mediate the effects of CM-Pf DBS in TS, and summarize its clinical efficacy.
Collapse
Affiliation(s)
- Paola Testini
- Department of Neurosurgery, Mayo Clinic , Rochester, MN , USA
| | - Hoon-Ki Min
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Asif Bashir
- Department of Neurosurgery, JFK New Jersey Neuroscience Institute , Edison, NJ , USA
| | - Kendall H Lee
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
27
|
Kious BM, Jimenez-Shahed J, Shprecher DR. Treatment-refractory Tourette Syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:227-36. [PMID: 26875502 DOI: 10.1016/j.pnpbp.2016.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Tourette Syndrome (TS) is a complex neurodevelopmental condition marked by tics and frequently associated with psychiatric comorbidities. While most cases are mild and improve with age, some are treatment-refractory. Here, we review strategies for the management of this population. We begin by examining the diagnosis of TS and routine management strategies. We then consider emerging treatments for refractory cases, including deep brain stimulation (DBS), electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and novel pharmacological approaches such as new vesicular monoamine transporter type 2 inhibitors, cannabinoids, and anti-glutamatergic drugs.
Collapse
Affiliation(s)
- Brent M Kious
- University of Utah, Department of Psychiatry, 501 Chipeta Way, Salt Lake City, UT 84108, United States.
| | - Joohi Jimenez-Shahed
- Baylor College of Medicine, Department of Neurology, 7200 Cambridge, Suite 9a/MS: BCM 609, Houston, TX 77030, United States
| | - David R Shprecher
- University of Utah, Department of Neurology, 729 Arapeen Drive, Salt Lake City, UT 84108, United States; Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, United States
| |
Collapse
|
28
|
Akbarian-Tefaghi L, Zrinzo L, Foltynie T. The Use of Deep Brain Stimulation in Tourette Syndrome. Brain Sci 2016; 6:brainsci6030035. [PMID: 27548235 PMCID: PMC5039464 DOI: 10.3390/brainsci6030035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/13/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Tourette syndrome (TS) is a childhood neurobehavioural disorder, characterised by the presence of motor and vocal tics, typically starting in childhood but persisting in around 20% of patients into adulthood. In those patients who do not respond to pharmacological or behavioural therapy, deep brain stimulation (DBS) may be a suitable option for potential symptom improvement. This manuscript attempts to summarise the outcomes of DBS at different targets, explore the possible mechanisms of action of DBS in TS, as well as the potential of adaptive DBS. There will also be a focus on the future challenges faced in designing optimized trials.
Collapse
Affiliation(s)
- Ladan Akbarian-Tefaghi
- Institute of Neurology, University College London (UCL), Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK.
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
29
|
Deeb W, Rossi PJ, Porta M, Visser-Vandewalle V, Servello D, Silburn P, Coyne T, Leckman JF, Foltynie T, Hariz M, Joyce EM, Zrinzo L, Kefalopoulou Z, Welter ML, Karachi C, Mallet L, Houeto JL, Shahed-Jimenez J, Meng FG, Klassen BT, Mogilner AY, Pourfar MH, Kuhn J, Ackermans L, Kaido T, Temel Y, Gross RE, Walker HC, Lozano AM, Khandhar SM, Walter BL, Walter E, Mari Z, Changizi BK, Moro E, Baldermann JC, Huys D, Zauber SE, Schrock LE, Zhang JG, Hu W, Foote KD, Rizer K, Mink JW, Woods DW, Gunduz A, Okun MS. The International Deep Brain Stimulation Registry and Database for Gilles de la Tourette Syndrome: How Does It Work? Front Neurosci 2016; 10:170. [PMID: 27199634 PMCID: PMC4842757 DOI: 10.3389/fnins.2016.00170] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/04/2016] [Indexed: 12/24/2022] Open
Abstract
Tourette Syndrome (TS) is a neuropsychiatric disease characterized by a combination of motor and vocal tics. Deep brain stimulation (DBS), already widely utilized for Parkinson's disease and other movement disorders, is an emerging therapy for select and severe cases of TS that are resistant to medication and behavioral therapy. Over the last two decades, DBS has been used experimentally to manage severe TS cases. The results of case reports and small case series have been variable but in general positive. The reported interventions have, however, been variable, and there remain non-standardized selection criteria, various brain targets, differences in hardware, as well as variability in the programming parameters utilized. DBS centers perform only a handful of TS DBS cases each year, making large-scale outcomes difficult to study and to interpret. These limitations, coupled with the variable effect of surgery, and the overall small numbers of TS patients with DBS worldwide, have delayed regulatory agency approval (e.g., FDA and equivalent agencies around the world). The Tourette Association of America, in response to the worldwide need for a more organized and collaborative effort, launched an international TS DBS registry and database. The main goal of the project has been to share data, uncover best practices, improve outcomes, and to provide critical information to regulatory agencies. The international registry and database has improved the communication and collaboration among TS DBS centers worldwide. In this paper we will review some of the key operation details for the international TS DBS database and registry.
Collapse
Affiliation(s)
- Wissam Deeb
- Department of Neurology, University of Florida and Center for Movement Disorders and Neurorestoration Gainesville, FL, USA
| | - Peter J Rossi
- Department of Neurology, University of Florida and Center for Movement Disorders and Neurorestoration Gainesville, FL, USA
| | - Mauro Porta
- Tourette's Syndrome and Movement Disorders Center, Galeazzi Hospital Milan, Italy
| | | | | | - Peter Silburn
- Asia-Pacific Centre for Neuromodulation, Queensland Brain InstituteBrisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, The University of QueenslandBrisbane, Queensland, Australia
| | - Terry Coyne
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbane, Queensland, Australia; BrizBrain&SpineBrisbane, QLD, Australia
| | - James F Leckman
- Departments of Psychiatry, Pediatrics and Psychology, Child Study Center, Yale University New Haven, CT, USA
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, University College London Institute of Neurology London, UK
| | - Marwan Hariz
- Sobell Department of Motor Neuroscience, University College London Institute of Neurology London, UK
| | - Eileen M Joyce
- Sobell Department of Motor Neuroscience, University College London Institute of Neurology London, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, University College London Institute of Neurology London, UK
| | - Zinovia Kefalopoulou
- Sobell Department of Motor Neuroscience, University College London Institute of Neurology London, UK
| | - Marie-Laure Welter
- Assistance publique - Hôpitaux de Paris, Institut du Cerveau et de la Moelle Epiniere, Institut National de la Santé et de la Recherche Médicale 1127, Pitié-Salpêtrière Hospital, Sorbonne Universités, UPMC Univ Paris 06, Unité Mixte de Recherche 1127, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7225 Paris, France
| | - Carine Karachi
- Institut National de la Santé et de la Recherche Médicale U 1127, Centre National de la Recherche Scientifique UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinièreParis, France; Department of Neurosurgery, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié-SalpêtrièreParis, France
| | - Luc Mallet
- Institut National de la Santé et de la Recherche Médicale U 1127, Centre National de la Recherche Scientifique UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinièreParis, France; Assistance publique - Hôpitaux de Paris, DHU Pe-PSY, Pôle de Psychiatrie et d'addictologie des Hôpitaux Universitaires H Mondor, Université Paris Est CréteilCréteil, France; Department of Mental Health and Psychiatry, Geneva University HospitalGeneva, Switzerland
| | - Jean-Luc Houeto
- Service de Neurologie, Institut National de la Santé et de la Recherche Médicale-Centres d'Investigation Clinique 1402, Centre Hospitalier Universitaire de Grenoble de Poitiers, Université de Poitiers Poitiers, France
| | - Joohi Shahed-Jimenez
- Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine Houston, TX, USA
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University Beijing, China
| | - Bryan T Klassen
- Department of Neurology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Alon Y Mogilner
- Department of Neurosurgery, Center for Neuromodulation, NYU Langone Medical Center New York, NY, USA
| | - Michael H Pourfar
- Department of Neurosurgery, Center for Neuromodulation, NYU Langone Medical Center New York, NY, USA
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne Cologne, Germany
| | - L Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre Maastricht, Netherlands
| | - Takanobu Kaido
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry Kodaira, Japan
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical CenterMaastricht, Netherlands; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands
| | - Robert E Gross
- Department of Neurosurgery, Emory University Atlanta, GA, USA
| | - Harrison C Walker
- Department of Neurology, Department of Biomedical Engineering, University of Alabama at Birmingham Birmingham, AL, USA
| | - Andres M Lozano
- Division of Neurosurgery, University of Toronto Toronto, Canada
| | - Suketu M Khandhar
- Department of Neurology, The Permanente Medical Group (Tidewater Physicians Multispecialty Group), Movement Disorders Program Sacramento, CA, USA
| | - Benjamin L Walter
- University Hospitals, Case Western Reserve University School of Medicine Cleveland, OH, USA
| | - Ellen Walter
- Department of Neurology, University Hospitals Case Medical Center, Neurological Institute Cleveland, OH, USA
| | - Zoltan Mari
- Parkinson's & Movement Disorder Center/Division, Johns Hopkins University, School of Medicine Baltimore, MD, USA
| | - Barbara K Changizi
- Department of Neurology, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Elena Moro
- Division of Neurology, Centre Hospitalier Universitaire de Grenoble Grenoble, Grenoble Alpes University Grenoble, France
| | - Juan C Baldermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Köln Köln, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Köln Köln, Germany
| | - S Elizabeth Zauber
- Department of Neurology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Lauren E Schrock
- Department of Neurology, University of Utah Salt Lake City, UT, USA
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University Beijing, China
| | - Wei Hu
- Department of Neurology, University of Florida and Center for Movement Disorders and Neurorestoration Gainesville, FL, USA
| | - Kelly D Foote
- Department of Neurology, University of Florida and Center for Movement Disorders and NeurorestorationGainesville, FL, USA; Department of Neurological Surgery, University of FloridaGainesville, FL, USA
| | - Kyle Rizer
- Department of Neurology, University of Florida and Center for Movement Disorders and Neurorestoration Gainesville, FL, USA
| | - Jonathan W Mink
- Department of Neurology, University of Rochester Medical Center Rochester, NY, USA
| | - Douglas W Woods
- Department of Psychology, Marquette University Milwaukee, WI, USA
| | - Aysegul Gunduz
- Department of Neurology, University of Florida and Center for Movement Disorders and NeurorestorationGainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, University of Florida and Center for Movement Disorders and Neurorestoration Gainesville, FL, USA
| |
Collapse
|
30
|
Abstract
Tourette syndrome (TS) is a neurologic and behavioral disorder consisting of motor and phonic tics with onset in childhood or adolescence. The severity of tics can range from barely perceptible to severely impairing due to social embarrassment, discomfort, self-injury, and interference with daily functioning and school or work performance. In addition to tics, most patients with TS have a variety of behavioral comorbidities, including attention deficit hyperactivity disorder and obsessive-compulsive disorder. Studies evaluating the pathophysiology of tics have pointed towards dysfunction of the cortico-striato-thalamo-cortical circuit, but the mechanism of this hyperkinetic movement disorder is not well understood. Treatment of TS is multidisciplinary, typically involving behavioral therapy, oral medications, and botulinum toxin injections. Deep brain stimulation may be considered for “malignant” TS that is refractory to conventional therapy. In this review, we will highlight recent developments in the understanding and management strategies of TS.
Collapse
Affiliation(s)
- Mary Ann Thenganatt
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
31
|
Deeb W, Rossi PJ, Porta M, Visser-Vandewalle V, Servello D, Silburn P, Coyne T, Leckman JF, Foltynie T, Hariz M, Joyce EM, Zrinzo L, Kefalopoulou Z, Welter ML, Karachi C, Mallet L, Houeto JL, Shahed-Jimenez J, Meng FG, Klassen BT, Mogilner AY, Pourfar MH, Kuhn J, Ackermans L, Kaido T, Temel Y, Gross RE, Walker HC, Lozano AM, Khandhar SM, Walter BL, Walter E, Mari Z, Changizi BK, Moro E, Baldermann JC, Huys D, Zauber SE, Schrock LE, Zhang JG, Hu W, Foote KD, Rizer K, Mink JW, Woods DW, Gunduz A, Okun MS. The International Deep Brain Stimulation Registry and Database for Gilles de la Tourette Syndrome: How Does It Work? Front Neurosci 2016. [PMID: 27199634 DOI: 10.3389/fnins.2016.00170/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Tourette Syndrome (TS) is a neuropsychiatric disease characterized by a combination of motor and vocal tics. Deep brain stimulation (DBS), already widely utilized for Parkinson's disease and other movement disorders, is an emerging therapy for select and severe cases of TS that are resistant to medication and behavioral therapy. Over the last two decades, DBS has been used experimentally to manage severe TS cases. The results of case reports and small case series have been variable but in general positive. The reported interventions have, however, been variable, and there remain non-standardized selection criteria, various brain targets, differences in hardware, as well as variability in the programming parameters utilized. DBS centers perform only a handful of TS DBS cases each year, making large-scale outcomes difficult to study and to interpret. These limitations, coupled with the variable effect of surgery, and the overall small numbers of TS patients with DBS worldwide, have delayed regulatory agency approval (e.g., FDA and equivalent agencies around the world). The Tourette Association of America, in response to the worldwide need for a more organized and collaborative effort, launched an international TS DBS registry and database. The main goal of the project has been to share data, uncover best practices, improve outcomes, and to provide critical information to regulatory agencies. The international registry and database has improved the communication and collaboration among TS DBS centers worldwide. In this paper we will review some of the key operation details for the international TS DBS database and registry.
Collapse
Affiliation(s)
- Wissam Deeb
- Department of Neurology, University of Florida and Center for Movement Disorders and Neurorestoration Gainesville, FL, USA
| | - Peter J Rossi
- Department of Neurology, University of Florida and Center for Movement Disorders and Neurorestoration Gainesville, FL, USA
| | - Mauro Porta
- Tourette's Syndrome and Movement Disorders Center, Galeazzi Hospital Milan, Italy
| | | | | | - Peter Silburn
- Asia-Pacific Centre for Neuromodulation, Queensland Brain InstituteBrisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, The University of QueenslandBrisbane, Queensland, Australia
| | - Terry Coyne
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbane, Queensland, Australia; BrizBrain&SpineBrisbane, QLD, Australia
| | - James F Leckman
- Departments of Psychiatry, Pediatrics and Psychology, Child Study Center, Yale University New Haven, CT, USA
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, University College London Institute of Neurology London, UK
| | - Marwan Hariz
- Sobell Department of Motor Neuroscience, University College London Institute of Neurology London, UK
| | - Eileen M Joyce
- Sobell Department of Motor Neuroscience, University College London Institute of Neurology London, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, University College London Institute of Neurology London, UK
| | - Zinovia Kefalopoulou
- Sobell Department of Motor Neuroscience, University College London Institute of Neurology London, UK
| | - Marie-Laure Welter
- Assistance publique - Hôpitaux de Paris, Institut du Cerveau et de la Moelle Epiniere, Institut National de la Santé et de la Recherche Médicale 1127, Pitié-Salpêtrière Hospital, Sorbonne Universités, UPMC Univ Paris 06, Unité Mixte de Recherche 1127, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7225 Paris, France
| | - Carine Karachi
- Institut National de la Santé et de la Recherche Médicale U 1127, Centre National de la Recherche Scientifique UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinièreParis, France; Department of Neurosurgery, Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié-SalpêtrièreParis, France
| | - Luc Mallet
- Institut National de la Santé et de la Recherche Médicale U 1127, Centre National de la Recherche Scientifique UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinièreParis, France; Assistance publique - Hôpitaux de Paris, DHU Pe-PSY, Pôle de Psychiatrie et d'addictologie des Hôpitaux Universitaires H Mondor, Université Paris Est CréteilCréteil, France; Department of Mental Health and Psychiatry, Geneva University HospitalGeneva, Switzerland
| | - Jean-Luc Houeto
- Service de Neurologie, Institut National de la Santé et de la Recherche Médicale-Centres d'Investigation Clinique 1402, Centre Hospitalier Universitaire de Grenoble de Poitiers, Université de Poitiers Poitiers, France
| | - Joohi Shahed-Jimenez
- Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine Houston, TX, USA
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University Beijing, China
| | - Bryan T Klassen
- Department of Neurology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Alon Y Mogilner
- Department of Neurosurgery, Center for Neuromodulation, NYU Langone Medical Center New York, NY, USA
| | - Michael H Pourfar
- Department of Neurosurgery, Center for Neuromodulation, NYU Langone Medical Center New York, NY, USA
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne Cologne, Germany
| | - L Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre Maastricht, Netherlands
| | - Takanobu Kaido
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry Kodaira, Japan
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical CenterMaastricht, Netherlands; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands
| | - Robert E Gross
- Department of Neurosurgery, Emory University Atlanta, GA, USA
| | - Harrison C Walker
- Department of Neurology, Department of Biomedical Engineering, University of Alabama at Birmingham Birmingham, AL, USA
| | - Andres M Lozano
- Division of Neurosurgery, University of Toronto Toronto, Canada
| | - Suketu M Khandhar
- Department of Neurology, The Permanente Medical Group (Tidewater Physicians Multispecialty Group), Movement Disorders Program Sacramento, CA, USA
| | - Benjamin L Walter
- University Hospitals, Case Western Reserve University School of Medicine Cleveland, OH, USA
| | - Ellen Walter
- Department of Neurology, University Hospitals Case Medical Center, Neurological Institute Cleveland, OH, USA
| | - Zoltan Mari
- Parkinson's & Movement Disorder Center/Division, Johns Hopkins University, School of Medicine Baltimore, MD, USA
| | - Barbara K Changizi
- Department of Neurology, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Elena Moro
- Division of Neurology, Centre Hospitalier Universitaire de Grenoble Grenoble, Grenoble Alpes University Grenoble, France
| | - Juan C Baldermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Köln Köln, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Köln Köln, Germany
| | - S Elizabeth Zauber
- Department of Neurology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Lauren E Schrock
- Department of Neurology, University of Utah Salt Lake City, UT, USA
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University Beijing, China
| | - Wei Hu
- Department of Neurology, University of Florida and Center for Movement Disorders and Neurorestoration Gainesville, FL, USA
| | - Kelly D Foote
- Department of Neurology, University of Florida and Center for Movement Disorders and NeurorestorationGainesville, FL, USA; Department of Neurological Surgery, University of FloridaGainesville, FL, USA
| | - Kyle Rizer
- Department of Neurology, University of Florida and Center for Movement Disorders and Neurorestoration Gainesville, FL, USA
| | - Jonathan W Mink
- Department of Neurology, University of Rochester Medical Center Rochester, NY, USA
| | - Douglas W Woods
- Department of Psychology, Marquette University Milwaukee, WI, USA
| | - Aysegul Gunduz
- Department of Neurology, University of Florida and Center for Movement Disorders and NeurorestorationGainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, University of Florida and Center for Movement Disorders and Neurorestoration Gainesville, FL, USA
| |
Collapse
|
32
|
Jankovic J. Therapeutic Developments for Tics and Myoclonus. Mov Disord 2015; 30:1566-73. [PMID: 26315614 DOI: 10.1002/mds.26414] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022] Open
Abstract
Tics and myoclonus are phenomenologically similar given that both are jerk-like movements, but, in contrast to myoclonus, tics are often preceded by premonitory sensations and are typically associated with a variety of behavioral comorbidities, including attention deficit and obsessive-compulsive disorder. There are many other clinical features that help differentiate these two hyperkinetic disorders. Whereas behavioral and antidopaminergic therapies are most effective in the management of tics, clonazepam, other anticonvulsants, and serotonergic drugs are often used to control myoclonic movements. Botulinum toxin may also be helpful in focal tics and in segmental forms of myoclonus. DBS plays an increasingly important role in the treatment of these disorders, particularly when they are generalized and are disabling despite optimal medical therapy.
Collapse
Affiliation(s)
- Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
33
|
Barbey A, Bloch J, Vingerhoets FJG. DBS in Dystonia and Other Hyperkinetic Movement Disorders. Curr Treat Options Neurol 2015; 17:373. [PMID: 26257150 DOI: 10.1007/s11940-015-0373-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT The diagnosis and appropriate treatment of hyperkinetic movement disorders require a work up of potentially reversible metabolic, infectious and structural disorders as well as side effects of current medication. In pharmacoresistant movement disorders with a disabling impact on quality of life, deep brain stimulation (DBS) should be considered. At different targets, DBS has become an established therapy for Parkinson's disease (GPi-STN), tremor (VIM) and primary dystonia (GPi) with reasonable perioperative risks and side effects, established guidelines and some clinical and radiological predictive factors. In contrast, for other hyperkinetic movement disorders, including secondary dystonia, Gilles de la Tourette, chorea and ballism, only few data are available. Definite targets are not well defined, and reported results are of less magnitude than those of the recognized indications. In this expanding therapeutical field without worked out recommendations, an individual approach is needed with DBS indication assessment only after rigorous multidisciplinary scrutiny, restricted to expert centres.
Collapse
Affiliation(s)
- A Barbey
- Department of Neurology, Centre Hospitalier Universitaire Vaudois (CHUV), Rue de Bugnon 21, CH-1011, Lausanne, Switzerland
| | | | | |
Collapse
|
34
|
Fraint A, Pal G. Deep Brain Stimulation in Tourette's Syndrome. Front Neurol 2015; 6:170. [PMID: 26300844 PMCID: PMC4523794 DOI: 10.3389/fneur.2015.00170] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
Objective Tourette’s syndrome (TS) is defined by 1 year of persistent motor and vocal tics. Often, the tics are refractory to conventional pharmacologic and psychobehavioral interventions. In these patients, deep brain stimulation (DBS) may be an appropriate intervention. This paper reviews different DBS targets in TS, discusses existing evidence on the efficacy of DBS in TS, highlights adverse effects of the procedure, discusses indications and patient selection as well as future directions for DBS in TS. Methods A literature review searching PubMed database entries between 2000 and 2015. Search terms included “DBS in Tourette Syndrome”, “Deep brain stimulation in Tourette syndrome,” and “Surgical management of Tourette Syndrome.” Results Though there are no universally accepted guidelines defining ideal DBS candidates for TS, age, tic severity, and treatment refractoriness are important factors to consider in patient selection. A variety of targets exist for DBS in TS, but thalamic targets and GPi are the most widely studied. Psychiatric side effects that are target specific should be monitored closely and it is possible that these adverse effects may be resolved with programing. Small randomized controlled trials support the efficacy of DBS in TS. Conclusion DBS for TS is safe and feasible, but large multi-center clinical trials are needed to determine the ideal target and optimal location within a particular target.
Collapse
Affiliation(s)
- Avram Fraint
- Department of Neurological Sciences, Rush University Medical Center , Chicago, IL , USA
| | - Gian Pal
- Department of Neurological Sciences, Rush University Medical Center , Chicago, IL , USA
| |
Collapse
|
35
|
Israelashvili M, Loewenstern Y, Bar-Gad I. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation. J Neurophysiol 2015; 114:6-20. [PMID: 25925326 PMCID: PMC4493664 DOI: 10.1152/jn.00277.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/29/2015] [Indexed: 12/26/2022] Open
Abstract
Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders.
Collapse
Affiliation(s)
- Michal Israelashvili
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Yocheved Loewenstern
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Izhar Bar-Gad
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
36
|
Abstract
About 200 journal articles reported research on Tourette syndrome and other tic disorders in 2014. Here we briefly summarize a few of the reports that seemed most important or interesting, ranging from animal models to human studies. Readers can comment on our choices or provide their own favorites using the tools on the online article.
Collapse
Affiliation(s)
- Cheryl A Richards
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin J Black
- Departments of Psychiatry, Neurology, Radiology, and Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|