1
|
Wang H, Wang Z, Wu Q, Yang Y, Liu S, Bian J, Bo L. Perioperative oxygen administration for adults undergoing major noncardiac surgery: a narrative review. Med Gas Res 2025; 15:73-84. [PMID: 39436170 PMCID: PMC11515063 DOI: 10.4103/mgr.medgasres-d-24-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 04/07/2024] [Indexed: 10/23/2024] Open
Abstract
Perioperative oxygen administration, a topic under continuous research and debate in anesthesiology, strives to optimize tissue oxygenation while minimizing the risks associated with hyperoxia and hypoxia. This review provides a thorough overview of the current evidence on the application of perioperative oxygen in adult patients undergoing major noncardiac surgery. The review begins by describing the physiological reasoning for supplemental oxygen during the perioperative period and its potential benefits while also focusing on potential hyperoxia risks. This review critically appraises the existing literature on perioperative oxygen administration, encompassing recent clinical trials and meta-analyses, to elucidate its effect on postoperative results. Future research should concentrate on illuminating the optimal oxygen administration strategies to improve patient outcomes and fine-tune perioperative care protocols for adults undergoing major noncardiac surgery. By compiling and analyzing available evidence, this review aims to provide clinicians and researchers with comprehensive knowledge on the role of perioperative oxygen administration in major noncardiac surgery, ultimately guiding clinical practice and future research endeavors.
Collapse
Affiliation(s)
- Huixian Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Wu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuguang Yang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shanshan Liu
- Department of Anesthesiology, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian Province, China
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Arce SC, Benítez-Pérez RE. Breathing Easy During Training. Strategies for Managing Exercise-Induced Bronchoconstriction. Immunol Allergy Clin North Am 2025; 45:101-111. [PMID: 39608872 DOI: 10.1016/j.iac.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Exercise-induced asthma (EIA) and exercise-induced bronchoconstriction (EIB) are closely related conditions that can make it challenging to differentiate between them. These conditions necessitate that asthmatic patients adhere to established asthma guidelines for baseline treatment. Short-acting beta-agonists are emphasized as the primary treatment for managing symptoms. The management of EIA and EIB in children is particularly complex due to their high levels of spontaneous physical activity. Patients must identify and avoid environmental triggers that may exacerbate their symptoms whenever possible. For effective management, physicians should regularly assess treatment efficacy through the remission of symptoms. However, athletes may require more specialized and serial testing to tailor their treatment plans effectively and ensure optimal performance. This article encapsulates the critical points concerning managing exercise-induced respiratory issues in asthmatic individuals, highlighting the need for careful and tailored approaches for different patient groups.
Collapse
Affiliation(s)
- Santiago Cruz Arce
- Medical Research Institute, A. Lanari, University of Buenos Aires, Combatientes de Malvinas 3150 (1427), Buenos Aires, Argentina
| | | |
Collapse
|
3
|
Wang H, Choy JS, Kassab GS, Lee LC. Computer model coupling hemodynamics and oxygen transport in the coronary capillary network: Pulsatile vs. non-pulsatile analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108486. [PMID: 39549392 DOI: 10.1016/j.cmpb.2024.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Oxygen transport in the heart is crucial, and its impairment can lead to pathological conditions such as hypoxia, ischemia, and heart failure. However, investigating oxygen transport in the heart using in vivo measurements is difficult due to the small size of the coronary capillaries and their deep embedding within the heart wall. METHODS In this study, we developed a novel computational modeling framework that integrates a 0-D hemodynamic model with a 1-D mass transport model to simulate oxygen transport in/across the coronary capillary network. RESULTS The model predictions agree with analytical solutions and experimental measurements. The framework is used to simulate the effects of pulsatile vs. non-pulsatile behavior of the capillary hemodynamics on oxygen-related metrics such as the myocardial oxygen consumption (MVO2) and oxygen extraction ratio (OER). Compared to simulations that consider (physiological) pulsatile behaviors of the capillary hemodynamics, the OER is underestimated by less than 9% and the MVO2 is overestimated by less than 5% when the pulsatile behaviors are ignored in the simulations. Statistical analyses show that model predictions of oxygen-related quantities and spatial distribution of oxygen without consideration of the pulsatile behaviors do not significantly differ from those that considered such behaviors (p-values >0.05). CONCLUSIONS This finding provides the basis for reducing the model complexity by ignoring the pulsatility of coronary capillary hemodynamics in the computational framework without a substantial loss of accuracy when predicting oxygen-related metrics.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jenny S Choy
- California Medical Innovations Institute, San Diego, CA, USA
| | | | - Lik-Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Hunter SK, Senefeld JW. Sex differences in human performance. J Physiol 2024; 602:4129-4156. [PMID: 39106346 DOI: 10.1113/jp284198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Sex as a biological variable is an underappreciated aspect of biomedical research, with its importance emerging in more recent years. This review assesses the current understanding of sex differences in human physical performance. Males outperform females in many physical capacities because they are faster, stronger and more powerful, particularly after male puberty. This review highlights key sex differences in physiological and anatomical systems (generally conferred via sex steroids and puberty) that contribute to these sex differences in human physical performance. Specifically, we address the effects of the primary sex steroids that affect human physical development, discuss insight gained from an observational study of 'real-world data' and elite athletes, and highlight the key physiological mechanisms that contribute to sex differences in several aspects of physical performance. Physiological mechanisms discussed include those for the varying magnitude of the sex differences in performance involving: (1) absolute muscular strength and power; (2) fatigability of limb muscles as a measure of relative performance; and (3) maximal aerobic power and endurance. The profound sex-based differences in human performance involving strength, power, speed and endurance, and that are largely attributable to the direct and indirect effects of sex-steroid hormones, sex chromosomes and epigenetics, provide a scientific rationale and framework for policy decisions on sex-based categories in sports during puberty and adulthood. Finally, we highlight the sex bias and problem in human performance research of insufficient studies and information on females across many areas of biology and physiology, creating knowledge gaps and opportunities for high-impact studies.
Collapse
Affiliation(s)
- Sandra K Hunter
- Movement Science Program, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathon W Senefeld
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Avila-Hilari A, Tinoco-Solórzano A, Vélez-Páez J, Avellanas-Chavala ML. Critical pregnancy at altitude: A look at Latin America. Med Intensiva 2024; 48:411-420. [PMID: 38704303 DOI: 10.1016/j.medine.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 05/06/2024]
Abstract
Critical pregnancy at high altitudes increases morbidity and mortality from 2500 m above sea level. In addition to altitude, there are other influential factors such as social inequalities, cultural, prehospital barriers, and lack the appropriate development of healthcare infrastructure. The most frequent causes of critical pregnancy leading to admission to Intensive Care Units are pregnancy hypertensive disorders (native residents seem to be more protected), hemorrhages and infection/sepsis. In Latin America, there are 32 Intensive Care Units above 2500 m above sea level. Arterial blood gases at altitude are affected by changes in barometric pressure. The analysis of their values provides very useful information for the management of obstetric emergencies at very high altitude, especially respiratory and metabolic pathologies.
Collapse
Affiliation(s)
- Adrián Avila-Hilari
- Unidad de Terapia Intensiva, Hospital Municipal Boliviano Holandés, El Alto, Bolivia
| | - Amilcar Tinoco-Solórzano
- Servicio de Cuidados Intensivos e Intermedios, Seguro Social de Salud (EsSalud), Hospital Nacional Ramiro Prialé Prialé, Huancayo, Perú
| | - Jorge Vélez-Páez
- Unidad de Terapia Intensiva, Hospital Pablo Arturo Suárez, Quito, Ecuador
| | | |
Collapse
|
6
|
Staes M, Gyselinck I, Goetschalckx K, Troosters T, Janssens W. Identifying limitations to exercise with incremental cardiopulmonary exercise testing: a scoping review. Eur Respir Rev 2024; 33:240010. [PMID: 39231595 PMCID: PMC11372471 DOI: 10.1183/16000617.0010-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/28/2024] [Indexed: 09/06/2024] Open
Abstract
Cardiopulmonary exercise testing (CPET) is a comprehensive and invaluable assessment used to identify the mechanisms that limit exercise capacity. However, its interpretation remains poorly standardised. This scoping review aims to investigate which limitations to exercise are differentiated by the use of incremental CPET in literature and which criteria are used to identify them. We performed a systematic, electronic literature search of PubMed, Embase, Cochrane CENTRAL, Web of Science and Scopus. All types of publications that reported identification criteria for at least one limitation to exercise based on clinical parameters and CPET variables were eligible for inclusion. 86 publications were included, of which 57 were primary literature and 29 were secondary literature. In general, at the level of the cardiovascular system, a distinction was often made between a normal physiological limitation and a pathological one. Within the respiratory system, ventilatory limitation, commonly identified by a low breathing reserve, and gas exchange limitation, mostly identified by a high minute ventilation/carbon dioxide production slope and/or oxygen desaturation, were often described. Multiple terms were used to describe a limitation in the peripheral muscle, but all variables used to identify this limitation lacked specificity. Deconditioning was a frequently mentioned exercise limiting factor, but there was no consensus on how to identify it through CPET. There is large heterogeneity in the terminology, the classification and the identification criteria of limitations to exercise that are distinguished using incremental CPET. Standardising the interpretation of CPET is essential to establish an objective and consistent framework.
Collapse
Affiliation(s)
- Michaël Staes
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Clinical Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Iwein Gyselinck
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Clinical Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Kaatje Goetschalckx
- Research Unit Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
- Clinical Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Thierry Troosters
- Clinical Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Clinical Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
7
|
M A A, O AI, M S A, A BR, O O. Assessment of hypoxemia among young adults with sickle cell anaemia in steady state in southwestern Nigeria: a crosssectional study. BMC Res Notes 2024; 17:100. [PMID: 38589908 PMCID: PMC11003092 DOI: 10.1186/s13104-024-06765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVES Hypoxia is a known feature of sickle cell anaemia (SCA) which results from chronic anaemia and recurrent vaso-occlusive crisis (VOC) which can cause tissue ischaemia that leads to an end organ damage. The hallmark of SCA is chronic anaemia and recurrent vaso-occlusive crisis. The aim of this study is to compare the oxygen saturation of sickle cell anaemic individuals with the normal haemoglobin type (Hb AA) control and also to determine the prevalence of hypoxemia among SCA. RESULTS Two-hundred and twenty-two (136 Hb SS and 86 Hb AA) participated in the study. The mean ± SD of age (years), oxygen saturation (%) and pulse rate (bpm) of participants with sickle cell anaemia and Hb AA control were 21.85 ± 3.04 and 22.14 ± 3.18 (t = 0.701, p = 0.436), 95.21 ± 3.02 and 98.07 ± 0.81 (t=-8.598, p < 0.0001) and 77.10 ± 9.28 and 73.16 ± 8.52 (t = 3.173, p = 0.002) respectively. The prevalence of hypoxemia among SCA participants was 47.1%. Prevalence of hypoxemia in males with SCA was 60.9% while 39.1% of the females had hypoxemia.
Collapse
Affiliation(s)
- Asafa M A
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.
| | - Ahmed I O
- Department of Haematology and Blood Transfusion, Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Nigeria
| | - Afolabi M S
- Respiratory Unit, Department of Internal Medicine, Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Nigeria
| | - Bolarinwa R A
- Department of Haematology and Blood Transfusion, Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Nigeria
- Department of Haematology and Immunology, Faculty of Basic Medical Sciences, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ogunlade O
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
8
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
9
|
Arynov A, Kaidarova D, Kabon B. Alternative blood transfusion triggers: a narrative review. BMC Anesthesiol 2024; 24:71. [PMID: 38395758 PMCID: PMC10885388 DOI: 10.1186/s12871-024-02447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Anemia, characterized by low hemoglobin levels, is a global public health concern. Anemia is an independent factor worsening outcomes in various patient groups. Blood transfusion has been the traditional treatment for anemia; its triggers, primarily based on hemoglobin levels; however, hemoglobin level is not always an ideal trigger for blood transfusion. Additionally, blood transfusion worsens clinical outcomes in certain patient groups. This narrative review explores alternative triggers for red blood cell transfusion and their physiological basis. MAIN TEXT The review delves into the physiology of oxygen transport and highlights the limitations of using hemoglobin levels alone as transfusion trigger. The main aim of blood transfusion is to optimize oxygen delivery, necessitating an individualized approach based on clinical signs of anemia and the balance between oxygen delivery and consumption, reflected by the oxygen extraction rate. The narrative review covers different alternative triggers. It presents insights into their diagnostic value and clinical applications, emphasizing the need for personalized transfusion strategies. CONCLUSION Anemia and blood transfusion are significant factors affecting patient outcomes. While restrictive transfusion strategies are widely recommended, they may not account for the nuances of specific patient populations. The search for alternative transfusion triggers is essential to tailor transfusion therapy effectively, especially in patients with comorbidities or unique clinical profiles. Investigating alternative triggers not only enhances patient care by identifying more precise indicators but also minimizes transfusion-related risks, optimizes blood product utilization, and ensures availability when needed. Personalized transfusion strategies based on alternative triggers hold the potential to improve outcomes in various clinical scenarios, addressing anemia's complex challenges in healthcare. Further research and evidence are needed to refine these alternative triggers and guide their implementation in clinical practice.
Collapse
Affiliation(s)
- Ardak Arynov
- Department of Anesthesiology and Intensive Care, Kazakh Institute of Oncology and Radiology, Abay av. 91, Almaty, Kazakhstan.
| | - Dilyara Kaidarova
- Kazakh Institute of Oncology and Radiology, Abay av. 91, Almaty, Kazakhstan
| | - Barbara Kabon
- Department of Anaesthesia, General Intensive Medicine and Pain Medicine Medical, University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| |
Collapse
|
10
|
Raberin A, Burtscher J, Citherlet T, Manferdelli G, Krumm B, Bourdillon N, Antero J, Rasica L, Malatesta D, Brocherie F, Burtscher M, Millet GP. Women at Altitude: Sex-Related Physiological Responses to Exercise in Hypoxia. Sports Med 2024; 54:271-287. [PMID: 37902936 PMCID: PMC10933174 DOI: 10.1007/s40279-023-01954-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Sex differences in physiological responses to various stressors, including exercise, have been well documented. However, the specific impact of these differences on exposure to hypoxia, both at rest and during exercise, has remained underexplored. Many studies on the physiological responses to hypoxia have either excluded women or included only a limited number without analyzing sex-related differences. To address this gap, this comprehensive review conducted an extensive literature search to examine changes in physiological functions related to oxygen transport and consumption in hypoxic conditions. The review encompasses various aspects, including ventilatory responses, cardiovascular adjustments, hematological alterations, muscle metabolism shifts, and autonomic function modifications. Furthermore, it delves into the influence of sex hormones, which evolve throughout life, encompassing considerations related to the menstrual cycle and menopause. Among these physiological functions, the ventilatory response to exercise emerges as one of the most sex-sensitive factors that may modify reactions to hypoxia. While no significant sex-based differences were observed in cardiac hemodynamic changes during hypoxia, there is evidence of greater vascular reactivity in women, particularly at rest or when combined with exercise. Consequently, a diffusive mechanism appears to be implicated in sex-related variations in responses to hypoxia. Despite well-established sex disparities in hematological parameters, both acute and chronic hematological responses to hypoxia do not seem to differ significantly between sexes. However, it is important to note that these responses are sensitive to fluctuations in sex hormones, and further investigation is needed to elucidate the impact of the menstrual cycle and menopause on physiological responses to hypoxia.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Patel L, Dhruve R, Keshvani N, Pandey A. Role of exercise therapy and cardiac rehabilitation in heart failure. Prog Cardiovasc Dis 2024; 82:26-33. [PMID: 38199321 DOI: 10.1016/j.pcad.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Heart failure (HF) is a common cause of hospitalization and death, and the hallmark symptoms of HF, including dyspnea, fatigue, and exercise intolerance, contribute to poor patient quality of life (QoL). Cardiac rehabilitation (CR) is a comprehensive disease management program incorporating exercise training, cardiovascular risk factor management, and psychosocial support. CR has been demonstrated to effectively improve patient functional status and QoL among patients with HF. However, CR participation among patients with HF is poor. This review details the mechanisms of dyspnea and exercise intolerance among patients with HF, the physiologic and clinical improvements observed with CR, and the key components of a CR program for patients with HF. Furthermore, unmet needs and future strategies to improve patient participation and engagement in CR for HF are reviewed.
Collapse
Affiliation(s)
- Lajjaben Patel
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ritika Dhruve
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Neil Keshvani
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Bostad W, Williams JS, Van Berkel EK, Richards DL, MacDonald MJ, Gibala MJ. Biological sex does not influence the peak cardiac output response to twelve weeks of sprint interval training. Sci Rep 2023; 13:22995. [PMID: 38151488 PMCID: PMC10752867 DOI: 10.1038/s41598-023-50016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
Sprint interval training (SIT) increases peak oxygen uptake (V̇O2peak) but the mechanistic basis is unclear. We have reported that 12 wk of SIT increased V̇O2peak and peak cardiac output (Q̇peak) and the changes in these variables were correlated. An exploratory analysis suggested that Q̇peak increased in males but not females. The present study incorporated best practices to examine the potential influence of biological sex on the Q̇peak response to SIT. Male and female participants (n = 10 each; 21 ± 4 y) performed 33 ± 2 sessions of SIT over 12 wk. Each 10-min session involved 3 × 20-s 'all-out' sprints on an ergometer. V̇O2peak increased after SIT (3.16 ± 1.0 vs. 2.89 ± 1.0 L/min, η2p = 0.53, p < 0.001) with no sex × time interaction (p = 0.61). Q̇peak was unchanged after training (15.2 ± 3.3 vs. 15.1 ± 3.0 L/min, p = 0.85), in contrast to our previous study. The peak estimated arteriovenous oxygen difference increased after training (204 ± 30 vs. 187 ± 36 ml/L, p = 0.006). There was no effect of training or sex on measures of endothelial function. We conclude that 12 wk of SIT increases V̇O2peak but the mechanistic basis remains unclear. The capacity of inert gas rebreathing to assess changes in Q̇peak may be limited and invasive studies that use more direct measures are needed.
Collapse
Affiliation(s)
- William Bostad
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jennifer S Williams
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Emily K Van Berkel
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Douglas L Richards
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Maureen J MacDonald
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
13
|
Joyner MJ, Wiggins CC, Baker SE, Klassen SA, Senefeld JW. Exercise and Experiments of Nature. Compr Physiol 2023; 13:4879-4907. [PMID: 37358508 PMCID: PMC10853940 DOI: 10.1002/cphy.c220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In this article, we highlight the contributions of passive experiments that address important exercise-related questions in integrative physiology and medicine. Passive experiments differ from active experiments in that passive experiments involve limited or no active intervention to generate observations and test hypotheses. Experiments of nature and natural experiments are two types of passive experiments. Experiments of nature include research participants with rare genetic or acquired conditions that facilitate exploration of specific physiological mechanisms. In this way, experiments of nature are parallel to classical "knockout" animal models among human research participants. Natural experiments are gleaned from data sets that allow population-based questions to be addressed. An advantage of both types of passive experiments is that more extreme and/or prolonged exposures to physiological and behavioral stimuli are possible in humans. In this article, we discuss a number of key passive experiments that have generated foundational medical knowledge or mechanistic physiological insights related to exercise. Both natural experiments and experiments of nature will be essential to generate and test hypotheses about the limits of human adaptability to stressors like exercise. © 2023 American Physiological Society. Compr Physiol 13:4879-4907, 2023.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C Wiggins
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah E Baker
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jonathon W Senefeld
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Samaja M, Ottolenghi S. The Oxygen Cascade from Atmosphere to Mitochondria as a Tool to Understand the (Mal)adaptation to Hypoxia. Int J Mol Sci 2023; 24:ijms24043670. [PMID: 36835089 PMCID: PMC9960749 DOI: 10.3390/ijms24043670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypoxia is a life-threatening challenge for about 1% of the world population, as well as a contributor to high morbidity and mortality scores in patients affected by various cardiopulmonary, hematological, and circulatory diseases. However, the adaptation to hypoxia represents a failure for a relevant portion of the cases as the pathways of potential adaptation often conflict with well-being and generate diseases that in certain areas of the world still afflict up to one-third of the populations living at altitude. To help understand the mechanisms of adaptation and maladaptation, this review examines the various steps of the oxygen cascade from the atmosphere to the mitochondria distinguishing the patterns related to physiological (i.e., due to altitude) and pathological (i.e., due to a pre-existing disease) hypoxia. The aim is to assess the ability of humans to adapt to hypoxia in a multidisciplinary approach that correlates the function of genes, molecules, and cells with the physiologic and pathological outcomes. We conclude that, in most cases, it is not hypoxia by itself that generates diseases, but rather the attempts to adapt to the hypoxia condition. This underlies the paradigm shift that when adaptation to hypoxia becomes excessive, it translates into maladaptation.
Collapse
Affiliation(s)
- Michele Samaja
- MAGI GROUP, San Felice del Benaco, 25010 Brescia, Italy
- Correspondence:
| | - Sara Ottolenghi
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| |
Collapse
|
15
|
Usefulness of pyruvate dehydrogenase-E1α expression to determine SUVmax cut-off value of [ 18F]FDG-PET for predicting lymph node metastasis in lung cancer. Sci Rep 2023; 13:1565. [PMID: 36709375 PMCID: PMC9884208 DOI: 10.1038/s41598-023-28805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
A more accurate cut-off value of maximum standardized uptake value (SUVmax) in [18F]fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG-PET/CT) is necessary to improve preoperative nodal staging in patients with lung cancer. Overall, 223 patients with lung cancer who had undergone [18F]FDG-PET/CT within 2 months before surgery were enrolled. The expression of glucose transporter-1, pyruvate kinase-M2, pyruvate dehydrogenase-E1α (PDH-E1α), and carbonic anhydrase-9 was evaluated by immunohistochemistry. Clinicopathological background was retrospectively investigated. According to PDH-E1α expression in primary lesion, a significant difference (p = 0.021) in SUVmax of metastatic lymph nodes (3.0 with PDH-positive vs 4.5 with PDH-negative) was found, but not of other enzymes. When the cut-off value of SUVmax was set to 2.5, the sensitivity and specificity were 0.529 and 0.562, respectively, and the positive and negative predictive values were 0.505 and 0.586, respectively. However, when the cut-off value of SUVmax was set according to PDH-E1α expression (2.7 with PDH-positive and 3.2 with PDH-negative), the sensitivity and specificity were 0.441 and 0.868, respectively, and the positive and negative predictive values were 0.738 and 0.648, respectively. The SUVmax cut-off value for metastatic lymph nodes depends on PDH-E1α expression in primary lung cancer. The new SUVmax cut-off value according to PDH-E1α expression showed higher specificity for [18F]FDG-PET in the diagnosis of lymph node metastasis.
Collapse
|
16
|
Sekhon MS, Hoiland RL, Griesdale DE. The importance of the oxygen cascade after cardiac arrest. Resuscitation 2021; 168:231-233. [PMID: 34592401 DOI: 10.1016/j.resuscitation.2021.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, BC, Canada
| | - Donald E Griesdale
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, BC, Canada
| |
Collapse
|