1
|
Mavundza EJ, Mmotsa TM, Ndwandwe D. Human papillomavirus (HPV) trials: A cross-sectional analysis of clinical trials registries. Hum Vaccin Immunother 2024; 20:2393481. [PMID: 39193782 PMCID: PMC11364072 DOI: 10.1080/21645515.2024.2393481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Every clinical trial must be registered in a publicly accessible trial registry before enrollment of the first participant. Prospectively registering clinical trials before enrolling participants helps to prevent unethical research misconduct from occurring, duplication of research and increases transparency in research. The aim of this study was to provide cross-sectional survey analysis of planned, ongoing and completed human papillomavirus (HPV) clinical trials conducted worldwide. We searched the International Clinical Trials Registry Platform (ICTR) for registered HPV trials on 5 March 2023. Two authors independently extracted data including name of the clinical trial registry, location of the trial, recruitment status of the trial, gender of participants, phase of the trial, and type of trial sponsor. We used Microsoft Excel to perform descriptive analysis. The search yielded 1632 trials registered between 1999 and 2023. Most of the trials were registered in ClinicalTrials.gov and were registered retrospectively. We also found that most trials were conducted in North America, in recruiting stage, and indicated "not applicable" under the phase of the trial field. Finally, most trials were sponsored by hospitals. Our study found that there are many HPV clinical trials registered in different clinical trial primary registries around the world. However, many of the trials were registered retrospectively instead of the required prospectively and some had missing fields. Therefore, there is a need for registries to promote prospective trial registration and completion of all fields during the registration process.
Collapse
Affiliation(s)
| | | | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
2
|
Adedinsewo DA, Morales-Lara AC, Afolabi BB, Kushimo OA, Mbakwem AC, Ibiyemi KF, Ogunmodede JA, Raji HO, Ringim SH, Habib AA, Hamza SM, Ogah OS, Obajimi G, Saanu OO, Jagun OE, Inofomoh FO, Adeolu T, Karaye KM, Gaya SA, Alfa I, Yohanna C, Venkatachalam KL, Dugan J, Yao X, Sledge HJ, Johnson PW, Wieczorek MA, Attia ZI, Phillips SD, Yamani MH, Tobah YB, Rose CH, Sharpe EE, Lopez-Jimenez F, Friedman PA, Noseworthy PA, Carter RE. Artificial intelligence guided screening for cardiomyopathies in an obstetric population: a pragmatic randomized clinical trial. Nat Med 2024; 30:2897-2906. [PMID: 39223284 PMCID: PMC11485252 DOI: 10.1038/s41591-024-03243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Nigeria has the highest reported incidence of peripartum cardiomyopathy worldwide. This open-label, pragmatic clinical trial randomized pregnant and postpartum women to usual care or artificial intelligence (AI)-guided screening to assess its impact on the diagnosis left ventricular systolic dysfunction (LVSD) in the perinatal period. The study intervention included digital stethoscope recordings with point of-care AI predictions and a 12-lead electrocardiogram with asynchronous AI predictions for LVSD. The primary end point was identification of LVSD during the study period. In the intervention arm, the primary end point was defined as the number of identified participants with LVSD as determined by a positive AI screen, confirmed by echocardiography. In the control arm, this was the number of participants with clinical recognition and documentation of LVSD on echocardiography in keeping with current standard of care. Participants in the intervention arm had a confirmatory echocardiogram at baseline for AI model validation. A total of 1,232 (616 in each arm) participants were randomized and 1,195 participants (587 intervention arm and 608 control arm) completed the baseline visit at 6 hospitals in Nigeria between August 2022 and September 2023 with follow-up through May 2024. Using the AI-enabled digital stethoscope, the primary study end point was met with detection of 24 out of 587 (4.1%) versus 12 out of 608 (2.0%) patients with LVSD (intervention versus control odds ratio 2.12, 95% CI 1.05-4.27; P = 0.032). With the 12-lead AI-electrocardiogram model, the primary end point was detected in 20 out of 587 (3.4%) versus 12 out of 608 (2.0%) patients (odds ratio 1.75, 95% CI 0.85-3.62; P = 0.125). A similar direction of effect was observed in prespecified subgroup analysis. There were no serious adverse events related to study participation. In pregnant and postpartum women, AI-guided screening using a digital stethoscope improved the diagnosis of pregnancy-related cardiomyopathy. ClinicalTrials.gov registration: NCT05438576.
Collapse
Affiliation(s)
| | | | - Bosede B Afolabi
- Department of Obstetrics and Gynaecology, College of Medicine and Centre for Clinical Trials, Research and Implementation Science, University of Lagos, Lagos, Nigeria
| | - Oyewole A Kushimo
- Cardiology Unit, Department of Medicine, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Amam C Mbakwem
- Cardiology Unit, Department of Medicine, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Kehinde F Ibiyemi
- Department of Obstetrics & Gynaecology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | | | - Hadijat Olaide Raji
- Department of Obstetrics & Gynaecology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Sadiq H Ringim
- Department of Medicine, Rasheed Shekoni Specialist Hospital, Dutse, Nigeria
| | - Abdullahi A Habib
- Department of Obstetrics and Gynaecology, Rasheed Shekoni Specialist Hospital, Dutse, Nigeria
| | - Sabiu M Hamza
- Department of Medicine, Rasheed Shekoni Specialist Hospital, Dutse, Nigeria
| | | | - Gbolahan Obajimi
- Department of Obstetrics and Gynaecology, University College Hospital Ibadan, Oyo, Nigeria
| | | | - Olusoji E Jagun
- Department of Obstetrics and Gynaecology, Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria
| | - Francisca O Inofomoh
- Cardiology Unit, Department of Medicine, Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria
| | - Temitope Adeolu
- Cardiology Unit, Department of Medicine, Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria
| | - Kamilu M Karaye
- Department of Medicine, Bayero University and Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Sule A Gaya
- Department of Obstetrics and Gynaecology, Bayero University and Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Isiaka Alfa
- Department of Medicine, Bayero University and Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Cynthia Yohanna
- Lakeside Healthcare at Yaxley, the Health Centre, Peterborough, United Kingdom
| | - K L Venkatachalam
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Jennifer Dugan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaoxi Yao
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Hanna J Sledge
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Patrick W Johnson
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Mikolaj A Wieczorek
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Zachi I Attia
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sabrina D Phillips
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Mohamad H Yamani
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Carl H Rose
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Emily E Sharpe
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Rickey E Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
3
|
Wu C, Hao J, Xin Y, Song R, Li W, Zuo L, Zhang X, Cai Y, Wu H, Hui W. Poor sample size reporting quality and insufficient sample size in economic evaluations conducted alongside pragmatic trials: a cross-sectional survey. J Clin Epidemiol 2024; 176:111535. [PMID: 39307404 DOI: 10.1016/j.jclinepi.2024.111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Economic evaluations based on well-designed and -conducted pragmatic randomized controlled trials (pRCTs) can provide valuable evidence on the cost-effectiveness of interventions, enhancing the relevance and applicability of findings to healthcare decision-making. However, economic evaluation outcomes are seldom taken into consideration during the process of sample size calculation in pragmatic trials. The reporting quality of sample size and information on its calculation in economic evaluations that are well-suited to pRCTs remain unknown. This study aims to assess the reporting quality of sample size and estimate the power values of economic evaluations in pRCTs. STUDY DESIGN AND SETTING We conducted a cross-sectional survey using data of pRCTs available from PubMed and OVID from 1 January 2010 to 24 April 2022. Two groups of independent reviewers identified articles; three groups of reviewers each extracted the data. Descriptive statistics presented the general characteristics of included studies. Statistical power analyses were performed on clinical and economic outcomes with sufficient data. RESULTS The electronic search identified 715 studies and 152 met the inclusion criteria. Of these, 26 were available for power analysis. Only 9 out of 152 trials (5.9%) considered economic outcomes when estimating sample size, and only one adjusted the sample size accordingly. Power values for trial-based economic evaluations and clinical trials ranged from 2.56% to 100% and 3.21%-100%, respectively. Regardless of the perspectives, in 14 out of the 26 studies (53.8%), the power values of economic evaluations for quality-adjusted life years (QALYs) were lower than those of clinical trials for primary endpoints (PEs). In 11 out of the 24 (45.8%) and in 8 out of the 13 (61.5%) studies, power values of economic evaluations for QALYs were lower than those of clinical trials for PEs from the healthcare and societal perspectives, respectively. Power values of economic evaluations for non-QALYs from the healthcare and societal perspectives were potentially higher than those of clinical trials in 3 out of the 4 studies (75%). The power values for economic outcomes in Q1 were not higher than those for other journal impact factor quartile categories. CONCLUSION Theoretically, pragmatic trials with concurrent economic evaluations can provide real-world evidence for healthcare decision makers. However, in pRCT-based economic evaluations, limited consideration, and inadequate reporting of sample-size calculations for economic outcomes could negatively affect the results' reliability and generalisability. We thus recommend that future pragmatic trials with economic evaluations should report how sample sizes are determined or adjusted based on the economic outcomes in their protocols to enhance their transparency and evidence quality.
Collapse
Affiliation(s)
- Changjin Wu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jun Hao
- Medical Research and Biometrics Centre, National Clinical Research Centre for Cardiovascular Diseases, Fuwai Hospital, National Centre for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Institute for Global Health, University College London, London, UK
| | - Yu Xin
- Department of Science and Technology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruomeng Song
- Department of Health Service Management, School of Health Management, China Medical University, Shenyang, China
| | - Wentan Li
- Department of Health Service Management, School of Health Management, China Medical University, Shenyang, China
| | - Ling Zuo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China; Integrated Care Management Centre, Outpatient Department, West China Hospital, Sichuan University, Chengdu, China
| | - Xiyan Zhang
- Department of Health Service Management, School of Health Management, China Medical University, Shenyang, China
| | - Yuanyi Cai
- Department of Health Service Management, School of Health Management, China Medical University, Shenyang, China
| | - Huazhang Wu
- Department of Health Service Management, School of Health Management, China Medical University, Shenyang, China
| | - Wen Hui
- Department of Science and Technology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Molero-Calafell J, Burón A, Castells X, Porta M. Intention to treat and per protocol analyses: differences and similarities. J Clin Epidemiol 2024; 173:111457. [PMID: 38977160 DOI: 10.1016/j.jclinepi.2024.111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Randomized trials can take more explanatory or more pragmatic approaches. Pragmatic studies, conducted closer to real-world conditions, assess treatment effectiveness while considering factors like protocol adherence. In these studies, intention-to-treat (ITT) analysis is fundamental, comparing outcomes regardless of the actual treatment received. Explanatory trials, conducted closer to optimal conditions, evaluate treatment efficacy, commonly with a per protocol (PP) analysis, which includes only outcomes from adherent participants. ITT and PP are strategies used in the conception, design, conduct (protocol execution), analysis, and interpretation of trials. Each serves distinct objectives. While both can be valid, when bias is controlled, and complementary, each has its own limitations. By excluding nonadherent participants, PP analyses can lose the benefits of randomization, resulting in group differences in factors (influencing adherence and outcomes) that were present at baseline. Additionally, clinical and social factors affecting adherence can also operate during follow-up, that is, after randomization. Therefore, incomplete adherence may introduce postrandomization confounding. Conversely, ITT analysis, including all participants regardless of adherence, may dilute treatment effects. Moreover, varying adherence levels could limit the applicability of ITT findings in settings with diverse adherence patterns. Both ITT and PP analyses can be affected by selection bias due to differential losses and nonresponse (ie, missing data) during follow-up. Combining high-quality and comprehensive data with advanced statistical methods, known as g-methods, like inverse probability weighting, may help address postrandomization confounding in PP analysis as well as selection bias in both ITT and PP analyses.
Collapse
Affiliation(s)
- Javier Molero-Calafell
- Department of Epidemiology and Evaluation, Hospital del Mar (HMar), Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Preventive Medicine and Public Health Training Unit HMar-UPF-ASPB (HMar - Pompeu Fabra University - Agència de Salut Pública de Barcelona), Barcelona, Spain
| | - Andrea Burón
- Department of Epidemiology and Evaluation, Hospital del Mar (HMar), Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Research Network on Chronicity, Primary Care and Prevention and Health Promotion (RICAPPS), Madrid, Spain.
| | - Xavier Castells
- Department of Epidemiology and Evaluation, Hospital del Mar (HMar), Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Research Network on Chronicity, Primary Care and Prevention and Health Promotion (RICAPPS), Madrid, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miquel Porta
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública, Barcelona, Spain; Division of Environmental Pediatrics, School of Medicine, New York University, New York, NY, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Sankar K, Redman MW, Dragnev KH, Henick BS, Iams WT, Blanke CD, Herbst RS, Gray JE, Reckamp KL. Pragmaticism in Cancer Clinical Trials. Am Soc Clin Oncol Educ Book 2024; 44:e100040. [PMID: 38771997 DOI: 10.1200/edbk_100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Clinical trials are essential for advancing oncology treatment strategies and have contributed significantly to the decline in cancer mortality rates over the past decades. Traditional explanatory trials, focused on establishing intervention efficacy in ideal settings, often lack generalizability and may not reflect real-world patient care scenarios. Furthermore, increasing complexity in cancer clinical trial design has led to challenges such as protocol deviations, slow enrollment leading to lengthened durations of trial, and escalating costs. By contrast, pragmatic trials aim to assess intervention effectiveness in more representative patient populations under routine clinical conditions. Here, we review the principles, methodologies, challenges, and advantages of incorporating pragmatic features (PFs) into cancer clinical trials. We illustrate the application of pragmatic trial designs in oncology and discuss the QUASAR collaborative, TAPUR study, and the ongoing PRAGMATICA-LUNG trial. Although not all oncology trials may be amenable to adopting fully pragmatic designs, integration of PFs when feasible will enhance trial generalizability and real-world applicability. Project Pragmatica and similar initiatives advocate for the integration of real-world practice with clinical trials, fostering a nuanced approach to oncology research that balances efficacy and effectiveness assessments, ultimately with a goal of improving patient outcomes.
Collapse
Affiliation(s)
| | - Mary W Redman
- SWOG Statistics and Data Management Center, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Brian S Henick
- Columbia University/Herbert Irving Comprehensive Cancer Center, New York, NY
| | - Wade T Iams
- Vanderbilt University Medical Center, Nashville, TN
| | - Charles D Blanke
- SWOG Network Operations Center/Oregon Health & Science University, Portland, OR
| | | | | | | |
Collapse
|
6
|
Ren L, Chen Q, Gao J, Liu Y, Tao Y, Li X, Luo Q, Lv F, Min S. Clinical efficacy of adjunctive esketamine anesthesia in electroconvulsive therapy for major depressive disorders: A pragmatic, randomized, controlled trial. Psychiatry Res 2024; 335:115843. [PMID: 38461645 DOI: 10.1016/j.psychres.2024.115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Electroconvulsive therapy (ECT) is an effective treatment for depression, and esketamine has been shown to have antidepressant effects. However, it is currently unclear whether adjunctive esketamine can enhance the clinical efficacy of ECT in real-world clinical practice. In this pragmatic clinical trial, patients with major depression were randomly assigned into two groups: patients received 0.25 mg/kg esketamine plus propofol (esketamine group) or the same volume of saline (control group) plus propofol. Results indicated that there was no difference in response and remission rates between the two groups. However, patients receiving esketamine had a higher remission rate of SI and lower psychotic scores. Patients receiving esketamine also required a lower electric dose, but the seizure duration and cognitive function were comparable between the two groups. Diastolic blood pressure increased after esketamine injection, but there was no increased risk of hypertension. Furthermore, incidence of delirium and confusion were comparable between the groups. Conclusively, adjunctive esketamine anesthesia does not provide any advantage in improving the response and remission rates of ECT. However, it can improve remission of SI and alleviate accompanying psychotic symptoms in depressive patients. With adjunctive usage, the adverse cardiovascular and neuropsychiatric events associated with esketamine appear to be tolerable.
Collapse
Affiliation(s)
- Li Ren
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qibin Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jin Gao
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yuanyuan Liu
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yi Tao
- Department of Phase I Clinical Trial Ward, the First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiao Li
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qinghua Luo
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Feng Lv
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
7
|
Arevalo-Romero JA, Chingaté-López SM, Camacho BA, Alméciga-Díaz CJ, Ramirez-Segura CA. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon 2024; 10:e26423. [PMID: 38434363 PMCID: PMC10907543 DOI: 10.1016/j.heliyon.2024.e26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
Collapse
Affiliation(s)
- Jenny Andrea Arevalo-Romero
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Sandra M. Chingaté-López
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Cesar A. Ramirez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| |
Collapse
|
8
|
Janero DR. Current strategic trends in drug discovery: the present as prologue. Expert Opin Drug Discov 2024; 19:147-159. [PMID: 37936504 DOI: 10.1080/17460441.2023.2275640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Escalating costs and inherent uncertainties associated with drug discovery invite initiatives to improve its efficiency and de-risk campaigns for inventing better therapeutics. One such initiative involves recognizing and exploiting current approaches in therapeutics invention with molecular mechanisms of action that hold promise for designing and targeting new chemical entities as drugs. AREAS COVERED This perspective considers the current contextual framework around three drug-discovery approaches and evaluates their potential to help identify new targets/modalities in small-molecule molecular pharmacology: diversifying ligand-directed phenotypes for G protein-coupled receptor (GPCR) pharmacotherapeutic signaling; developing therapeutic-protein degraders and stabilizers for proximity-inducing pharmacology; and mining organelle biology for druggable therapeutic targets. EXPERT OPINION The contemporary drug-discovery approaches examined appear generalizable and versatile to have applications in therapeutics invention beyond those case studies discussed herein. Accordingly, they may be considered strategic trends worthy of note in advancing the field toward novel ways of addressing pharmacotherapeutically unmet medical needs.
Collapse
Affiliation(s)
- David R Janero
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, and Health Sciences Entrepreneurs, Northeastern University, Boston, MA, USA
| |
Collapse
|