1
|
Xu X, Tang L, Yu Y, Zhang J, Zhou X, Zhou T, Xuan C, Tian Q, Pan D. Cooperative amplification of Prussian blue as a signal indicator and functionalized metal-organic framework-based electrochemical biosensor for an ultrasensitive HE4 assay. Biosens Bioelectron 2024; 262:116541. [PMID: 38959719 DOI: 10.1016/j.bios.2024.116541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Human epididymis protein 4 (HE4), a diagnostic biomarker of ovarian cancer, is crucial for monitoring the early stage of the disease. Hence, it is highly important to develop simple, inexpensive, and user-friendly biosensors for sensitive and quantitative HE4 assays. Herein, a new sandwich-type electrochemical immunosensor based on Prussian blue (PB) as a signal indicator and functionalized metal-organic framework nanocompositesas efficient signal amplifiers was fabricated for quantitative analysis of HE4. In principle, ketjen black (KB) and AuNPs modified on TiMOF (TiMOF-KB@AuNPs) could accelerate electron transfer on the electrode surface and act as a matrix for the immobilization of antibodies via cross-linking to improve the determination sensitivity. The PB that covalently binds to labeled antibodies endows the biosensors with intense electrochemical signals. Furthermore, the concentration of HE4 could be indirectly detected by monitoring the electroactivity of PB. Benefiting from the high signal amplification ability of the PB and MOF nanocomposites, this strategy displayed a wide linear range (0.1-80 ng mL-1) and a lower detection limit (0.02 ng mL-1). Hence, this study demonstrated great promise for application in clinical ovarian cancer diagnosis and treatment, and provided a new platform for detecting other cancer biomarkers.
Collapse
Affiliation(s)
- Xuanming Xu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China; Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lian Tang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Jiayou Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Tingting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Deng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China.
| |
Collapse
|
2
|
Souza E, de Oliveira MA, Santana JDJ, Łukasik N, Madeiro da Costa OMM, Almeida LC, Barros BS, Kulesza J. Fabrication of Gold and Silver Nanoparticles Supported on Zinc Imidazolate Metal-Organic Frameworks as Active Catalysts for Hydrogen Release from Ammonia Borane. ACS OMEGA 2024; 9:41084-41096. [PMID: 39371989 PMCID: PMC11447819 DOI: 10.1021/acsomega.4c07068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Well-dispersed Au and Ag nanoparticles (NPs) have been immobilized on a zinc imidazolate metal-organic framework, Zn(mim), using the "one-pot" method and tested as catalysts in ammonia borane hydrolysis. The AuNPs@Zn(mim) and AgNPs@Zn(mim) materials were characterized by FTIR, XRD, ICP-OES, TGA, BET, SEM, and TEM. The AgNPs@Zn(mim) catalyst showed a high yield (98.5%) and high hydrogen generation rate (3352.71 mL min-1 gAg -1) in NH3BH3 dehydrogenation. The determined activation energies (19.6 kJ mol-1 for AuNPs@Zn(mim) and 38.13 kJ mol-1 for AgNPs@Zn(mim)) are lower than those for most reported catalysts containing Au/Ag-MOF used in the hydrolysis of NH3BH3. Moreover, the catalysts tested here revealed good stability and reusability, preserving 71.42% (AuNPs@Zn(mim)) and 88.23% (AgNPs@Zn(mim)) of their initial catalytic activities after five consecutive cycles. In the case of AgNPs@Zn(mim), the combination of the simple and green synthesis method, low active metal content, relatively low cost, and moderate dehydrogenation conditions makes the material an excellent candidate to produce hydrogen from ammonia borane.
Collapse
Affiliation(s)
- Elibe
S. Souza
- Programa
de Pós-Graduação em Ciência de Materiais,
Centro de Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Jornalista Aníbal
Fernandes, s/n°, Recife, Pernambuco 50740-560, Brazil
| | - Maria Alaide de Oliveira
- Programa
de Pós-Graduação em Química, Centro de
Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Jornalista Aníbal
Fernandes, s/n°, Recife, Pernambuco 50740-560, Brazil
| | - Jildimara de Jesus Santana
- Programa
de Pós-Graduação em Ciência de Materiais,
Centro de Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Jornalista Aníbal
Fernandes, s/n°, Recife, Pernambuco 50740-560, Brazil
| | - Natalia Łukasik
- Programa
de Pós-Graduação em Química, Centro de
Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Jornalista Aníbal
Fernandes, s/n°, Recife, Pernambuco 50740-560, Brazil
| | - Ohanna Maria Menezes Madeiro da Costa
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian Center for Research
in Energy and Materials (CNPEM), Cidade
Universitária, Rua Giuseppe Máximo Scolfaro, Campinas, São Paulo 13083-100, Brazil
| | - Luciano Costa Almeida
- Departamento
de Engenharia Química, Centro de Tecnologia e Geociências
- CTG, Universidade Federal de Pernambuco,
Cidade Universitária, Rua Artur de Sá, Recife, Pernambuco 50740-521, Brazil
| | - Bráulio Silva Barros
- Departamento
de Engenharia Mecânica, Centro de Tecnologia e Geociências
- CTG, Universidade Federal de Pernambuco,
Cidade Universitária, Av. Prof. Morais Rego, 1235, Recife, Pernambuco 50670-901, Brazil
| | - Joanna Kulesza
- Departamento
de Química Fundamental, Centro de Ciências Exatas e
da Natureza-CCEN, Universidade Federal de
Pernambuco, Cidade Universitária, Av. Prof. Morais Rego, 1235, Recife, Pernambuco 50670-901, Brazil
| |
Collapse
|
3
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Xu X, Li W, Xin H, Tang L, Zhou X, Zhou T, Xuan C, Tian Q, Pan D. Engineering of CuMOF-SWCNTs@AuNPs-Based Electrochemical Sensors for Ultrasensitive and Selective Monitoring of Imatinib in Human Serum. ACS OMEGA 2024; 9:4744-4753. [PMID: 38313513 PMCID: PMC10831836 DOI: 10.1021/acsomega.3c08002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024]
Abstract
Imatinib (IMA) is a common chemotherapy drug for the treatment of leukemia and can potentially lead to drug resistance and toxicity during the course of treatment. Monitoring IMA concentrations in body fluids is necessary to optimize therapeutic schedules and avoid overdosage. In this paper, a novel ultrasensitive electrochemical sensor based on CuMOF and SWCNTs@AuNPs was developed to determine this antileukemic drug. Herein, AuNPs were supported on carboxylic single-walled carbon nanotubes (SWCNT-COOH), and then poly(diallyldimethylammonium chloride) (PDDA) was used as a dispersant to overcome the internal van der Waals interactions among the CNTs, further increasing the AuNP loading. Moreover, the morphology, structure, composition, and electrochemical properties of the CuMOF-SWCNTs@AuNPs composite film were characterized using SEM, TEM, FT-IR, UV-vis, XRD, XPS, CV, and EIS. Due to the advantage of the superior electrocatalytic and conductive properties of SWCNTs@AuNPs and their preferable adsorptivity and affinity to IMA of CuMOF, the fabricated glassy carbon electrode significantly improved the determination performance via their synergetic amplified effect. Under optimal conditions, a wide linear response was exhibited in the range from 0.05 to 20.0 μM and the low detection limit of 5.2 nM. In addition, our prepared sensor has been applied to the analysis of IMA in blood serum samples with acceptable results. Therefore, our CuMOF-SWCNTs@AuNPs-based electrochemical sensor possessed prominent sensing responses for IMA, which could be used as a prospective approach in clinical application.
Collapse
Affiliation(s)
- Xuanming Xu
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Wei Li
- Clinical
Laboratory, Qingdao Women and Children’s Hospital Affiliated, Qingdao University, Qingdao 266034, China
| | - Hao Xin
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Lian Tang
- Department
of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Xiaoyan Zhou
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Tingting Zhou
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Chao Xuan
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Qingwu Tian
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Deng Pan
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| |
Collapse
|
5
|
Alamgholiloo H, Noroozi Pesyan N, Poursattar Marjani A. Visible-light-responsive Z-scheme α-Fe2O3/SWCNT/NH2-MIL-125 heterojunction for boosted photodegradation of ofloxacin. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Somnath, Ahmad M, Siddiqui KA. Synthesis of Mixed Ligand 3D Cobalt MOF: Smart Responsiveness towards Photocatalytic Dye Degradation in Environmental Contaminants. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Taghavi R, Rostamnia S, Farajzadeh M, Karimi-Maleh H, Wang J, Kim D, Jang HW, Luque R, Varma RS, Shokouhimehr M. Magnetite Metal-Organic Frameworks: Applications in Environmental Remediation of Heavy Metals, Organic Contaminants, and Other Pollutants. Inorg Chem 2022; 61:15747-15783. [PMID: 36173289 DOI: 10.1021/acs.inorgchem.2c01939] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to the increasing environmental pollution caused by human activities, environmental remediation has become an important subject for humans and environmental safety. The quest for beneficial pathways to remove organic and inorganic contaminants has been the theme of considerable investigations in the past decade. The easy and quick separation made magnetic solid-phase extraction (MSPE) a popular method for the removal of different pollutants from the environment. Metal-organic frameworks (MOFs) are a class of porous materials best known for their ultrahigh porosity. Moreover, these materials can be easily modified with useful ligands and form various composites with varying characteristics, thus rendering them an ideal candidate as adsorbing agents for MSPE. Herein, research on MSPE, encompassing MOFs as sorbents and Fe3O4 as a magnetic component, is surveyed for environmental applications. Initially, assorted pollutants and their threats to human and environmental safety are introduced with a brief introduction to MOFs and MSPE. Subsequently, the deployment of magnetic MOFs (MMOFs) as sorbents for the removal of various organic and inorganic pollutants from the environment is deliberated, encompassing the outlooks and perspectives of this field.
Collapse
Affiliation(s)
- Reza Taghavi
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Mustafa Farajzadeh
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, 611731 Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, 9477177870 Quchan, Iran
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering, Hanyang University, 15588 Ansan, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Cordoba, Spain.,Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., 117198 Moscow, Russia
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| |
Collapse
|
8
|
Wang Z, Ren D, Huang Y, Zhang S, Zhang X, Chen W. Degradation mechanism and pathway of 2,4-dichlorophenol via heterogeneous activation of persulfate by using Fe-Cu-MOF@C nanocatalyst. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Wang ML, Zhao Z, Lin S, Su M, Liang B, Liang SX. New insight into the co-adsorption of oxytetracycline and Pb(II) using magnetic metal-organic frameworks composites in aqueous environment: co-adsorption mechanisms and application potentials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50177-50191. [PMID: 35226262 DOI: 10.1007/s11356-022-19339-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The present study aimed to investigate the co-adsorption and application of water stabilized Fe3O4@ZIF-8 composite with magnetic cubic crystal structure. This new material was successfully prepared by facile modification strategy and rational design, which was used for simultaneous adsorption of oxytetracycline (OTC) and Pb(II) in aqueous solution. The co-adsorption behavior and mechanism of the composite for OTC and Pb(II) were systematically investigated by characterization techniques and batch experiments, and its application potential was effectively evaluated. The results showed that the synthesized Fe3O4@ZIF-8 composite innovatively retained the cubic crystal structure of ZIF-8 and was successfully loaded on the surface of Fe3O4 particles with small particle size to form a core-shell structure. The Fe3O4@ZIF-8 composite possessed a large specific surface area (1722 m2/g), magnetic separation performance (13.4 emu/g), and rich functional groups. The co-adsorption of OTC and Pb(II) on Fe3O4@ZIF-8 had fast reaction kinetics (equilibrium within 90 min) and large adsorption capacity (310.29 mg/g and 276.06 mg/g respectively). The adsorption process for both contaminants followed pseudo-second order kinetics and Langmuir isotherm models and had synergistic and competitive effects at the same time. π-π stacking and electrostatic interaction were the main mechanisms of adsorption. Fe3O4@ZIF-8 had good adsorption performance after cyclic adsorption for 4 times and it performed well in the treatment of real waste water. This study provided a new sight for the control of combined pollution of OTC and Pb(II) and proved Fe3O4@ZIF-8 composites have great application potentials for complex wastewater treatment.
Collapse
Affiliation(s)
- Meng-Lu Wang
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Zhe Zhao
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054001, China
| | - Shumin Lin
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
| | - Ming Su
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Bolong Liang
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Shu-Xuan Liang
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
10
|
Metal-Organic Frameworks Decorated Cu2O Heterogeneous Catalysts for Selective Oxidation of Styrene. Catalysts 2022. [DOI: 10.3390/catal12050487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The selective oxidation of styrene with highly efficient, environmentally benign, and cost-effective catalysts are of great importance for sustainable chemical processes. Here, we develop an in situ self-assembly strategy to decorate Cu-based metal-organic framework (MOF) Cu-BDC-NH2 nanocrystals on Cu2O octahedra to construct a series of Cu2O@Cu-BDC-NH2 catalysts for selective oxidation of styrene. Using H2O2 as green oxidants, the optimized sample of Cu2O@Cu-BDC-NH2-8h could achieve 85% styrene conversion with 76% selectivity of benzaldehyde under a mild condition of 40 °C. The high performance of the as-prepared heterogeneous catalysts was attributed to the well-designed Cu+/Cu2+ interface between Cu2O and Cu-BDC-NH2 as well as the porous MOF shells composed of the uniformly dispersed Cu-BDC-NH2 nanocrystals. The alkaline properties of Cu2O and the –NH2 modification of MOFs enable the reaction to be carried out in a base-free condition, which simplifies the separation process and makes the catalytic system more environmentally friendly. Besides the Cu2O octahedra (od-Cu2O), the Cu2O cuboctahedrons (cod-Cu2O) were synthesized by adjusting the added polyvinyl pyrrolidone, and the obtained cod-Cu2O@Cu-BDC-NH2 composite also showed good catalytic performance. This work provides a useful strategy for developing highly efficient and environmentally benign heterogeneous catalysts for the selective oxidation of styrene.
Collapse
|
11
|
Wu JH, Li Y, Liu X, Liu F, Ma SJ, You JJ, Zhu XQ, Zhong XX, Lin ZX. Destruction of 4-chlorophenol by the hydrogen-accelerated catalytic Fenton system enhanced by Pd/NH 2-MIL-101(Cr). ENVIRONMENTAL TECHNOLOGY 2022; 43:1561-1572. [PMID: 33115346 DOI: 10.1080/09593330.2020.1841831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
4-chlorophenol (4-CP) could be rapidly mineralized by using Fenton reaction. However, massive iron sludge will be generated because of the excessive consumption of iron salt and poor recycling of FeIII back to FeII. In this paper, by introducing hydrogen gas and solid catalyst Pd/NH2-MIL-101(Cr) to classic Fenton reactor, the novel system named MHACF-NH2-MIL-101(Cr) was constructed. Much less FeII was needed in this system because the hydrogen could significantly accelerate the regeneration of FeII. The catalyst improved the utilization of H2. The degradation reaction of 4-CP could be driven by using only trace amount of FeII. It could be rapidly degraded by the hydroxyl radical detected by the 4-Hydroxy-benzoicacid which is the oxidative product of benzoic acid and hydroxyl radical. The effects of dosage of ferrous salt, H2O2 and catalyst, H2 flow, Pd content, and initial pH of and concentration of 4-CP aqueous solution were investigated. The robustness and morphology changes of this catalytic material were also systematically analysed. By clarifying the role of this solid MOFs material in this hydrogen-mediated Fenton reaction system, it will provide a new direction for the research and development of advanced oxidation processes with high efficiency and low sludge generation in future.
Collapse
Affiliation(s)
- Jian-Hua Wu
- Jiangsu Key Laboratory of Environmental Science and Engineering, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Yong Li
- Jiangsu Key Laboratory of Environmental Science and Engineering, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Xin Liu
- Jiangsu Key Laboratory of Environmental Science and Engineering, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
- Suzhou Mengli Environmental Technology Co., Ltd., Suzhou, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Environmental Science and Engineering, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - San-Jian Ma
- Jiangsu Key Laboratory of Environmental Science and Engineering, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, People's Republic of China
| | - Juan-Juan You
- Jiangsu Key Laboratory of Environmental Science and Engineering, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Xiao-Qian Zhu
- Jiangsu Key Laboratory of Environmental Science and Engineering, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Xiao-Xin Zhong
- Jiangsu Key Laboratory of Environmental Science and Engineering, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Zi-Xia Lin
- Testing Center, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
12
|
Gao F, Yan R, Shu Y, Cao Q, Zhang L. Strategies for the application of metal-organic frameworks in catalytic reactions. RSC Adv 2022; 12:10114-10125. [PMID: 35424941 PMCID: PMC8968187 DOI: 10.1039/d2ra01175a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 01/20/2023] Open
Abstract
Efficient catalysts play crucial roles in various organic reactions and polymerization. Metal–organic frameworks (MOFs) have the merits of ultrahigh porosity, large surface area, dispersed polymetallic sites and modifiable linkers, which make them promising candidates for catalyzation. This review primarily summarizes the recent research progress on diverse strategies for tailoring MOFs that are endowed with excellent catalytic behavior. These strategies include utilizing MOFs as nanosized reaction channels, metal nodes decorated as catalytic active sites and the modification of ligands or linkers. All these make them highly attractive to various applications, especially in catalyzing organic reactions or polymerizations and they have proven to be effective catalysts for a wide variety of reactions. MOFs are still an evolving field with tremendous prospects; therefore, through the research and development of more modification and regulation strategies, MOFs will realize their wider practical application in the future. Metal–organic frameworks (MOFs) are promising candidates for catalyzation. This review primarily summarized the recent research progress in diverse strategies for tailoring MOFs which are endowed with more excellent catalytic behavior.![]()
Collapse
Affiliation(s)
- Fei Gao
- School of Physics and Materials, Nanchang University Nanchang 330031 China
| | - Runhan Yan
- School of Physics and Materials, Nanchang University Nanchang 330031 China
| | - Yao Shu
- Institute of New Materials, Guangdong Academy of Science Guangzhou 510651 China
| | - Qingbin Cao
- The State Key Laboratory of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Li Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Science Nanchang 330096 China
| |
Collapse
|
13
|
Kee WC, Wong YS, Ong SA, Lutpi NA, Sam ST, Chai A, Eng KM. Photocatalytic Degradation of Sugarcane Vinasse Using ZnO Photocatalyst: Operating Parameters, Kinetic Studies, Phytotoxicity Assessments, and Reusability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:3. [PMID: 34899925 PMCID: PMC8650741 DOI: 10.1007/s41742-021-00382-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 05/05/2023]
Abstract
ABSTRACT Photocatalytic degradation performance is highly related to optimized operating parameters such as initial concentration, pH value, and catalyst dosage. In this study, the impact of various parameters on the photocatalytic degradation of anaerobically digested vinasse (AnVE) has been determined through decolourization and chemical oxygen demand (COD) reduction efficiency using zinc oxide (ZnO) photocatalyst. In this context, the application of photocatalytic degradation in treating sugarcane vinasse using ZnO is yet to be explored. The COD reduction efficiency and decolourization achieved 83.40% and 99.29%, respectively, under the conditions of 250 mg/L initial COD concentration, pH 10, and 2.0 g/L catalyst dosage. The phytotoxicity assessment was also conducted to determine the toxicity of AnVE before and after treatment using mung bean (Vigna radiata). The reduction of root length and the weight of mung bean indicated that the sugarcane vinasse contains enormous amounts of organic substances that affect the plant's growth. The toxicity reduction in the AnVE solution can be proved by UV-Vis absorption spectra. Furthermore, the catalyst recovery achieved 93% in the reusability test. However, the COD reduction efficiency and decolourization were reduced every cycle. It was due to the depletion of the active sites in the catalyst with the adsorption of organic molecules. Thus, it can be concluded that the photocatalytic degradation in the treatment of AnVE was effective in organic degradation, decolorization, toxicity reduction and can be reused after the recovery process.
Collapse
Affiliation(s)
- Wei-Chin Kee
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Yee-Shian Wong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Soon-An Ong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Nabilah Aminah Lutpi
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Sung-Ting Sam
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Audrey Chai
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Kim-Mun Eng
- Kenep Resources (Asia) Sdn. Bhd, No. 31 & 33, Persiaran Jelapang Maju 2, Taman Perindustrian Ringan Jelapang Maju, 30020 Ipoh, Perak Malaysia
| |
Collapse
|
14
|
Nayebi B, Niavol KP, Nayebi B, Kim SY, Nam KT, Jang HW, Varma RS, Shokouhimehr M. Prussian blue-based nanostructured materials: Catalytic applications for environmental remediation and energy conversion. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Sohrabi S, Abasabadi RK, Khodadadi AA, Mortazavi Y, Hoseinzadeh A. In-situ one-step deposition of highly dispersed palladium nanoparticles into zirconium metal–organic framework for selective hydrogenation of furfural. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Wu Y, Li Y, Chen X, Li G, Huang H, Jia L. Schiff Base Conjugated Carbon Nitride-Supported PdCoNi Nanoparticles for Enhanced Formic Acid Dehydrogenation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yiru Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yawen Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xiaofen Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Guifang Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Hongyuan Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Lishan Jia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
17
|
Shen B, Zhang F, Zhao M, Pan Z, Cheng Q, Zhou H. Synthesis and characterization of magnetic solid acid Fe3O4@PEI@SO3H and application for the production of diosgenin by alcoholysis of turmeric saponins. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
19
|
Kargar H, Ardakani AA, Tahir MN, Ashfaq M, Munawar KS. Synthesis, spectral characterization, crystal structure and antibacterial activity of nickel(II), copper(II) and zinc(II) complexes containing ONNO donor Schiff base ligands. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Recent developments of supported and magnetic nanocatalysts for organic transformations: an up-to-date review. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01888-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Mansour W, Fettouhi M, Saleem Q, El Ali B. Robust alkyl‐bridged bis(
N
‐heterocyclic carbene)palladium(II) complexes anchored on Merrifield's resin as active catalysts for the selective synthesis of flavones and alkynones. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Waseem Mansour
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| | - Mohammed Fettouhi
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| | - Qasim Saleem
- Research & Development Center Saudi Aramco Dhahran Saudi Arabia
| | - Bassam El Ali
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| |
Collapse
|
22
|
Eslahi H, Sardarian AR, Esmaeilpour M. Green and sustainable palladium nanomagnetic catalyst stabilized by glucosamine‐functionalized Fe
3
O
4
@SiO
2
nanoparticles for Suzuki and Heck reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hassan Eslahi
- Chemistry Department, College of Sciences Shiraz University Shiraz 71946 84795 Iran
| | - Ali Reza Sardarian
- Chemistry Department, College of Sciences Shiraz University Shiraz 71946 84795 Iran
| | - Mohsen Esmaeilpour
- Chemistry and Process Engineering Department Niroo Research Institute Tehran 1468617151 Iran
| |
Collapse
|
23
|
Zhou M, Liu M, Jiang H, Chen R. Controllable Synthesis of Pd-ZIF-L-GO: The Role of Drying Temperature. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minghui Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Manman Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
24
|
Electrochemical conversion of carbon dioxide over silver-based catalysts: Recent progress in cathode structure and interface engineering. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Aghaee M, Mohammadi K, Hayati P, Ahmadi S, Yazdian F, Gutierrez A, Rouhani S, Msagati TA. Morphology design and control of a novel 3D potassium metal-organic coordination polymer compound: Crystallography, DFT, thermal, and biological studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Akbarian M, Sanchooli E, Oveisi AR, Daliran S. Choline chloride-coated UiO-66-Urea MOF: A novel multifunctional heterogeneous catalyst for efficient one-pot three-component synthesis of 2-amino-4H-chromenes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Coverage-dependent formic acid oxidation reaction kinetics determined by oscillating potentials. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Pang H, Hu Y, Yu J, Gallou F, Lipshutz BH. Water-Sculpting of a Heterogeneous Nanoparticle Precatalyst for Mizoroki-Heck Couplings under Aqueous Micellar Catalysis Conditions. J Am Chem Soc 2021; 143:3373-3382. [PMID: 33630579 DOI: 10.1021/jacs.0c11484] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Powdery, spherical nanoparticles (NPs) containing ppm levels of palladium ligated by t-Bu3P, derived from FeCl3, upon simple exposure to water undergo a remarkable alteration in their morphology leading to nanorods that catalyze Mizoroki-Heck (MH) couplings. Such NP alteration is general, shown to occur with three unrelated phosphine ligand-containing NPs. Each catalyst has been studied using X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and cryogenic transmission electron microscopy (cryo-TEM) analyses. Couplings that rely specifically on NPs containing t-Bu3P-ligated Pd occur under aqueous micellar catalysis conditions between room temperature and 45 °C, and show broad substrate scope. Other key features associated with this new technology include low residual Pd in the product, recycling of the aqueous reaction medium, and an associated low E Factor. Synthesis of the precursor to galipinine, a member of the Hancock family of alkaloids, is suggestive of potential industrial applications.
Collapse
Affiliation(s)
- Haobo Pang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Yuting Hu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Julie Yu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
29
|
Mehrabadi Z, Ahmadi S, Gutierrez A, Karimi M, Hayati P, Sharafi-Badr P, Moaser AG, Rostamnia S, Hasanzadeh A, Khaksar S, Rouhani S, Msagati TA. Morphologically controlled eco-friendly synthesis of a novel 2D Hg(II) metal-organic coordination polymer: Biological activities and DFT analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Rana MS, AlHumaidan FS, Bouresli R, Navvamani R. Guard-bed catalyst: Impact of textural properties on catalyst stability and deactivation rate. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
|
32
|
Feng X, Song Y, Chen JS, Xu Z, Dunn SJ, Lin W. Rational Construction of an Artificial Binuclear Copper Monooxygenase in a Metal–Organic Framework. J Am Chem Soc 2021; 143:1107-1118. [DOI: 10.1021/jacs.0c11920] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xuanyu Feng
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Yang Song
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Justin S. Chen
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Soren J. Dunn
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
33
|
Rani L, Kaushal J, Srivastav AL, Mahajan P. A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44771-44796. [PMID: 32975757 DOI: 10.1007/s11356-020-10738-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Effective and substantial remediation of contaminants especially heavy metals from water is still a big challenge in terms of both environmental and biological perspectives because of their adverse effects on the human health. Many techniques including adsorption, ion exchange, co-precipitation, chemical reduction, ultrafiltration, etc. are reported for eliminating heavy metal ions from the water. However, adsorption has preferred because of its simple and easy handlings. Several types of adsorbents are observed and documented well for the purpose. Recently, highly porous metal-organic frameworks (MOFs) were developed by incorporating metals and organic ligands together and claimed as potent adsorbents for the remediation of highly toxic heavy metals from the aqueous solutions due to their unique features like greater surface area, high chemical stability, green and reuse material, etc. In this review, the authors discussed systematically some recent developments about secure MOFs to eliminate the toxic metals such as arsenic (both arsenite and arsenate), chromium(VI), cadmium (Cd), mercury (Hg) and lead (Pb). MOFs are observed as the most efficient adsorbents with greater selectivity as well as high adsorption capacity for metallic contamination. Graphical abstract.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Chitkara University School of Basic Sciences, Chitkara University, Baddi, Himachal Pradesh, India
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Baddi, Himachal Pradesh, India
| | - Pooja Mahajan
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
34
|
Ahmed HB, Emam HE. Environmentally exploitable biocide/fluorescent metal marker carbon quantum dots. RSC Adv 2020; 10:42916-42929. [PMID: 35514886 PMCID: PMC9058413 DOI: 10.1039/d0ra06383e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/08/2020] [Indexed: 11/21/2022] Open
Abstract
Carbon quantum dots are currently investigated to act as safe/potent alternatives for metal-based nanostructures to play the role of probes for environmental applications owing to their low toxicity, low cost, chemical inertness, biocompatibility and outstanding optical properties. The synthesis of biocide/fluorescent metal marker carbon quantum dots with hydrophilic character was performed via a quite simple and green technique. The natural biopolymer that was used in this study for the synthesis of carbon quantum dots is fragmented under strong alkaline conditions. Afterwards, under hydrothermal conditions, re-polymerization, aromatization and subsequent oxidation, the carbonic nanostructures were grown and clustered. Dialysis of the so-produced carbonic nanostructures was carried out to obtain highly purified/mono-dispersed carbon quantum dots with a size distribution of 1.5-6.5 nm. The fluorescence intensity of the synthesized carbon quantum dots under hydrothermal conditions for 3 h was affected by dialysis, however, the fluorescence intensity was significantly increased ca. 20 times. The synthesized carbon quantum dots were exploited as fluorescent markers in the detection of Zn2+ and Hg2+. The prepared carbon quantum dots also exhibited excellent antimicrobial potency against Bacillus cereus, Escherichia coli and Candida albicans. The detected minimal inhibitory concentration for the dialyzed CQDs towards the tested pathogens was 350-450 μL mL-1. The presented approach is a simple and green technique for the scaled-up synthesis of biocide/fluorescent marker carbon quantum dots instead of metal-based nanostructures for environmental applications, without using toxic chemicals or organic solvents.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University Ain-Helwan Cairo 11795 Egypt +201097411189
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Industries Research Division, National Research Centre, Scopus Affiliation ID 60014618 33 EL Buhouth St., Dokki Giza 12622 Egypt +201008002487
| |
Collapse
|
35
|
Bhattacharjee S, Shaikh AA, Ahn WS. Heterogeneous Aza-Michael Addition Reaction by the Copper-Based Metal–Organic Framework (CuBTC). Catal Letters 2020. [DOI: 10.1007/s10562-020-03459-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Krishnaveni T, Lakshmi K, Kaveri M, Kadirvelu K. Chemoselective transfer hydrogenation of aromatic and heterocyclic aldehydes by green chemically prepared cobalt oxide nanoparticles. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Sun Q, Wang N, Xu Q, Yu J. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001818. [PMID: 32638425 DOI: 10.1002/adma.202001818] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 05/11/2023]
Abstract
Hydrogen has emerged as an environmentally attractive fuel and a promising energy carrier for future applications to meet the ever-increasing energy challenges. The safe and efficient storage and release of hydrogen remain a bottleneck for realizing the upcoming hydrogen economy. Hydrogen storage based on liquid-phase chemical hydrogen storage materials is one of the most promising hydrogen storage techniques, which offers considerable potential for large-scale practical applications for its excellent safety, great convenience, and high efficiency. Recently, nanopore-supported metal nanocatalysts have stood out remarkably in boosting the field of liquid-phase chemical hydrogen storage. Herein, the latest research progress in catalytic hydrogen production is summarized, from liquid-phase chemical hydrogen storage materials, such as formic acid, ammonia borane, hydrous hydrazine, and sodium borohydride, by using metal nanocatalysts confined within diverse nanoporous materials, such as metal-organic frameworks, porous carbons, zeolites, mesoporous silica, and porous organic polymers. The state-of-the-art synthetic strategies and advanced characterizations for these nanocatalysts, as well as their catalytic performances in hydrogen generation, are presented. The limitation of each hydrogen storage system and future challenges and opportunities on this subject are also discussed. References in related fields are provided, and more developments and applications to achieve hydrogen energy will be inspired.
Collapse
Affiliation(s)
- Qiming Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
38
|
Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, Ehsani A, Kiaei Z, Torkzaban H, Ershadi M, Kholghi Eshkalak S, Haddadi-Asl V, Chinnappan A, Ramakrishna S. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213441] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Anchoring Pd-nanoparticles on dithiocarbamate- functionalized SBA-15 for hydrogen generation from formic acid. Sci Rep 2020; 10:18188. [PMID: 33097804 PMCID: PMC7584604 DOI: 10.1038/s41598-020-75369-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/11/2020] [Indexed: 11/09/2022] Open
Abstract
Hydrogen (H2) generation from natural biological metabolic products has remained a huge challenge for the energy arena. However, designing a catalytic system with complementary properties including high surface area, high loading, and easy separation offers a promising route for efficient utilization of nanoreactors for prospective H2 suppliers to a fuel cell. Herein, selective dehydrogenation of formic acid (FA) as a natural biological metabolic product to H2 and CO2 gas mixtures has been studied by supporting ultrafine palladium nanoparticles on organosulfur-functionalized SBA-15 nanoreactor under ultrasonic irradiation. The effects of the porous structure as a nanoreactor, and organosulfur groups, which presented around the Pd due to their prominent roles in anchoring and stabilizing of Pd NPs, studied as a superior catalyst for selective dehydrogenation of FA. Whole catalytic systems were utilized in ultrasonic irradiation in the absence of additives to provide excellent TOF/TON values. It was found that propose catalyst is a greener, recyclable, and more suitable option for the large-scale application and provide some new insights into stabilization of ultra-fine metal nanoparticle for a variety of applications.
Collapse
|
40
|
Alamgholiloo H, Rostamnia S, Pesyan NN. Anchoring and stabilization of colloidal PdNPs on exfoliated bis-thiourea modified graphene oxide layers with super catalytic activity in water and PEG. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125130] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Effect of molar ration of Ti/Ligand on the synthesis of MIL-125(Ti) and its adsorption and photocatalytic properties. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Selective catalytic generation of hydrogen over covalent organic polymer supported Pd nanoparticles (COP-Pd). MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Guo L, Meng F, Zeng Y, Jia Y, Qian F, Zhang S, Zhong Q. Catalytic ozonation of NO into HNO3 with low concentration ozone over MnO -CeO2/TiO2: Two-phase synergistic effect of TiO2. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Synthesis and Structural Elucidation for New Schiff Base Complexes; Conductance, Conformational, MOE-Docking and Biological Studies. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01505-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Facile Ultrasonic Synthesis of Zirconium Based Porphyrinic MOFs for Enhanced Adsorption Performance Towards Anionic and Mixed Dye Solutions. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01704-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Moaser AG, Ahadi A, Rouhani S, Mamba BB, Msagati TAM, Rostamnia S, Kavetskyy T, Dugheri S, Khaksar S, Hasanzadeh A, Shokouhimehr M. Curbed of molybdenum oxido-diperoxido complex on ionic liquid body of mesoporous Bipy-PMO-IL as a promising catalyst for selective sulfide oxidation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113388] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Zhang K, Cha JH, Jeon SY, Kirlikovali KO, Ostadhassan M, Rasouli V, Farha OK, Jang HW, Varma RS, Shokouhimehr M. Pd modified prussian blue frameworks: Multiple electron transfer pathways for improving catalytic activity toward hydrogenation of nitroaromatics. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110967] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Wang X, Feng Z, Liu J, Huang Z, Zhang J, Mai J, Fang Y. In-situ preparation of molybdenum trioxide-silver composites for the improved photothermal catalytic performance of cyclohexane oxidation. J Colloid Interface Sci 2020; 580:377-388. [PMID: 32688127 DOI: 10.1016/j.jcis.2020.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/25/2023]
Abstract
The selective catalytic oxidation of cyclohexane has important theoretical and practical application value. However, high conversion rate and high selectivity are difficult to achieve simultaneously by conventional catalytic system. In this work, blue molybdenum trioxide (MoO3) nanorods with oxygen vacancies were prepared by hydrothermal method using hydrated molybdic acid as a precursor under the reduction of formic acid, and in-situ produced MoO3-silver (MoO3-Ag) composites were further used in the photothermal catalytic oxidation of cyclohexane with high conversion and high selectivity using dry air as oxidant. The results showed that the best conversion rate of cyclohexanone and cyclohexanol (KA oil) could reach 8.6% with the selectivity of 99.0%. The excellent catalytic performance of MoO3-Ag composites can be attributed to the significantly increased visible and near-infrared light absorption caused by the plasma resonance effect of Ag nanoparticles and oxygen vacancies, and the prevented charge recombination by MoO3-Ag Schottky heterojunction. This work provides new reference solutions for the design and preparation of high-performance photothermal catalysts for the selective oxidation of hydrocarbons.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhen Feng
- Central and Southern China Municipal Engineering Design & Research Institute Co., Ltd., Wuhan 430010, China
| | - Jincheng Liu
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhilin Huang
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinhong Zhang
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jijin Mai
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanxiong Fang
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
49
|
Yin Y, Yang H, Xin Z, Zhang C, Xu G, Wang Y, Dong G, Zhang X. β-mCoPc/Cu-BDC composites for oxidation of benzyl alcohol to benzaldehyde. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1784406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yanbing Yin
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Hang Yang
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Zhaosong Xin
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Chengli Zhang
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Guopeng Xu
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Yumeng Wang
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Guohua Dong
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Xun Zhang
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| |
Collapse
|
50
|
Palladium(II) complexes comprising naphthylamine and biphenylamine based Schiff base ligands: Synthesis, structure and catalytic activity in Suzuki coupling reactions. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|