1
|
Sheldon RA. Waste Valorization in a Sustainable Bio-Based Economy: The Road to Carbon Neutrality. Chemistry 2024; 30:e202402207. [PMID: 39240026 DOI: 10.1002/chem.202402207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 09/07/2024]
Abstract
The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis. The pressing need, driven by climate change mitigation, for a drastic reduction in greenhouse gas (GHG) emissions, has precipitated an energy transition based on decarbonization of energy and defossilization of organic chemicals production. The latter involves waste biomass and/or waste CO2 as the feedstock and green electricity generated using solar, wind, hydroelectric or nuclear energy. The use of waste polysaccharides as feedstocks will underpin a renaissance in carbohydrate chemistry with pentoses and hexoses as base chemicals and bio-based solvents and polymers as environmentally friendly downstream products. The widespread availability of inexpensive electricity and solar energy has led to increasing attention for electro(bio)catalysis and photo(bio)catalysis which in turn is leading to myriad innovations in these fields.
Collapse
Affiliation(s)
- Roger A Sheldon
- Department of Biotechnology, Delft University of Technology, Netherlands
- Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Guajardo N, Schrebler RA. Upstream and Downstream Bioprocessing in Enzyme Technology. Pharmaceutics 2023; 16:38. [PMID: 38258049 PMCID: PMC10818583 DOI: 10.3390/pharmaceutics16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/24/2024] Open
Abstract
The development of biotransformation must integrate upstream and downstream processes. Upstream bioprocessing will influence downstream bioprocessing. It is essential to consider this because downstream processes can constitute the highest cost in bioprocessing. This review comprehensively overviews the most critical aspects of upstream and downstream bioprocessing in enzymatic biocatalysis. The main upstream processes discussed are enzyme production, enzyme immobilization methodologies, solvent selection, and statistical optimization methodologies. The main downstream processes reviewed in this work are biocatalyst recovery and product separation and purification. The correct selection and combination of upstream and downstream methodologies will allow the development of a sustainable and highly productive system.
Collapse
Affiliation(s)
- Nadia Guajardo
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | | |
Collapse
|
3
|
Ramos-Villaseñor JM, Sotelo-Gil J, Rodil SE, Frontana-Uribe BA. Dihydrolevoglucosenone (Cyrene™), a new possibility of an environmentally compatible solvent in synthetic organic electrochemistry. Faraday Discuss 2023; 247:182-194. [PMID: 37551421 DOI: 10.1039/d3fd00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Dihydrolevoglucosenone (DLG or Cyrene™) solvent is a green dipolar solvent produced from cellulose waste. Different studies have demonstrated that it can successfully replace dipolar solvents, such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA) and N-methylpyrrolidinone (NMP), in a variety of chemical reactions. In this paper, the first application of DLG in organic electrosynthesis is described, with results of its use in the electrochemical reduction of benzophenone derivatives (ca. E = -1.75 V vs. Ag/AgCl), as a greener alternative to other dipolar solvents with environmental concerns. Conductivity measurements show that the solvent presents conductivity and viscosity limitations that can be overcome by using EtOH as a cosolvent. The DLG/EtOH mixture resulted in a convenient solvent to carry out galvanostatic electroreductions of starting materials that exhibit high potential value. Furthermore, the reaction pathway (1e- or 2e-) was found to be dependent on the supporting electrolyte used; TBABF4 favored 2e- reduction to the corresponding alcohol (52-85%), whereas LiClO4 promoted C-C pinacolic coupling (47-70%).
Collapse
Affiliation(s)
- Jose Manuel Ramos-Villaseñor
- Centro Conjunto de Investigación en Química Sustentable UNAEM-UNAM, Toluca, 50200, Estado de México, Mexico.
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior. Ciudad Universitaria, Coyoacán, 04510 CDMX, Mexico
| | - Jessica Sotelo-Gil
- Centro Conjunto de Investigación en Química Sustentable UNAEM-UNAM, Toluca, 50200, Estado de México, Mexico.
| | - Sandra E Rodil
- Instituto de Investigación en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 CDMX, Mexico
| | - Bernardo Antonio Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable UNAEM-UNAM, Toluca, 50200, Estado de México, Mexico.
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior. Ciudad Universitaria, Coyoacán, 04510 CDMX, Mexico
| |
Collapse
|
4
|
Adam J, Singh M, Abduvakhidov A, Del Sorbo MR, Feoli C, Hussain F, Kaur J, Mirabella A, Rossi M, Sasso A, Valadan M, Varra M, Rusciano G, Altucci C. The Effectiveness of Cyrene as a Solvent in Exfoliating 2D TMDs Nanosheets. Int J Mol Sci 2023; 24:10450. [PMID: 37445624 DOI: 10.3390/ijms241310450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The pursuit of environmentally friendly solvents has become an essential research topic in sustainable chemistry and nanomaterial science. With the need to substitute toxic solvents in nanofabrication processes becoming more pressing, the search for alternative solvents has taken on a crucial role in this field. Additionally, the use of toxic, non-economical organic solvents, such as N-methyl-2 pyrrolidone and dimethylformamide, is not suitable for all biomedical applications, even though these solvents are often considered as the best exfoliating agents for nanomaterial fabrication. In this context, the success of producing two-dimensional transition metal dichalcogenides (2D TMDs), such as MoS2 and WS2, with excellent captivating properties is due to the ease of synthesis based on environment-friendly, benign methods with fewer toxic chemicals involved. Herein, we report for the first time on the use of cyrene as an exfoliating agent to fabricate monolayer and few-layered 2D TMDs with a versatile, less time-consuming liquid-phase exfoliation technique. This bio-derived, aprotic, green and eco-friendly solvent produced a stable, surfactant-free, concentrated 2D TMD dispersion with very interesting features, as characterized by UV-visible and Raman spectroscopies. The surface charge and morphology of the fabricated nanoflakes were analyzed using ς-potential and scanning electron microscopy. The study demonstrates that cyrene is a promising green solvent for the exfoliation of 2D TMD nanosheets with potential advantages over traditional organic solvents. The ability to produce smaller-sized-especially in the case of WS2 as compared to MoS2-and mono/few-layered nanostructures with higher negative surface charge values makes cyrene a promising candidate for various biomedical and electronic applications. Overall, the study contributes to the development of sustainable and environmentally friendly methods for the production of 2D nanomaterials for various applications.
Collapse
Affiliation(s)
- Jaber Adam
- Department of Physics "Ettore Pancini", University of Naples "Federico II", 80131 Naples, Italy
| | - Manjot Singh
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
- Italy National Institute of Nuclear Physics, Naples Section, 80126 Naples, Italy
| | | | - Maria Rosaria Del Sorbo
- Department of Precision Medicine, Università degli Studi della Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Chiara Feoli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Fida Hussain
- Department of Physics "Ettore Pancini", University of Naples "Federico II", 80131 Naples, Italy
| | - Jasneet Kaur
- Department of Physics "Ettore Pancini", University of Naples "Federico II", 80131 Naples, Italy
| | - Antonia Mirabella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Manuela Rossi
- Department of Earth Science, Environment and Resources, University of Naples "Federico II", 80131 Naples, Italy
- Istituto di Cristallografia-CNR, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Antonio Sasso
- Department of Physics "Ettore Pancini", University of Naples "Federico II", 80131 Naples, Italy
| | - Mohammadhassan Valadan
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
- Italy National Institute of Nuclear Physics, Naples Section, 80126 Naples, Italy
| | - Michela Varra
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Giulia Rusciano
- Department of Physics "Ettore Pancini", University of Naples "Federico II", 80131 Naples, Italy
| | - Carlo Altucci
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
- Italy National Institute of Nuclear Physics, Naples Section, 80126 Naples, Italy
- ISASI-CNR, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", 80078 Naples, Italy
| |
Collapse
|
5
|
Miele M, Pillari V, Pace V, Alcántara AR, de Gonzalo G. Application of Biobased Solvents in Asymmetric Catalysis. Molecules 2022; 27:molecules27196701. [PMID: 36235236 PMCID: PMC9570574 DOI: 10.3390/molecules27196701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The necessity of more sustainable conditions that follow the twelve principles of Green Chemistry have pushed researchers to the development of novel reagents, catalysts and solvents for greener asymmetric methodologies. Solvents are in general a fundamental part for developing organic processes, as well as for the separation and purification of the reaction products. By this reason, in the last years, the application of the so-called green solvents has emerged as a useful alternative to the classical organic solvents. These solvents must present some properties, such as a low vapor pressure and toxicity, high boiling point and biodegradability, and must be obtained from renewable sources. In the present revision, the recent application of these biobased solvents in the synthesis of optically active compounds employing different catalytic methodologies, including biocatalysis, organocatalysis and metal catalysis, will be analyzed to provide a novel tool for carrying out more ecofriendly organic processes.
Collapse
Affiliation(s)
- Margherita Miele
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
| | - Veronica Pillari
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
| | - Vittorio Pace
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| | - Gonzalo de Gonzalo
- Department of Organic Chemistry, University of Seville, c/ Profesor García González 1, 41014 Seville, Spain
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| |
Collapse
|
6
|
Extraction of low molecular weight polyhydroxyalkanoates from mixed microbial cultures using bio-based solvents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
van Schie MMCH, Spöring JD, Bocola M, Domínguez de María P, Rother D. Applied biocatalysis beyond just buffers - from aqueous to unconventional media. Options and guidelines. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:3191-3206. [PMID: 34093084 PMCID: PMC8111672 DOI: 10.1039/d1gc00561h] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 05/09/2023]
Abstract
In nature, enzymes conventionally operate under aqueous conditions. Because of this, aqueous buffers are often the choice for reaction media when enzymes are applied in chemical synthesis. However, to meet the demands of an industrial application, due to the poor water solubility of many industrially relevant compounds, an aqueous reaction system will often not be able to provide sufficient substrate loadings. A switch to a non-aqueous solvent system can provide a solution, which is already common for lipases, but more challenging for biocatalysts from other enzyme classes. The choices in solvent types and systems, however, can be overwhelming. Furthermore, some engineering of the protein structure of biocatalyst formulation is required. In this review, a guide for those working with biocatalysts, who look for a way to increase their reaction productivity, is presented. Examples reported clearly show that bulk water is not necessarily required for biocatalytic reactions and that clever solvent systems design can support increased product concentrations thereby decreasing waste formation. Additionally, under these conditions, enzymes can also be combined in cascades with other, water-sensitive, chemical catalysts. Finally, we show that the application of non-aqueous solvents in biocatalysis can actually lead to more sustainable processes. At the hand of flowcharts, following simple questions, one can quickly find what solvent systems are viable.
Collapse
Affiliation(s)
- Morten M C H van Schie
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Jan-Dirk Spöring
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH 52425 Jülich Germany
- Aachen Biology and Biotechnology, RWTH Aachen University 52056 Aachen Germany
| | - Marco Bocola
- Enzymaster Deutschland GmbH Neusser Str. 39 40219 Düsseldorf Germany
| | | | - Dörte Rother
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH 52425 Jülich Germany
- Aachen Biology and Biotechnology, RWTH Aachen University 52056 Aachen Germany
| |
Collapse
|
8
|
Affiliation(s)
- Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
9
|
Solvent role in the lipase-catalysed esterification of cinnamic acid and derivatives. Optimisation of the biotransformation conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Guajardo N, Domínguez de María P. Production of Bulk Chemicals with Biocatalysis: Drivers and Challenges Reflected in Recent Industrial Granted Patents (2015-2020). Molecules 2021; 26:molecules26030736. [PMID: 33572610 PMCID: PMC7867018 DOI: 10.3390/molecules26030736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
The application of biocatalysis and White Biotechnology tools in chemical areas concerning the production of bulk compounds and other related low-added value products (with high volumes) has been gaining importance in recent years. The expected drivers of biocatalysis for these sectors are energy savings, regioselectivity (leading to cleaner products), the possibility of using thermolabile substrates, as well as the generation of less by-products and manageable wastes. This paper explores some recent industrial granted patents related to biocatalysis and bulk chemicals. Several patents have been identified in fields such as biodiesel and esterification reactions, and sugar or furan chemistry. Overall, innovative strategies involve the identification of novel enzymes, the set-up of improved immobilization methods, as well as novel reactor designs that can offer improved performances and economics. The reported examples indicate that biocatalysis can certainly offer opportunities for these areas as well, far from the typical pharmaceutical and fine chemical applications often reported in the literature.
Collapse
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Santiago de Chile 8940000, Chile
- Correspondence:
| | | |
Collapse
|
11
|
Abranches DO, Benfica J, Shimizu S, Coutinho JAP. The Perspective of Cooperative Hydrotropy on the Solubility in Aqueous Solutions of Cyrene. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dinis O. Abranches
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jordana Benfica
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - João A. P. Coutinho
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Abranches DO, Benfica J, Shimizu S, Coutinho JAP. Solubility Enhancement of Hydrophobic Substances in Water/Cyrene Mixtures: A Computational Study. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dinis O. Abranches
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jordana Benfica
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - João A. P. Coutinho
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Biocatalyzed Redox Processes Employing Green Reaction Media. Molecules 2020; 25:molecules25133016. [PMID: 32630322 PMCID: PMC7411633 DOI: 10.3390/molecules25133016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023] Open
Abstract
The application of biocatalysts to perform reductive/oxidative chemical processes has attracted great interest in recent years, due to their environmentally friendly conditions combined with high selectivities. In some circumstances, the aqueous buffer medium normally employed in biocatalytic procedures is not the best option to develop these processes, due to solubility and/or inhibition issues, requiring biocatalyzed redox procedures to circumvent these drawbacks, by developing novel green non-conventional media, including the use of biobased solvents, reactions conducted in neat conditions and the application of neoteric solvents such as deep eutectic solvents.
Collapse
|
14
|
Fadlallah S, Peru AAM, Longé L, Allais F. Chemo-enzymatic synthesis of a levoglucosenone-derived bi-functional monomer and its ring-opening metathesis polymerization in the green solvent Cyrene™. Polym Chem 2020. [DOI: 10.1039/d0py01471k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The levoglucosenone-based norbornenes family was extended to include a new bi-functional methacrylate monomer that, upon ROMP in Cyrene™, leads to polymers with pendent methacrylate moieties which can be modified by post-polymerization reactions.
Collapse
Affiliation(s)
- Sami Fadlallah
- URD Agro-Biotechnologies Industrielles (ABI)
- CEBB
- AgroParisTech
- Pomacle
- France
| | | | - Lionel Longé
- URD Agro-Biotechnologies Industrielles (ABI)
- CEBB
- AgroParisTech
- Pomacle
- France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI)
- CEBB
- AgroParisTech
- Pomacle
- France
| |
Collapse
|