1
|
Dhawale SC, Digraskar RV, Ghule AV, Sathe BR. Noble metal-free CZTS electrocatalysis: synergetic characteristics and emerging applications towards water splitting reactions. Front Chem 2024; 12:1394191. [PMID: 38882214 PMCID: PMC11177786 DOI: 10.3389/fchem.2024.1394191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024] Open
Abstract
This review provides a comprehensive overview of the production and modification of CZTS nanoparticles (NPs) and their application in electrocatalysis for water splitting. Various aspects, including surface modification, heterostructure design with carbon nanostructured materials, and tunable electrocatalytic studies, are discussed. A key focus is the synthesis of small CZTS nanoparticles with tunable reactivity, emphasizing the sonochemical method's role in their formation. Despite CZTS's affordability, it often exhibits poor hydrogen evolution reaction (HER) behavior. Carbon materials like graphene, carbon nanotubes, and C60 are highlighted for their ability to enhance electrocatalytic activity due to their unique properties. The review also discusses the amine functionalization of graphene oxide/CZTS composites, which enhances overall water splitting performance. Doping with non-noble metals such as Fe, Co., and Ni is presented as an effective strategy to improve catalytic activity. Additionally, the synthesis of heterostructures consisting of CZTS nanoparticles attached to MoS2-reduced graphene oxide (rGO) hybrids is explored, showing enhanced HER activity compared to pure CZTS and MoS2. The growing demand for energy and the need for efficient renewable energy sources, particularly hydrogen generation, are driving research in this field. The review aims to demonstrate the potential of CZTS-based electrocatalysts for high-performance and cost-effective hydrogen generation with low environmental impact. Vacuum-based and non-vacuum-based methods for fabricating CZTS are discussed, with a focus on simplicity and efficiency. Future developments in CZTS-based electrocatalysts include enhancing activity and stability, improving charge transfer mechanisms, ensuring cost-effectiveness and scalability, increasing durability, integrating with renewable energy sources, and gaining deeper insight into reaction processes. Overall, CZTS-based electrocatalysts show great promise for sustainable hydrogen generation, with ongoing research focused on improving performance and advancing their practical applications.
Collapse
Affiliation(s)
- Somnath C Dhawale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra, India
| | - Renuka V Digraskar
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra, India
- Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra, India
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Anil V Ghule
- Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Bhaskar R Sathe
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra, India
- Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra, India
| |
Collapse
|
2
|
Dai HH, Cai X, Liu ZH, Xia RZ, Zhao YH, Liu YZ, Yang M, Li PH, Huang XJ. Ion-Electron Transduction Layer of the SnS 2-MoS 2 Heterojunction to Elevate Superior Interface Stability for All-Solid Sodium-Ion Selective Electrode. ACS Sens 2024; 9:415-423. [PMID: 38154098 DOI: 10.1021/acssensors.3c02185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The high selectivity and fast ion response of all-solid sodium ion selective electrodes were widely applied in human sweat analysis. However, the potential drift due to insufficient interfacial capacitance leads to the deterioration of its stability and ultimately affects the potential accuracy of ion analysis. Designing a novel ion-electron transduction layer between the electrode and the ion selective membrane is an effective method to stabilize the interfacial potential. Herein, the SnS2-MoS2 heterojunction material was constructed by doping Sn in MoS2 nanosheets and used as the ion electron transduction layers of an all-solid sodium ion selective electrode for the first time, achieving the stable and efficient detection of Na+ ions. The proposed electrode exhibited a Nernst slope of 57.86 mV/dec for the detection of Na+ ions with a detection limit of 10-5.7 M in the activity range of 10-6-10-1 M. Via the electronic interaction at the heterojunction interfaces between SnS2 and MoS2 materials, the micro-nanostructure of the SnS2-MoS2 heterojunction was changed and SnS2-MoS2 as the ion-electron transduction layer acquired excellent capacitance (699 μF) and hydrophobicity (132°), resulting in a long-term potential stability of 1.37 μV/h. It was further proved that the large capacitance and high hydrophobicity of the ion-electron transduction layer are primary reasons for the excellent stability of the all-solid sodium ion selective electrode toward Na+ ions.
Collapse
Affiliation(s)
- Hai-Hua Dai
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Hao Liu
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Rui-Ze Xia
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Zhi Liu
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Ma G, Pan Z, Liu Y, Lu Y, Tao Y. Hydrothermal Synthesis of MoS 2/SnS 2 Photocatalysts with Heterogeneous Structures Enhances Photocatalytic Activity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4436. [PMID: 37374619 DOI: 10.3390/ma16124436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
The use of solar photocatalysts to degrade organic pollutants is not only the most promising and efficient strategy to solve pollution problems today but also helps to alleviate the energy crisis. In this work, MoS2/SnS2 heterogeneous structure catalysts were prepared by a facile hydrothermal method, and the microstructures and morphologies of these catalysts were investigated using XRD, SEM, TEM, BET, XPS and EIS. Eventually, the optimal synthesis conditions of the catalysts were obtained as 180 °C for 14 h, with the molar ratio of molybdenum to tin atoms being 2:1 and the acidity and alkalinity of the solution adjusted by hydrochloric acid. TEM images of the composite catalysts synthesized under these conditions clearly show that the lamellar SnS2 grows on the surface of MoS2 at a smaller size; high-resolution TEM images show lattice stripe distances of 0.68 nm and 0.30 nm for the (002) plane of MoS2 and the (100) plane of SnS2, respectively. Thus, in terms of microstructure, it is confirmed that the MoS2 and SnS2 in the composite catalyst form a tight heterogeneous structure. The degradation efficiency of the best composite catalyst for methylene blue (MB) was 83.0%, which was 8.3 times higher than that of pure MoS2 and 16.6 times higher than that of pure SnS2. After four cycles, the degradation efficiency of the catalyst was 74.7%, indicating a relatively stable catalytic performance. The increase in activity could be attributed to the improved visible light absorption, the increase in active sites introduced at the exposed edges of MoS2 nanoparticles and the construction of heterojunctions opening up photogenerated carrier transfer pathways and effective charge separation and transfer. This unique heterostructure photocatalyst not only has excellent photocatalytic performance but also has good cycling stability, which provides a simple, convenient and low-cost method for the photocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Guansheng Ma
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhigang Pan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China
| | - Yunfei Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China
| | - Yinong Lu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China
| | - Yaqiu Tao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China
| |
Collapse
|
4
|
Two-Dimensional ZnS/SnS 2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study. MATERIALS 2022; 15:ma15113786. [PMID: 35683085 PMCID: PMC9181711 DOI: 10.3390/ma15113786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023]
Abstract
Direct Z-scheme photocatalysts have attracted extensive attention due to their strong redox ability and efficient separation of photogenerated electron-hole pairs. In this study, we constructed two types of ZnS/SnS2 heterojunctions with different stacking models of ZnS and SnS2 layers, and investigated their structures, stabilities, and electronic and optical properties. Both types of heterojunctions are stable and are direct Z-scheme photocatalysts with band gaps of 1.87 eV and 1.79 eV, respectively. Furthermore, their oxidation and reduction potentials straddle the redox potentials of water, which makes them suitable as photocatalysts for water splitting. The built-in electric field at the heterojunction interface improves the separation of photogenerated electron-hole pairs, thus enhancing their photocatalytic efficiency. In addition, ZnS/SnS2 heterojunctions have higher carrier mobilities and light absorption intensities than ZnS and SnS2 monolayers. Therefore, the ZnS/SnS2 heterojunction has a broad application prospect as a direct Z-scheme visible-light-driven photocatalyst for overall water splitting.
Collapse
|
5
|
Huang K, Yang L, Gao Y, Li S, Zhang H, Huang F. Super-stable SnO 2/MoS 2 enhanced the electrocatalytic hydrogen evolution in acidic environments. RSC Adv 2022; 12:23503-23512. [PMID: 36090447 PMCID: PMC9382654 DOI: 10.1039/d2ra03627d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
We designed a superstable SnO2/MoS2 coupled nanosheet array on carbon cloth, which exhibited interface engineering of SnO2/MoS2 with fast electron transfer and proton adsorption boosting electrocatalytic hydrogen evolution in acidic environments.
Collapse
Affiliation(s)
- Kun Huang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Lan Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Yihong Gao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Shikuo Li
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Hui Zhang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Fangzhi Huang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
6
|
Wang B, Chen M, Lv J, Xu G, Shu X, Wu YC. Improved hydrogen evolution with SnS 2 quantum dot-incorporated black Si photocathode. Dalton Trans 2021; 50:13329-13336. [PMID: 34608916 DOI: 10.1039/d1dt02048j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Black silicon (bSi), possessing appealing light-trapping properties and large specific surface area, ranks high among many other photocathode materials. However, the insufficient dynamics towards HER seriously bother black Si. Herein, a novel photoelectrode with ultrasmall size tin sulfide quantum dot (SnS2 QD) incorporated black silicon was employed. Nanosized SnS2 possesses numerous active sites for electrochemical reactions. Impressively, benefiting from SnS2 QDs, the downward band bending of the Si Fermi level at the interface of electrolyte becomes higher, which remarkably suppresses the recombination of photo-generated carriers, thereby facilitating the participation of photo-generated electrons in PEC-HER. As a result, the thus-designed SnS2/bSi reveals an exceptional PEC-HER activity with a positive onset potential of 0.235 V vs. reversible hydrogen electrode (RHE), a high photocurrent of 1.23 mA cm-2 at 0 V vs. RHE, and long-term stability. Besides, the saturated photocurrent of ∼41 mA cm-2 is achieved at about -0.51 V vs. RHE.
Collapse
Affiliation(s)
- Bo Wang
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China.
| | - Ming Chen
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China.
| | - Jun Lv
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China
| | - Guangqing Xu
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China
| | - Xia Shu
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China
| | - Yu-Cheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China
| |
Collapse
|
7
|
Yao S, Wu C, Li D, Gao B, Wen X, Liu Z, Li W. Coupling SnS 2 and rGO aerogel to CuS for enhanced light-assisted OER electrocatalysis. Dalton Trans 2021; 50:5530-5539. [PMID: 33908949 DOI: 10.1039/d1dt00271f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to harvest more light wavelengths to improve the light-assisted electrochemical water splitting capacity, we developed a novel heterostructure of three-dimensional (3D) flower-like CuS architecture with accompanying SnS2 nanoparticles and reduced graphene oxide (rGO) aerogel for outstanding light-assisted electrocatalytic OER performance and good stability. The excellent catalytic kinetics, effective capturing of visible light, and rapid charge transfer of the CuS/SnS2/rGO (CSr) heterostructure were demonstrated. The overpotential (264 mV@10 mA cm-2) under light-assisted conditions is 20% lower than that under light-chopped conditions. SnS2 can harvest more light wavelengths and this boosts its intrinsic activity. However, with the increase of the SnS2 content, the OER activity decreases. The combination of the CS heterostructure and the rGO conductive aerogel achieves rapid charge transfer. Furthermore, the possible mechanism of the light-assisted electrocatalytic OER was also proposed. Overall, this work provides new insights into the simple and scalable fabrication of a highly efficient, low-cost, and stable non-noble-metal-based electrocatalyst.
Collapse
Affiliation(s)
- Shujuan Yao
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Chuanrui Wu
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Danyang Li
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Bo Gao
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Xiaoxu Wen
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Ziyi Liu
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Wenzhi Li
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| |
Collapse
|
8
|
Ultra-Thin SnS 2-Pt Nanocatalyst for Efficient Hydrogen Evolution Reaction. NANOMATERIALS 2020; 10:nano10122337. [PMID: 33255608 PMCID: PMC7760803 DOI: 10.3390/nano10122337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
Transition-metal dichalcogenides (TMDs) materials have attracted much attention for hydrogen evolution reaction (HER) as a new catalyst, but they still have challenges in poor stability and high reaction over-potential. In this study, ultra-thin SnS2 nanocatalysts were synthesized by simple hydrothermal method, and low load of Pt was added to form stable SnS2-Pt-3 (the content of platinum is 0.5 wt %). The synergistic effect between ultra-thin SnS2 rich in active sites and individual dispersed Pt nanoclusters can significantly reduce the reaction barrier and further accelerate HER reaction kinetics. Hence, SnS2-Pt-3 exhibits a low overpotential of 210 mV at the current density of 10 mA cm−2. It is worth noting that SnS2-Pt-3 has a small Tafel slope (126 mV dec−1) in 0.5 M H2SO4, as well as stability. This work provides a new option for the application of TMDs materials in efficient hydrogen evolution reaction. Moreover, this method can be easily extended to other catalysts with desired two-dimensional materials.
Collapse
|