1
|
Zou H, Yu H, Huang Y, Guo Y, Ye M, Hou L. Chronic exposure to gestodene impairs reproductive system in adult female zebrafish (Daniarerio). CHEMOSPHERE 2024; 355:141876. [PMID: 38570043 DOI: 10.1016/j.chemosphere.2024.141876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Gestodene (GES) is widely used in human therapy and animal husbandry and is frequently detected in aquatic environments. Although GES adversely affects aquatic organisms at trace levels, its effects on the reproductive biology of fish remain inconclusive. In this study, female zebrafish (Danio rerio) were exposed to environmentally relevant levels of GES for the evaluation of the effects of GES on the reproductive system by using endpoints including gene expression, plasma steroid concentrations, histological and morphological analyses, copulatory behavior, and reproductive output. Adult female zebrafish exposed to environmentally relevant concentrations of GES (4.0, 40.2, and 372.7 ng/L) for 60 d demonstrated stagnant ovarian oocyte development, evidenced by an increase in the percentage of perinuclear and atretic oocytes and a decrease in the percentage of late vitellogenic oocytes. GES-exposed females were less attractive to males and had lower copulatory intimacy than females in control. Consequently, spawning (44.3-49.2 %) and egg fertilization rates (27.9-32.0 %) were decreased. The decreased survival of fertilized eggs and hatching rates were accompanied by increased malformations. These negative effects were associated with abnormal transcriptional levels of gonadal steroid hormones, which were regulated by genes (Hsd17β3, Hsd11β2, Hsd20β, Cyp19a1a, and Cyp11b). Overall, our findings suggest that GES impairs the reproductive system of zebrafish, which may threaten population stability.
Collapse
Affiliation(s)
- Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - HongJun Yu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - YunYi Huang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - YanFang Guo
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - MeiXin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - LiPing Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
2
|
Wilson CA, Batzel P, Postlethwait JH. Direct male development in chromosomally ZZ zebrafish. Front Cell Dev Biol 2024; 12:1362228. [PMID: 38529407 PMCID: PMC10961373 DOI: 10.3389/fcell.2024.1362228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
3
|
Liu M, Ding H, Jin C, Wang M, Li P, Bao Z, Wang B, Hu J. Theoretical Analysis and Expression Profiling of 17β-Hydroxysteroid Dehydrogenase Genes in Gonadal Development and Steroidogenesis of Leopard Coral Grouper ( Plectropomus leopardus). Int J Mol Sci 2024; 25:2180. [PMID: 38396857 PMCID: PMC10889806 DOI: 10.3390/ijms25042180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The differentiation and developmental trajectory of fish gonads, significantly important for fish breeding, culture, and production, has long been a focal point in the fields of fish genetics and developmental biology. However, the mechanism of gonadal differentiation in leopard coral grouper (Plectropomus leopardus) remains unclear. This study investigates the 17β-Hydroxysteroid Dehydrogenase (Hsd17b) gene family in P. leopardus, with a focus on gene characterization, expression profiling, and functional analysis. The results reveal that the P. leopardus's Hsd17b gene family comprises 11 members, all belonging to the SDR superfamily. The amino acid similarity is only 12.96%, but conserved motifs, such as TGxxxGxG and S-Y-K, are present in these genes. Hsd17b12a and Hsd17b12b are unique homologs in fish, and chromosomal localization has confirmed that they are not derived from different transcripts of the same gene, but rather are two independent genes. The Hsd17b family genes, predominantly expressed in the liver, heart, gills, kidneys, and gonads, are involved in synthesizing or metabolizing sex steroid hormones and neurotransmitters, with their expression patterns during gonadal development categorized into three distinct categories. Notably, Hsd17b4 and Hsd17b12a were highly expressed in the testis and ovary, respectively, suggesting their involvement in the development of reproductive cells in these organs. Fluorescence in situ hybridization (FISH) further indicated specific expression sites for these genes, with Hsd17b4 primarily expressed in germ stem cells and Hsd17b12a in oocytes. This comprehensive study provides foundational insights into the role of the Hsd17b gene family in gonadal development and steroidogenesis in P. leopardus, contributing to the broader understanding of fish reproductive biology and aquaculture breeding.
Collapse
Affiliation(s)
- Mingjian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Peiyu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
| |
Collapse
|
4
|
Wilson CA, Batzel P, Postlethwait JH. Direct Male Development in Chromosomally ZZ Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573483. [PMID: 38234788 PMCID: PMC10793451 DOI: 10.1101/2023.12.27.573483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish ( Danio rerio ), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB strain fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome or fewer than two Z chromosomes is essential to initiate oocyte development; and without the W factor or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
5
|
Ma Y, Li Y, Song X, Yang T, Wang H, Liang Y, Huang L, Zeng H. Endocrine Disruption of Propylparaben in the Male Mosquitofish ( Gambusia affinis): Tissue Injuries and Abnormal Gene Expressions of Hypothalamic-Pituitary-Gonadal-Liver Axis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3557. [PMID: 36834249 PMCID: PMC9967665 DOI: 10.3390/ijerph20043557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Propylparaben (PrP) is a widely used preservative that is constantly detected in aquatic environments and poses a potential threat to aquatic ecosystems. In the present work, adult male mosquitofish were acutely (4d) and chronically (32d) exposed to environmentally and humanly realistic concentrations of PrP (0, 0.15, 6.00 and 240 μg/L), aimed to investigate the toxic effects, endocrine disruption and possible mechanisms of PrP. Histological analysis showed time- and dose-dependent manners in the morphological injuries of brain, liver and testes. Histopathological alterations in the liver were found in 4d and severe damage was identified in 32d, including hepatic sinus dilatation, cytoplasmic vacuolation, cytolysis and nuclear aggregation. Tissue impairments in the brain and testes were detected in 32d; cell cavitation, cytomorphosis and blurred cell boundaries appeared in the brain, while the testes lesions contained spermatogenic cell lesion, decreased mature seminal vesicle, sperm cells gathering, seminiferous tubules disorder and dilated intercellular space. Furthermore, delayed spermatogenesis had occurred. The transcriptional changes of 19 genes along the hypothalamus-pituitary-gonadal-liver (HPGL) axis were investigated across the three organs. The disrupted expression of genes such as Ers, Ars, Vtgs, cyp19a, star, hsd3b, hsd17b3 and shh indicated the possible abnormal steroidogenesis, estrogenic or antiandrogen effects of PrP. Overall, the present results provided evidences for the toxigenicity and endocrine disruptive effects on the male mosquitofish of chronic PrP exposure, which highlights the need for more investigations of its potential health risks.
Collapse
Affiliation(s)
- Yun Ma
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Yujing Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Xiaohong Song
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China
| | - Tao Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Haiqin Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China
| | - Liangliang Huang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China
| |
Collapse
|
6
|
Yazawa T, Islam MS, Imamichi Y, Watanabe H, Yaegashi K, Ida T, Sato T, Kitano T, Matsuzaki S, Umezawa A, Muranishi Y. Comparison of Placental HSD17B1 Expression and Its Regulation in Various Mammalian Species. Animals (Basel) 2023; 13:ani13040622. [PMID: 36830409 PMCID: PMC9951672 DOI: 10.3390/ani13040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
During mammalian gestation, large amounts of progesterone are produced by the placenta and circulate for the maintenance of pregnancy. In contrast, primary plasma estrogens are different between species. To account for this difference, we compared the expression of ovarian and placental steroidogenic genes in various mammalian species (mouse, guinea pig, porcine, ovine, bovine, and human). Consistent with the ability to synthesize progesterone, CYP11A1/Cyp11a1, and bi-functional HSD3B/Hsd3b genes were expressed in all species. CYP17A1/Cyp17a1 was expressed in the placenta of all species, excluding humans. CYP19A/Cyp19a1 was expressed in all placental estrogen-producing species, whereas estradiol-producing HSD17B1 was only strongly expressed in the human placenta. The promoter region of HSD17B1 in various species possesses a well-conserved SP1 site that was activated in human placental cell line JEG-3 cells. However, DNA methylation analyses in the ovine placenta showed that the SP1-site in the promoter region of HSD17B1 was completely methylated. These results indicate that epigenetic regulation of HSD17B1 expression is important for species-specific placental sex steroid production. Because human HSD17B1 showed strong activity for the conversion of androstenedione into testosterone, similar to HSD17B1/Hsd17b1 in other species, we also discuss the biological significance of human placental HSD17B1 based on the symptoms of aromatase-deficient patients.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
- Correspondence: ; Tel.: +81-166-68-2342
| | - Mohammad Sayful Islam
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Yoshitaka Imamichi
- Department of Marine Bioscience, Fukui Prefectural University, Obama 917-0003, Fukui, Japan
| | - Hiroyuki Watanabe
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | | | - Takanori Ida
- Center for Animal Disease Control, Frontiers Science Research Center, University of Miyazaki, Miyazaki 889-1692, Miyazaki, Japan
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Kurume 830-0011, Fukuoka, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan
| | | | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development Research Institute, Setagaya 157-8535, Tokyo, Japan
| | - Yuki Muranishi
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| |
Collapse
|
7
|
Valdivieso A, Anastasiadi D, Ribas L, Piferrer F. Development of epigenetic biomarkers for the identification of sex and thermal stress in fish using DNA methylation analysis and machine learning procedures. Mol Ecol Resour 2023; 23:453-470. [PMID: 36305237 PMCID: PMC10098837 DOI: 10.1111/1755-0998.13725] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 01/04/2023]
Abstract
The sex ratio is a key ecological demographic parameter crucial for population viability. However, the epigenetic mechanisms operating during gonadal development regulating gene expression and the sex ratio remain poorly understood. Moreover, there is interest in the development of epigenetic markers associated with a particular phenotype or as sentinels of environmental effects. Here, we profiled DNA methylation and gene expression of 10 key genes related to sex development and stress, including steroidogenic enzymes, and growth and transcription factors. We provide novel information on the sex-related differences and on the influence of elevated temperature on these genes in zebrafish, a species with mixed genetic and environmental influences on sex ratios. We identified both positive (e.g., amh, cyp11c and hsd11b2) and negative (e.g., cyp11a1 and dmrt1) correlations in unexposed males, and negative correlation (amh) in exposed females between DNA methylation and gene expression levels. Further, we combined DNA methylation analysis with machine learning procedures and found a series of informative CpGs capable not only of correctly identifying sex (based on cyp19a1a DNA methylation levels) but also of identifying whether males and females had been exposed to abnormally elevated temperature when young (based on amh and foxl2a DNA methylation levels, respectively). This was achieved in the absence of conspicuous morphological alterations of the gonads. These DNA methylation-based epigenetic biomarkers represent molecular resources that can correctly recapitulate past thermal history and pave the way for similar findings in other species to assess potential ecological effects of environmental disturbances in the context of climate change.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
8
|
Liu Y, Kossack ME, McFaul ME, Christensen LN, Siebert S, Wyatt SR, Kamei CN, Horst S, Arroyo N, Drummond IA, Juliano CE, Draper BW. Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. eLife 2022; 11:e76014. [PMID: 35588359 PMCID: PMC9191896 DOI: 10.7554/elife.76014] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish are an established research organism that has made many contributions to our understanding of vertebrate tissue and organ development, yet there are still significant gaps in our understanding of the genes that regulate gonad development, sex, and reproduction. Unlike the development of many organs, such as the brain and heart that form during the first few days of development, zebrafish gonads do not begin to form until the larval stage (≥5 days post-fertilization). Thus, forward genetic screens have identified very few genes required for gonad development. In addition, bulk RNA-sequencing studies that identify genes expressed in the gonads do not have the resolution necessary to define minor cell populations that may play significant roles in the development and function of these organs. To overcome these limitations, we have used single-cell RNA sequencing to determine the transcriptomes of cells isolated from juvenile zebrafish ovaries. This resulted in the profiles of 10,658 germ cells and 14,431 somatic cells. Our germ cell data represents all developmental stages from germline stem cells to early meiotic oocytes. Our somatic cell data represents all known somatic cell types, including follicle cells, theca cells, and ovarian stromal cells. Further analysis revealed an unexpected number of cell subpopulations within these broadly defined cell types. To further define their functional significance, we determined the location of these cell subpopulations within the ovary. Finally, we used gene knockout experiments to determine the roles of foxl2l and wnt9b for oocyte development and sex determination and/or differentiation, respectively. Our results reveal novel insights into zebrafish ovarian development and function, and the transcriptome profiles will provide a valuable resource for future studies.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Michelle E Kossack
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Matthew E McFaul
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Lana N Christensen
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Sydney R Wyatt
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Caramai N Kamei
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Samuel Horst
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Nayeli Arroyo
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Iain A Drummond
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
9
|
Hwang IJ, Baek HJ. In Vitro Sex Steroid Metabolism in Red Spotted Grouper, Epinephelus akaara during Oocyte Maturation. Dev Reprod 2021; 25:75-82. [PMID: 34386642 PMCID: PMC8328477 DOI: 10.12717/dr.2021.25.2.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
We studied steroid metabolites produced from red-spotted grouper ovarian
follicles during maturation. Oocytes with 350–500 μm diameter were
in vitro incubated in the presence of [3H]
17α-hydroxyprogesterone as a precursor. Steroid metabolites were
extracted from incubated media and oocytes. The extracts were separated and
identified using thin layer chromatography, high performance liquid
chromatography and gas chromatography-mass spectrometry. The identified
metabolites were androstenedione (A4), testosterone (T) and estrone
(E1). The metabolites of A4 was dominant in all size
of oocytes and it was the highest in 480 μm diameter oocytes. The
metabolites of two progestins, 17α,20β-dihydroxy-4-pregnen-3-one
and 17α,20α-dihydroxy-4-pregnen-3-one were detected in the oocytes
less than 480 μm diameter although they were not identified definitely.
In the oocytes of 480 μm diameter, metabolite of progestin was the
highest, and germinal vesicle (GV) was still in the middle of cytoplasm. In the
oocytes of 500 μm diameter, GV was began to migrate and the major
metabolites were A4 and E1. The metabolite of
E1 was detected in all size of oocytes and it was higher than
that of E2. These results suggest that oocytes of 480 μm
diameter are the transitional stage involving steroidogenic shift to final
oocyte maturation and potential function of E1 during maturation
process.
Collapse
Affiliation(s)
- In Joon Hwang
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Gapyeong 12453, Korea
| | - Hea Ja Baek
- Department of Marine Biology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
10
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Gao S, Tao R, Tong X, Xu Q, Zhao J, Guo Y, Schinckel AP, Zhou B. Identification of Functional Single Nucleotide Polymorphisms in Porcine HSD17B14 Gene Associated with Estrus Behavior Difference between Large White and Mi Gilts. Biomolecules 2020; 10:biom10111545. [PMID: 33198360 PMCID: PMC7697482 DOI: 10.3390/biom10111545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Steroid hormone levels are associated with estrous behavior, which affects timely mating and reproductive efficiency in pigs. 17β-hydroxysteroid dehydrogenase type 14 (HSD17B14) modulates steroid synthesis and metabolism. To identify the functional single nucleotide polymorphisms (SNPs) in the porcine HSD17B14 gene, ear tissues from Large White and Mi gilts were collected to extract genomic DNA. Variable lengths of truncated promoter of HSD17B14 gene were used to determine the promoter activity by a dual luciferase reporter system. The vector HSD17B14Phe or HSD17B14Val was transfected into porcine granulosa cells (GCs). The core promoter region was identified between -72bp and -218bp. Six of seven SNPs had significant differences of allele frequency between Large White and Mi gilts. The plasmids with the wild genotype AA of rs329427898 maintained a smaller fraction of promoter activity compared with the plasmids with the mutant genotype GG, while the plasmids with wild the genotype TT of rs319864566 had a greater promoter activity than the plasmids with the mutant genotype CC. A missense mutation (Phe73Val) caused changes in the structural dynamics and function of the HSD17B14 protein. The highly expressed HSD17B14Val degraded less estradiol into estrone, while the relatively lowly expressed HSD17B14Phe degraded more estradiol into estrone, suggesting the protein activity of HSD17B14Phe was greater than that of HSD17B14Val. Moreover, the HSD17B14Phe group has a greater apoptosis rate of porcine GCs. The HSD17B14 gene could been used as a candidate molecular marker for estrus behavior in pigs.
Collapse
Affiliation(s)
- Siyuan Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (S.G.); (R.T.); (X.T.); (Q.X.); (J.Z.); (Y.G.)
| | - Ruixin Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (S.G.); (R.T.); (X.T.); (Q.X.); (J.Z.); (Y.G.)
| | - Xian Tong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (S.G.); (R.T.); (X.T.); (Q.X.); (J.Z.); (Y.G.)
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (S.G.); (R.T.); (X.T.); (Q.X.); (J.Z.); (Y.G.)
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (S.G.); (R.T.); (X.T.); (Q.X.); (J.Z.); (Y.G.)
| | - Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (S.G.); (R.T.); (X.T.); (Q.X.); (J.Z.); (Y.G.)
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (S.G.); (R.T.); (X.T.); (Q.X.); (J.Z.); (Y.G.)
- Correspondence: ; Tel.: +86-025-84395362
| |
Collapse
|
12
|
Zhang M, Wei H, Liu T, Li W, Li Y, Wang S, Xing Q, Hu X, Zhang L, Bao Z. Potential GnRH and steroidogenesis pathways in the scallop Patinopecten yessoensis. J Steroid Biochem Mol Biol 2020; 204:105756. [PMID: 32979503 DOI: 10.1016/j.jsbmb.2020.105756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/15/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) controls synthesis of sex steroid hormones through hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. But in mollusks, research on GnRH and steroidogenesis pathways is still limited. In this study, we first identified two gonadotropin receptor like genes (LGR and LGR5L) and four steroidogenesis-related genes (CYP17A, HSD17B12, HSD3B1 and HSD3B2) in the scallop Patinopecten yessoensis. By examining the expression of 11 genes in the ganglia and/or gonad as well as the concentration of progesterone, testosterone and estradiol in the gonad, we postulate that a potential GnRH signaling pathway (GnRH-GnRHR-GPB5-LGR/LGR5L) in the cerebral and pedal ganglia (CPG) and steroidogenesis pathway (CYP17A, HSD17B12 and HSD3B1) in the gonad are involved in regulating sex steroid hormones. E2/T index that indicates aromatase activity is higher in the ovary than testis and is positively correlated with the expression of FOXL2 in the gonad, implying the presence of aromatase in the scallop. In addition, we confirmed that expression of most of the downstream genes in the two pathways was significantly elevated after injection of mature py-GnRH peptide. This study would contribute to a new understanding of the molecular basis underlying reproduction regulation by GnRH in mollusks.
Collapse
Affiliation(s)
- Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Huilan Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Tian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
13
|
Tapper MA, Kolanczyk RC, LaLone CA, Denny JS, Ankley GT. Conversion of Estrone to 17β-Estradiol: A Potential Confounding Factor in Assessing Risks of Environmental Estrogens to Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2028-2040. [PMID: 33448467 PMCID: PMC8015245 DOI: 10.1002/etc.4828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 05/28/2023]
Abstract
Feminization of male fish and the role of endocrine-active chemicals in this phenomenon has been an area of intense study for many years. Estrone (E1), a natural steroid, is found in aquatic environments sometimes at high concentrations relative to the estrogenic steroids 17β-estradiol (E2) and 17α-ethynylestradiol. However, E1 has been less thoroughly studied than E2 or 17α-ethynylestradiol due in part to a relatively lower potency in metabolically limited estrogen receptor (ER) binding/activation assays. Recent evidence suggests that in vivo biotransformation of E1 to E2 may occur in fathead minnows (Pimephales promelas) residing in environments with high concentrations of E1, such as near wastewater treatment plants. The enzymes likely responsible for this biotransformation, 17β-hydroxysteroid dehydrogenases (17βHSDs), have been well characterized in mammals but to a lesser extent in fish species. In the present study, a novel systematic analysis of amino acid sequence data from the National Center for Biotechnology Information database demonstrated that multiple 17βHSD isoforms are conserved across different fish species. Experimentally, we showed that metabolically active hepatic cytosolic preparations from 2 commercially important salmonid species, rainbow trout and lake trout, biotransformed E1 to E2 to a degree sufficient to alter results of competitive ER binding assays. These results from in silico and in vitro analyses indicate that E1 and biotransformation may play a significant role in adverse effects on development and reproduction of a variety of fish species in contaminated aquatic environments. Environ Toxicol Chem 2020;39:2028-2040. Published 2020. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Mark A Tapper
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Richard C Kolanczyk
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Jeffrey S Denny
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| |
Collapse
|
14
|
Aranyakanont C, Ijiri S, Hasegawa Y, Adachi S. 17β-Hydroxysteroid dehydrogenase type 12 is responsible for maturation-inducing steroid synthesis during oocyte maturation in Nile tilapia. Gen Comp Endocrinol 2020; 290:113399. [PMID: 31982399 DOI: 10.1016/j.ygcen.2020.113399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 11/17/2022]
Abstract
17α, 20β-Dihydroxy-4-pregnen-3-one (DHP) is a maturation-inducing steroid in many teleost fish. Carbonyl reductase-like 20β-hydroxysteroid dehydrogenase (CR/20β-HSD) is a candidate enzyme responsible for DHP production during oocyte maturation in various fish, including Nile tilapia. However, a novel type of 17β-hydroxysteroid dehydrogenase, type 12-like (17β-HSD12L), is responsible for DHP production during oocyte maturation in masu salmon. 17β-HSD12 (presumably orthologous to salmon 17β-HSD12L) has been detected in Nile tilapia; however, its enzymatic activity and specific ability to convert the DHP substrate 17α-hydroxyprogesterone (17OHP) have not been examined. This study aimed to determine whether CR/20β-HSD or 17β-HSD12 is responsible for DHP production during oocyte maturation in the Nile tilapia. Mammalian expression vectors containing tilapia hsd17b12 or CR/20bhsd were transfected into HEK293T cells, followed by incubation with 17OHP. HEK293T cells transfected with hsd17b12 exhibited a strong ability to convert exogenous 17OHP to DHP (73.8% yield). Cells transfected with CR/20bhsd or the control vector converted only 7.4% and 7.5% of 17OHP to DHP, respectively. In addition, based on LC-MS/MS analyses, 17β-HSD12 did not convert any substrates other than 17OHP, including DHP, adrenosterone, androstenedione, estrone, testosterone, 11-ketotestosterone, and estradiol-17β. CR/20β-HSD showed strong 17β-HSD oxidoreductase activity especially with adrenosterone and androstenedione. Tissue-specific hsd17b12 expression analyzed by RT-PCR showed that hsd17b12 mRNA was strongest amplification in full-grown follicles. Finally, full-grown ovarian follicles were incubated with salmon pituitary extract (SPE, 100 µg/mL) or human chorionic gonadotropin (HCG, 100 IU/mL) to induce 20β-HSD activity in vitro, and enzyme activity was assessed by co-incubation with 100 ng/mL 17OHP for 2, 4, 8, and 16 h. Conversion of 17OHP to DHP by ovarian follicles incubated with SPE and HCG peaked at 16 h, subsequent with increased follicular hsd17b12 mRNA levels, which were significantly higher than those in control incubations. However, the levels of CR/20bhsd mRNA remained low and did not differ among time points. The present study strongly suggests that 17β-HSD12, and not CR/20β-HSD, is the 20β-HSD responsible for DHP production by ovarian follicles during oocyte maturation in Nile tilapia.
Collapse
Affiliation(s)
- Chak Aranyakanont
- Graduate School of Fisheries Sciences, Hokkaido University , Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan.
| | - Shigeho Ijiri
- Graduate School of Fisheries Sciences, Hokkaido University , Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan.
| | - Yuya Hasegawa
- Graduate School of Fisheries Sciences, Hokkaido University , Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan.
| | - Shinji Adachi
- Graduate School of Fisheries Sciences, Hokkaido University , Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
15
|
Zou C, Wang L, Zou Y, Wu Z, Wang W, Liang S, Wang L, You F. Characteristics and sex dimorphism of 17β-hydroxysteroid dehydrogenase family genes in the olive flounder Paralichthys olivaceus. J Steroid Biochem Mol Biol 2020; 199:105597. [PMID: 31958634 DOI: 10.1016/j.jsbmb.2020.105597] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Sex steroid hormones play important roles in fish sex differentiation, gonadal development and secondary sexual characteristics. Olive flounder Paralichthys olivaceus is a valuable commercial marine fish species and has marked sexual dimorphism. However, the mechanisms of action of sex hormones in flounder sex are still unclear. In this study, a total of ten Hsd17b family genes, including Hsd17b3, -4, -7, -8, -9, -10, -12a, -12b, -14 and -15, were identified in the flounder, which encoded critical enzymes acting on sex steroid synthesis and metabolism. Hsd17b genes were distributed on eight chromosomes. Hsd17b12a and -12b were located on chromosomes 19 and 7, respectively. It was speculated that these two genes were just highly similar rather than different transcripts derived from the same gene. According to the results of domain and motif analyses, they all belonged to the SDR superfamily and contained conserved Hsd17b motifs TGxxxGxG, PGxxxT, NNAG and YxxxK. Analysis of amino acid sequences predicted that Hsd17b1, -4, -7, -12a and -14 were hydrophilic proteins. The stability of Hsd17b1, -3 and -12b proteins was predicted to be low. The various Hsd17b family genes differed in tissue expression pattern, and Hsd17b10, -12a and -12b were highly expressed in the flounder ovary. Moreover, throughout gonadal development, Hsd17b3 was highly expressed in the testis, and Hsd17b1, -12a and -12b were highly expressed in the ovary, suggesting that they might play an important role in testosterone synthesis in the testis or estrogen synthesis in the ovary. Activities of Hsd17b3 at stages I-V were all significantly higher in the testis than in the ovary (P < 0.05, P < 0.01). Transfection analysis in HEK293T cells showed that Hsd17b1 and -3 were located in both the cytoplasm and nucleus. Additionally, after challenging fish with tamoxifen, Hsd17b3 expression level in the testis decreased significantly (P < 0.01), and in the ovary no significant change was observed. Moreover, the expression of Hsd17b1 in the ovary was significantly upregulated after injection with flutamide (P < 0.05). These findings introduce the characteristics of the flounder Hsd17b in subfamily, which contribute to our understanding of the regulation of sex steroid hormone synthesis in fish gonadal development.
Collapse
Affiliation(s)
- Congcong Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China
| | - Wenxiang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China
| | - Ling Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China.
| |
Collapse
|
16
|
Cheng C, Shen F, Ding G, Liu A, Chu S, Ma Y, Hou X, Hao E, Wang X, Hou Y, Bai G. Lepidiline A Improves the Balance of Endogenous Sex Hormones and Increases Fecundity by Targeting HSD17B1. Mol Nutr Food Res 2020; 64:e1900706. [DOI: 10.1002/mnfr.201900706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/11/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Guoyu Ding
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Aina Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Simeng Chu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Yuejiao Ma
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural ResiduesGuangxi Key Laboratory of Efficacy Study on Chinese Materia MedicaGuangxi University of Chinese Medicine Nanning 530200 China
| | - Erwei Hao
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural ResiduesGuangxi Key Laboratory of Efficacy Study on Chinese Materia MedicaGuangxi University of Chinese Medicine Nanning 530200 China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin 300193 China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| |
Collapse
|
17
|
Suzuki H, Ozaki Y, Ijiri S, Gen K, Kazeto Y. 17β-Hydroxysteroid dehydrogenase type 12a responsible for testicular 11-ketotestosterone synthesis in the Japanese eel, Anguilla japonica. J Steroid Biochem Mol Biol 2020; 198:105550. [PMID: 31778803 DOI: 10.1016/j.jsbmb.2019.105550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022]
Abstract
The production of 11-ketotestosterone (11KT), an important steroid hormone in piscine spermatogenesis, is regulated by the pituitary gonadotropins [Gths: follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh)] and it is synthesized by catalytic reactions involving several steroidogenic enzymes. Among these enzymes, the role of 17β-hydroxysteroid dehydrogenases (Hsd17bs) that exhibited 17-ketosteroid reducing activity (17KSR activity) responsible for 11KT synthesis is still poorly understood. In the present study, for the deeper understanding of testicular 11KT biosynthesis, we first investigated the steroidogenic pathway to produce 11KT in Japanese eel testis. In vitro incubation of the testis with androstenedione (A4) and the subsequent analysis of the metabolites by thin-layer chromatography indicated that 11KT was synthesized from A4 via 11β-hydroxyandrostenedione (11OHA4) and 11-ketoandrostenedione (11KA4), which indicated that the steroidogenic enzyme exhibiting the 17KSR activity responsible for converting 11KA4 to 11KT is crucial for 11KT production. Subsequently, cDNAs encoding three candidate enzymes, Hsd17b type3 (Hsd17b3), Hsd17b type12a (Hsd17b12a), and 20β-hydroxysteroid dehydrogenase type2 (Hsd20b2), potentially with the 17KSR activity were isolated and characterized in the Japanese eel. The isolated hsd17b3, hsd17b12a, and hsd20b2 cDNAs putatively encoded 308, 314, and 327 amino acid residues with high homology to those of other vertebrate counterparts, respectively. The Hsd17b3, Hsd17b12a, and Hsd20b2 expressed either in HEK293T or in Hepa-E1 converted 11KA4 to 11KT. Tissue-distribution analysis by quantitative real time PCR revealed that hsd17b12a and hsd20b2 mRNAs were detected in the testis, while hsd17b3 mRNA was not detectable. Furthermore, we examined the effects of Gths on the 17KSR activity and the expression of the candidate genes in the immature testis. The 17KSR activity was upregulated by administration of Gths. Furthermore, only expression of hsd17b12a among three candidates was upregulated by Gths as well as the 17KSR activity. These findings strongly suggested that Hsd17b12a is one of the enzymes with 17KSR activity responsible for 11KT synthesis in the testis of Japanese eel.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Yuichi Ozaki
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Shigeho Ijiri
- Division of Marine Life Sciences, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Koichiro Gen
- Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan.
| | - Yukinori Kazeto
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tsuiura, Kamiura, Saiki, Oita 879-2602, Japan.
| |
Collapse
|
18
|
Xiao L, Guo Y, Wang D, Zhao M, Hou X, Li S, Lin H, Zhang Y. Beta-Hydroxysteroid Dehydrogenase Genes in Orange-Spotted Grouper ( Epinephelus coioides): Genome-Wide Identification and Expression Analysis During Sex Reversal. Front Genet 2020; 11:161. [PMID: 32194632 PMCID: PMC7064643 DOI: 10.3389/fgene.2020.00161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Beta-hydroxysteroid dehydrogenases (β-HSDs) are a group of steroidogenic enzymes that are involved in steroid biosynthesis and metabolism, and play a crucial role in mammalian physiology and development, including sex determination and differentiation. In the present study, a genome-wide analysis identified the numbers of β-hsd genes in orange-spotted grouper (Epinephelus coioides) (19), human (Homo sapiens) (22), mouse (Mus musculus) (24), chicken (Gallus gallus) (16), xenopus (Xenopus tropicalis) (24), coelacanth (Latimeria chalumnae) (17), spotted gar (Lepisosteus oculatus) (14), zebrafish (Danio rerio) (19), fugu (Takifugu rubripes) (19), tilapia (Oreochromis niloticus) (19), medaka (Oryzias latipes) (19), stickleback (Gasterosteus aculeatus) (17) and common carp (Cyprinus carpio) (27) samples. A comparative analysis revealed that the number of β-hsd genes in teleost fish was no greater than in tetrapods due to gene loss followed by a teleost-specific whole-genome duplication event. Based on transcriptome data from grouper brain and gonad samples during sex reversal, six β-hsd genes had relatively high expression levels in the brain, indicating that these genes may be required for neurogenesis or the maintenance of specific biological processes in the brain. In the gonad, two and eight β-hsd genes were up- and downregulated, respectively, indicating their important roles in sex reversal. Our results demonstrated that β-hsd genes may be involved in the sex reversal of grouper by regulating the synthesis and metabolism of sex steroid hormones.
Collapse
Affiliation(s)
- Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dengdong Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Hou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| |
Collapse
|
19
|
Ribas L, Crespo B, Sánchez-Baizán N, Xavier D, Kuhl H, Rodríguez JM, Díaz N, Boltañá S, MacKenzie S, Morán F, Zanuy S, Gómez A, Piferrer F. Characterization of the European Sea Bass (Dicentrarchus labrax) Gonadal Transcriptome During Sexual Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:359-373. [PMID: 30919121 DOI: 10.1007/s10126-019-09886-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The European sea bass is one of the most important cultured fish in Europe and has a marked sexual growth dimorphism in favor of females. It is a gonochoristic species with polygenic sex determination, where a combination between still undifferentiated genetic factors and environmental temperature determines sex ratios. The molecular mechanisms responsible for gonadal sex differentiation are still unknown. Here, we sampled fish during the gonadal developmental period (110 to 350 days post fertilization, dpf), and performed a comprehensive transcriptomic study by using a species-specific microarray. This analysis uncovered sex-specific gonadal transcriptomic profiles at each stage of development, identifying larger number of differentially expressed genes in ovaries when compared to testis. The expression patterns of 54 reproduction-related genes were analyzed. We found that hsd17β10 is a reliable marker of early ovarian differentiation. Further, three genes, pdgfb, snx1, and nfy, not previously related to fish sex differentiation, were tightly associated with testis development in the sea bass. Regarding signaling pathways, lysine degradation, bladder cancer, and NOD-like receptor signaling were enriched for ovarian development while eight pathways including basal transcription factors and steroid biosynthesis were enriched for testis development. Analysis of the transcription factor abundance showed an earlier increase in females than in males. Our results show that, although many players in the sex differentiation pathways are conserved among species, there are peculiarities in gene expression worth exploring. The genes identified in this study illustrate the diversity of players involved in fish sex differentiation and can become potential biomarkers for the management of sex ratios in the European sea bass and perhaps other cultured species.
Collapse
Affiliation(s)
- L Ribas
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - B Crespo
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
- UCL GOS Institute of Child Health, University College London, London, UK
| | - N Sánchez-Baizán
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - D Xavier
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - H Kuhl
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Ecophysiology and Aquaculture, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - J M Rodríguez
- Spanish National Bioinformatics Institute, Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - N Díaz
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - S Boltañá
- Autonomous University of Barcelona, Barcelona, Spain
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - S MacKenzie
- Autonomous University of Barcelona, Barcelona, Spain
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - F Morán
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - S Zanuy
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
| | - A Gómez
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain.
| | - F Piferrer
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
20
|
Agarwal D, Gireesh-Babu P, Pavan-Kumar A, Koringa P, Joshi CG, Gora A, Bhat IA, Chaudhari A. Molecular characterization and expression profiling of 17-beta-hydroxysteroid dehydrogenase 2 and spermatogenesis associated protein 2 genes in endangered catfish, Clarias magur (Hamilton, 1822). Anim Biotechnol 2018; 31:93-106. [PMID: 30570357 DOI: 10.1080/10495398.2018.1545663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The 17-beta-hydroxysteroid dehydrogenase 2 (17β-HSD2) enzyme regulates steroid levels by the inactivation of estrogen and androgens. Spermatogenesis associated protein 2 (SPATA2) plays a vital role in spermatogenesis in vertebrates including fish. We report cloning and characterization of full cds of 17β-HSD2 and SPATA2 genes in Clarias magur. The full-length cDNA sequences of 17β-HSD2 and SPATA2 were 1187 bp (ORF 1125 bp) and 1806 bp (ORF 1524 bp) encoding 375 and 508 amino acids, respectively. Signal peptide analysis revealed SPATA2 is nonsecretory, while 17β-HSD2 is a secretory protein. Hydropathy profiles showed both proteins are hydrophilic in nature. Tissue distribution of both the genes revealed high mRNA level of SPATA2 in all tissues examined indicating its wide range of expression. 17β-HSD2 indicated higher expression in preparatory phase compared to spawning phase in ovary while it was opposite in case of testis. SPATA2 showed significantly higher expression in preparatory phase compared to spawning phase in both ovary and testis. Administration of OvatideTM (GnRH analog) resulted in upregulation of SPATA2 expression at 6 and 16 h post-injection while 17β-HSD2 showed upregulation only at 6 h post-injection. To the best of our knowledge, this is a first report on characterization of 17β-HSD2 and SPATA2 full-length cDNA in catfish.
Collapse
Affiliation(s)
- Deepak Agarwal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, India
| | - Pathakota Gireesh-Babu
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, India
| | - Annam Pavan-Kumar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, India
| | - Prakash Koringa
- Animal Biotechnology Department, College of veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - Chaitanya G Joshi
- Animal Biotechnology Department, College of veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - Adnan Gora
- Central Marine Fisheries Research Institute, Kochi, Kerala, India
| | - Irfan Ahmad Bhat
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, Maharashtra, India
| |
Collapse
|
21
|
Transcriptional differences provide insight into environmental acclimatization in wild amur ide (Leuciscus waleckii) during spawning migration from alkalized lake to freshwater river. Genomics 2018; 111:267-276. [PMID: 30445216 DOI: 10.1016/j.ygeno.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/20/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023]
Abstract
Amur ide (Leuciscus waleckii) inhabits alkaline water in Lake Dali Nur and migrates to fresh water river for spawning every year. To investigate the potential genetic mechanisms underlying their alkaline acclimation, adaptation, and spawning migration, we performed differential gene expression analysis using high-throughput RNA-Seq data from liver of Amur ide samples collected before and after spawning migration. First, the short RNA-Seq reads were de novo assembled into 44,318 contigs, and provided the transcriptome reference sequences. Differential gene expression analysis identified 2575 genes with significant differential expression (p-value ≤.01, log2-fold-change ≥2). GO enrichment and KEGG pathway analyses were subsequently performed to determine gene functions and regulation. The results indicated that there were numerous differentially expressed genes involved in acid-base regulation, nitrogenous waste excretion, sexual maturation and reproduction, and stress response. These results provide fundamental information for further analyses of the physiological and molecular mechanisms underlying Amur ide alkaline acclimation, adaptation, and spawning migration.
Collapse
|
22
|
Ma YB, Jia PP, Junaid M, Yang L, Lu CJ, Pei DS. Reproductive effects linked to DNA methylation in male zebrafish chronically exposed to environmentally relevant concentrations of di-(2-ethylhexyl) phthalate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1050-1061. [PMID: 29150256 DOI: 10.1016/j.envpol.2017.11.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) possesses the potential to interfere with the male reproductive endocrine system in mammals; however, its reproductive toxicity in male zebrafish and associated epigenetic studies have not been explored. In this study, three-month-old male zebrafish were exposed to environmentally relevant concentrations of DEHP (0, 10, 33 and 100 μg/L) for 3 months, and then the impact on the reproduction of males and the underlying mechanism were investigated. Histological testing showed that an exposure concentration of 100 μg/L DEHP significantly inhibited spermatogenesis, with an associated decline in capability to fertilize untreated oocytes. Electron microscopic examinations also revealed noticeable damage to the testicular ultrastructure at the 100 μg/L DEHP exposure level. In addition, exposure to 33 and 100 μg/L of DEHP resulted in a decline of circulating testosterone (T) and an increase in the level of 17β-estradiol (E2), both of which were possibly derived from the downregulation of cyp17a1 and hsd17b3 genes and the upregulation of the cyp19a1a gene in the gonads. The DNA methylation statuses of these genes were altered within their promoter regions. A significant increase in global DNA methylation in both the male testes and their offspring larvae was observed at higher exposure concentration of DEHP. Our findings demonstrate that exposure to environmentally relevant concentrations of DEHP can damage the testes, disturbe the sex hormones production, and inhibite spermatogenesis, which ultimately impairs the reproduction of male zebrafish.
Collapse
Affiliation(s)
- Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan-Pan Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Chun-Jiao Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Ankley GT, Feifarek D, Blackwell B, Cavallin JE, Jensen KM, Kahl MD, Poole S, Randolph E, Saari T, Villeneuve DL. Re-evaluating the Significance of Estrone as an Environmental Estrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4705-4713. [PMID: 28328210 PMCID: PMC6059648 DOI: 10.1021/acs.est.7b00606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Studies worldwide have demonstrated the occurrence of feminized male fish at sites impacted by human and animal wastes. A variety of chemicals could contribute to this phenomenon, but those receiving the greatest attention in terms of research and monitoring have been 17β-estradiol (β-E2) and 17α-ethinylestradiol, due both to their prevalence in the environment and strong estrogenic potency. A third steroid, estrone (E1), also can occur at high concentrations in surface waters but generally has been of lesser concern due to its relatively lower affinity for vertebrate estrogen receptors. In an initial experiment, male fathead minnow (Pimephales promelas) adults were exposed for 4-d to environmentally relevant levels of waterborne E1, which resulted in plasma β-E2 concentrations similar to those found in reproductively active females. In a second exposure we used 13C-labeled E1, together with liquid chromatography-tandem mass spectrometry, to demonstrate that elevated β-E2 measured in the plasma of the male fish was indeed derived from the external environment, most likely via a conversion catalyzed by one or more 17β-hydroxysteroid dehydrogenases. The results of our studies suggest that the potential impact of E1 as an environmental estrogen currently is underestimated.
Collapse
Affiliation(s)
- Gerald T. Ankley
- U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, Minnesota 55804, United States
- Corresponding Author. Phone: (218) 529-5147. Fax: (218) 529-5003.
| | - David Feifarek
- U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, Minnesota 55804, United States
| | - Brett Blackwell
- U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, Minnesota 55804, United States
| | - Jenna E. Cavallin
- Badger Technical Services, 6201 Congdon Boulevard, Duluth, Minnesota 55804, United States
| | - Kathleen M. Jensen
- U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, Minnesota 55804, United States
| | - Michael D. Kahl
- U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, Minnesota 55804, United States
| | - Shane Poole
- U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, Minnesota 55804, United States
| | - Eric Randolph
- Oak Ridge Institute of Science Education, 6201 Congdon Boulevard, Duluth, Minnesota 55804, United States
| | - Travis Saari
- U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, Minnesota 55804, United States
| | - Daniel L. Villeneuve
- U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, Minnesota 55804, United States
| |
Collapse
|
24
|
Miao L, Yuan Y, Cheng F, Fang J, Zhou F, Ma W, Jiang Y, Huang X, Wang Y, Shan L, Chen D, Zhang J. Translation repression by maternal RNA binding protein Zar1 is essential for early oogenesis in zebrafish. Development 2016; 144:128-138. [PMID: 27913641 DOI: 10.1242/dev.144642] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022]
Abstract
A large amount of maternal RNA is deposited in oocytes and is reserved for later development. Control of maternal RNA translation during oocyte maturation has been extensively investigated and its regulatory mechanisms are well documented. However, translational regulation of maternal RNA in early oogenesis is largely unexplored. In this study, we generated zebrafish zar1 mutants that result in early oocyte apoptosis and fully penetrant male development. Loss of p53 suppresses the apoptosis in zar1 mutants and restores oocyte development. zar1 immature ovaries show upregulation of proteins implicated in endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). More importantly, loss of Zar1 causes marked upregulation of zona pellucida (ZP) family proteins, while overexpression of ZP proteins in oocytes causes upregulation of stress-related activating transcription factor 3 (atf3), arguing that tightly controlled translation of ZP proteins is essential for ER homeostasis during early oogenesis. Furthermore, Zar1 binds to ZP gene mRNAs and represses their translation. Together, our results indicate that regulation of translational repression and de-repression are essential for precisely controlling protein expression during early oogenesis.
Collapse
Affiliation(s)
- Liyun Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China.,Center for Life Sciences; School of Life Sciences, Yunnan University, Kunming 650500, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Kunming 650500, China
| | - Yue Yuan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Center for Life Sciences; School of Life Sciences, Yunnan University, Kunming 650500, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Kunming 650500, China
| | - Feng Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junshun Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weirui Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Jiang
- Jilin University, Changchun 130012, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingjuan Shan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China .,Center for Life Sciences; School of Life Sciences, Yunnan University, Kunming 650500, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Kunming 650500, China
| |
Collapse
|
25
|
Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis. Sci Rep 2016; 6:35461. [PMID: 27748421 PMCID: PMC5066260 DOI: 10.1038/srep35461] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022] Open
Abstract
Sequential hermaphroditism is a unique reproductive strategy among teleosts that is displayed mainly in fish species living in the coral reef environment. The reproductive biology of hermaphrodites has long been intriguing; however, very little is known about the molecular pathways underlying their sex change. Here, we provide the first de novo transcriptome analyses of a hermaphrodite teleost´s undergoing sex change in its natural environment. Our study has examined relative gene expression across multiple groups-rather than just two contrasting conditions- and has allowed us to explore the differential expression patterns throughout the whole process. Our analysis has highlighted the rapid and complex genomic response of the brain associated with sex change, which is subsequently transmitted to the gonads, identifying a large number of candidate genes, some well-known and some novel, involved in the process. The present study provides strong evidence of the importance of the sex steroidogenic machinery during sex change in clownfish, with the aromatase gene playing a central role, both in the brain and the gonad. This work constitutes the first genome-wide study in a social sex-changing species and provides insights into the genetic mechanism governing social sex change and gonadal restructuring in protandrous hermaphrodites.
Collapse
|
26
|
Kemiläinen H, Adam M, Mäki-Jouppila J, Damdimopoulou P, Damdimopoulos AE, Kere J, Hovatta O, Laajala TD, Aittokallio T, Adamski J, Ryberg H, Ohlsson C, Strauss L, Poutanen M. The Hydroxysteroid (17β) Dehydrogenase Family Gene HSD17B12 Is Involved in the Prostaglandin Synthesis Pathway, the Ovarian Function, and Regulation of Fertility. Endocrinology 2016; 157:3719-3730. [PMID: 27490311 DOI: 10.1210/en.2016-1252] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hydroxysteroid (17beta) dehydrogenase (HSD17B)12 gene belongs to the hydroxysteroid (17β) dehydrogenase superfamily, and it has been implicated in the conversion of estrone to estradiol as well as in the synthesis of arachidonic acid (AA). AA is a precursor of prostaglandins, which are involved in the regulation of female reproduction, prompting us to study the role of HSD17B12 enzyme in the ovarian function. We found a broad expression of HSD17B12 enzyme in both human and mouse ovaries. The enzyme was localized in the theca interna, corpus luteum, granulosa cells, oocytes, and surface epithelium. Interestingly, haploinsufficiency of the HSD17B12 gene in female mice resulted in subfertility, indicating an important role for HSD17B12 enzyme in the ovarian function. In line with significantly increased length of the diestrous phase, the HSD17B+/- females gave birth less frequently than wild-type females, and the litter size of HSD17B12+/- females was significantly reduced. Interestingly, we observed meiotic spindle formation in immature follicles, suggesting defective meiotic arrest in HSD17B12+/- ovaries. The finding was further supported by transcriptome analysis showing differential expression of several genes related to the meiosis. In addition, polyovular follicles and oocytes trapped inside the corpus luteum were observed, indicating a failure in the oogenesis and ovulation, respectively. Intraovarian concentrations of steroid hormones were normal in HSD17B12+/- females, whereas the levels of AA and its metabolites (6-keto prostaglandin F1alpha, prostaglandin D2, prostaglandin E2, prostaglandin F2α, and thromboxane B2) were decreased. In conclusion, our study demonstrates that HSD17B12 enzyme plays an important role in female fertility through its role in AA metabolism.
Collapse
Affiliation(s)
- Heidi Kemiläinen
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Marion Adam
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Jenni Mäki-Jouppila
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Pauliina Damdimopoulou
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Anastasios E Damdimopoulos
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Juha Kere
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Outi Hovatta
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Teemu D Laajala
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Tero Aittokallio
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Jerzy Adamski
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Henrik Ryberg
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Claes Ohlsson
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Leena Strauss
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Matti Poutanen
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| |
Collapse
|
27
|
Tokarz J, Möller G, Hrabě de Angelis M, Adamski J. Steroids in teleost fishes: A functional point of view. Steroids 2015; 103:123-44. [PMID: 26102270 DOI: 10.1016/j.steroids.2015.06.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 01/23/2023]
Abstract
Steroid hormones are involved in the regulation of a variety of processes like embryonic development, sex differentiation, metabolism, immune responses, circadian rhythms, stress response, and reproduction in vertebrates. Teleost fishes and humans show a remarkable conservation in many developmental and physiological aspects, including the endocrine system in general and the steroid hormone related processes in particular. This review provides an overview of the current knowledge about steroid hormone biosynthesis and the steroid hormone receptors in teleost fishes and compares the findings to the human system. The impact of the duplicated genome in teleost fishes on steroid hormone biosynthesis and perception is addressed. Additionally, important processes in fish physiology regulated by steroid hormones, which are most dissimilar to humans, are described. We also give a short overview on the influence of anthropogenic endocrine disrupting compounds on steroid hormone signaling and the resulting adverse physiological effects for teleost fishes. By this approach, we show that the steroidogenesis, hormone receptors, and function of the steroid hormones are reasonably well understood when summarizing the available data of all teleost species analyzed to date. However, on the level of a single species or a certain fish-specific aspect of physiology, further research is needed.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
28
|
Chen X, Wang J, Zhu H, Ding J, Peng Y. Proteomics analysis of Xenopus laevis gonad tissue following chronic exposure to atrazine. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1770-1777. [PMID: 25760937 DOI: 10.1002/etc.2980] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/07/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
Atrazine is the most commonly detected pesticide contaminant in ground and surface water. Previous studies have shown that atrazine is an endocrine disruptor owing to its adverse effects on the male reproductive system in several vertebrates, but very few molecular mechanisms for these effects have been revealed. In the present study, Xenopus laevis were exposed to 100 ppb of atrazine for 120 d, and then the isobaric tags for relative and absolute quantitation (iTRAQ) technique was used to detect global changes in protein profiles of the testes and ovaries. The results showed that 100 ppb of atrazine exposure adversely affected the growth of X. laevis and did not induce hermaphroditism but delayed or prevented the development of male seminiferous tubules. Proteomic analysis showed that atrazine altered expression of 143 and 121 proteins in the testes and ovaries, respectively, and most of them are involved in cellular and metabolic processes and biological regulation based on their biological processes. In addition, apoptosis, tight junctions, and metabolic pathways were significantly altered in the atrazine-treated gonads. Based on the above results, it is postulated that the reproductive toxicity of atrazine may be the result of disruption of tight junctions and metabolic signaling pathways and/or induction of apoptosis in germ cells.
Collapse
Affiliation(s)
- Xiuping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jiamei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, People's Republic of China
| | - Haojun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Jiatong Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
29
|
Transcripts involved in steroid biosynthesis and steroid receptor signaling are expressed early in development in the fathead minnow (Pimephales promelas). Comp Biochem Physiol B Biochem Mol Biol 2015; 182:64-72. [DOI: 10.1016/j.cbpb.2014.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/02/2023]
|
30
|
Rajakumar A, Senthilkumaran B. Molecular cloning and expression analysis of 17b-hydroxysteroid dehydrogenase 1 and 12 during gonadal development, recrudescence and after in vivo hCG induction in catfish, Clarias batrachus. Steroids 2014; 92:81-9. [PMID: 25453338 DOI: 10.1016/j.steroids.2014.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/28/2014] [Accepted: 09/23/2014] [Indexed: 12/28/2022]
Abstract
In teleosts, the levels of steroids during critical period of sex differentiation are critical for gonadogenesis. Hence, steroidogenesis and expression of steroidogenic enzyme genes are very critical for gonadal development and function. In this regard, 17b-HSDs are important as they are involved in both 17b-estradiol (E2) and testosterone (T) biosynthesis. Full length cDNAs of 17b-HSD 1 (1791 bp) and 12 (1073 bp) were cloned from catfish gonads which encodes a protein of 295 and 317 amino acids, respectively. To understand the importance of these enzymes in teleost reproduction, mRNA expression was analyzed during gonadal development, seasonal reproductive cycle and after human chorionic gonadotropin (hCG) induction. Phylogenetic analysis revealed that the 17b-HSD 1 and 12 share high homology with their respective 17b-HSD forms from other teleosts and both the 17b-HSD forms belong to short chain dehydrogenase/ reductase family. Tissue distribution analysis showed that the 17b-HSD 1 expression was higher in ovary and gills, while 17b-HSD 12 was higher expressed in testis, ovary, brain, intestine and head kidney compared to other tissues analyzed. Developing and mature ovary showed higher expression of 17b-HSD 1, while 17b-HSD 12 was higher in testis than the ovary of corresponding stages. Further, 17b-HSD 1 and 12 transcripts together with E2 and T levels were found to be modulated during different phases of the seasonal reproductive cycle. Expression of 17b-HSD 1 and 12 was upregulated after hCG induction which shows possible regulation by gonadotropin. Our findings suggest that 17b-HSD 1 and 12 might play important role in regulating gonadal development and gametogenesis through modulation of sex steroid levels.
Collapse
|
31
|
Liu J, Zhang Z, Ma X, Liang S, Yang D. Characteristics of 17β-hydroxysteroid dehydrogenase 8 and its potential role in gonad of Zhikong scallop Chlamys farreri. J Steroid Biochem Mol Biol 2014; 141:77-86. [PMID: 24486454 DOI: 10.1016/j.jsbmb.2014.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/07/2014] [Accepted: 01/21/2014] [Indexed: 12/31/2022]
Abstract
17β-Hydroxysteroid dehydrogenases (17β-HSDs) are important enzymes catalyzing steroids biosynthesis and metabolism in vertebrates. Although studies indicate steroids play a potential role in reproduction of molluscs, little is known about the presence and function of 17β-HSDs in molluscs. In the present study, a full-length cDNA encoding 17β-HSD type 8 (17β-HSD8) was identified in the Zhikong scallop Chlamys farreri, which is 1104bp in length with an open reading frame of 759bp encoding a protein of 252 amino acids. Phylogenetic analysis revealed that the C. farreri 17β-HSD8 (Cf-17β-HSD8) belongs to the short chain dehydrogenase/reductase family (SDR) and shares high homology with other 17β-HSD8 homologues. Catalytic activity assay in vitro demonstrated that the refolded Cf-17β-HSD8 expressed in Escherichia coli could effectively convert estradiol-17β (E2) to estrone (E1), and weakly catalyze the conversion of testosterone (T) to androstenedione (A) in the presence of NAD(+). The Cf-17β-HSD8 mRNA was ubiquitously expressed in all tissues analyzed, including gonads. The expression levels of Cf-17β-HSD8 mRNA and protein increased with gametogenesis in both ovary and testis, and were significantly higher in testis than in ovary at growing stage and mature stage. Moreover, results of in situ hybridization and immunohistochemistry revealed that the mRNA and protein of Cf-17β-HSD8 were expressed in follicle cells and gametes at all stages except spermatozoa. Our findings suggest that Cf-17β-HSD8 may play an important role in regulating gametogenesis through modulating E2 levels in gonad of C. farreri.
Collapse
Affiliation(s)
- Jianguo Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhifeng Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| | - Xiaoshi Ma
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Shaoshuai Liang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Dandan Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
32
|
Limtipsuntorn U, Haga Y, Kondo H, Hirono I, Satoh S. Microarray analysis of hepatic gene expression in juvenile Japanese flounder Paralichthys olivaceus fed diets supplemented with fish or vegetable oils. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:88-102. [PMID: 24052493 DOI: 10.1007/s10126-013-9535-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/15/2013] [Indexed: 05/25/2023]
Abstract
Gene expression profiling was performed in Japanese flounder Paralichthys olivaceus fed diets supplemented with fish oil (FO), linseed oil (LO), or olive oil (OO) for 6 weeks. The LO and OO groups showed significantly retarded growth, lower feed intake, lower protein efficiency ratio, and lower hepatosomatic index (P < 0.05). Liver fatty acid composition reflected the dietary fatty acid composition. Microarray analysis revealed that dietary n - 3 highly unsaturated fatty acid (HUFA) deficiency affected 169 transcripts. In the LO group, 57 genes were up-regulated and 38 genes were down-regulated, whereas in the OO group nine genes were up-regulated and 87 genes were down-regulated. Analysis of the functional annotations suggested that dietary n - 3 HUFA affected genes involved in signal transduction (23.2 %), cellular processes (21.1 %), metabolism (including glucose, lipid, and nucleobase; 15.5 %), transport (11.3 %), regulation of transcription (10.5 %), and immune response (4.2 %). Several genes encoding serine/threonine kinases such as protein kinase C and calmodulin-dependent kinase and nuclear hormone receptors such as vitamin D receptor, retinoic acid receptor, and receptors for cytokines (bone morphogenic protein and transforming growth factor β) were affected. Among 169 transcripts, 22 genes were affected in both LO and OO groups. The present study identified several genes involved in n - 3 HUFA deficiency-sensitive pathways, which will be useful for selective breeding of flounder strains able to adapt to n - 3 HUFA deficiency.
Collapse
Affiliation(s)
- Ubonrat Limtipsuntorn
- Department of Marine Bioscience, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan, Minato 4-5-7, Tokyo, 108-8477, Japan
| | | | | | | | | |
Collapse
|
33
|
Zhao Y, Luo K, Fan Z, Huang C, Hu J. Modulation of benzo[a]pyrene-induced toxic effects in Japanese medaka (Oryzias latipes) by 2,2',4,4'-tetrabromodiphenyl ether. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13068-13076. [PMID: 24160713 DOI: 10.1021/es403260b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Because polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are ubiquitous and coexist in the environment and in wildlife, there are potential interactions between them that could cause toxic effects. In this study, the modulating effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE47) and benzo[a]pyrene (BaP)-induced reproductive and developmental toxic effects in Japanese medaka (Oryzias latipes) were investigated by exposing adult Japanese medaka to BaP alone, BDE47 alone, and coexposing them with both BaP and BDE47 at different concentrations, respectively. Exposure to BaP alone significantly suppressed fecundity and egg protein content and markedly induced skeletal deformation in F1 generation eleutheroembryos. BDE47 significantly recovered reproductive functions, fecundity, and egg protein content, suppressed by BaP when the concentration of BDE47 increased to 0.44 μg/L. Such effects can be at least partly explained by the decreased BaP levels in the coexposure groups and the accompanying increase in the circulating level of 17β-estradiol in female medaka fish. The prevalence of skeletal deformations markedly increased to 19.3 ± 2.4% and 16.0 ± 1.6% in fish coexposed to BaP and BDE47 at 0.44 and 2.58 μg/L compared with that of fish exposed to 1.21 μg/L BaP alone (9.7 ± 1.7%), and the impacts on male medaka fish in the coexposure groups would be the crucial reason leading to these effects. Considering that the measured water concentrations of BaP and BDE47 in the present study were comparable with those reported in rivers and harbors, BaP and BDE47 contamination in the real world would have a significant level of interactive effects on wild fish.
Collapse
Affiliation(s)
- Yanbin Zhao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | | | | | | | | |
Collapse
|
34
|
Tokarz J, Möller G, de Angelis MH, Adamski J. Zebrafish and steroids: what do we know and what do we need to know? J Steroid Biochem Mol Biol 2013; 137:165-73. [PMID: 23376612 DOI: 10.1016/j.jsbmb.2013.01.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/26/2012] [Accepted: 01/01/2013] [Indexed: 01/23/2023]
Abstract
Zebrafish, Danio rerio, has long been used as a model organism in developmental biology. Nowadays, due to their advantages compared to other model animals, the fish gain popularity and are also increasingly used in endocrinology. This review focuses on an important aspect of endocrinology in zebrafish by summarizing the progress in steroid hormone related research. We present the state of the art of research on steroidogenesis, the action of steroid hormones, and steroid catabolism and cover the incremental usage of zebrafish as a test animal in endocrine disruption research. By this approach, we demonstrate that some aspects of steroid hormone research are well characterized (e.g., expression patterns of the genes involved), while other aspects such as functional analyses of enzymes, steroid hormone elimination, or the impact of steroid hormones on embryonic development or sex differentiation have not been extensively studied and are poorly understood. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
35
|
Lima D, Machado A, Reis-Henriques MA, Rocha E, Santos MM, Castro LFC. Cloning and expression analysis of the 17β hydroxysteroid dehydrogenase type 12 (HSD17B12) in the neogastropod Nucella lapillus. J Steroid Biochem Mol Biol 2013; 134:8-14. [PMID: 23069646 DOI: 10.1016/j.jsbmb.2012.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 12/28/2022]
Abstract
HSD17B12 is a member of the hydroxysteroid dehydrogenase superfamily, a multifunctional group of enzymes involved in the metabolism of steroids, retinoids, bile and fatty acids. Whether the main role of HSD17B12 in mammals is in steroid or fatty acid metabolism is a subject of intense debate. In mollusks it has been shown that an HSD17B12 orthologue can convert estrone into estradiol in vitro, although its primary in vivo function remains unknown. To gain insight into its role in gastropods, we provide here the first cloning of Hsd17b12 in Nucella lapillus and its detailed tissue distribution through quantitative PCR. Furthermore, given that the endocrine disruptor tributyltin (TBT) has been reported to unbalance steroid and lipid levels in gastropods, we tested its impact in on NlHsd17b12 transcript expression. Our results show that NlHsd17b12 is ubiquitously expressed in all tissues analyzed, with higher levels in organs with high metabolic rates, such as kidney and digestive gland, a pattern consistent with an involvement in lipid metabolism. Exposure to TBT chloride at 100 ng Sn/L caused a decrease in NlHsd17b12 mRNA levels in digestive gland, after one and two months, while no effect was observed in gonads. Overall, these results suggest that in mollusks, as in mammals, this enzyme is likely to be involved in lipid metabolism, and emphasize the need to perform more detailed studies on its in vivo function, in order to understand its physiological role and the biological impact of its disruption by pollutants such as TBT.
Collapse
Affiliation(s)
- Daniela Lima
- Interdisciplinary Centre for Marine and Environmental Research, CIMAR Associate Laboratory, University of Porto, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
36
|
Anderson JL, Rodríguez Marí A, Braasch I, Amores A, Hohenlohe P, Batzel P, Postlethwait JH. Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics. PLoS One 2012; 7:e40701. [PMID: 22792396 PMCID: PMC3392230 DOI: 10.1371/journal.pone.0040701] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/12/2012] [Indexed: 11/27/2022] Open
Abstract
Within vertebrates, major sex determining genes can differ among taxa and even within species. In zebrafish (Danio rerio), neither heteromorphic sex chromosomes nor single sex determination genes of large effect, like Sry in mammals, have yet been identified. Furthermore, environmental factors can influence zebrafish sex determination. Although progress has been made in understanding zebrafish gonad differentiation (e.g. the influence of germ cells on gonad fate), the primary genetic basis of zebrafish sex determination remains poorly understood. To identify genetic loci associated with sex, we analyzed F(2) offspring of reciprocal crosses between Oregon *AB and Nadia (NA) wild-type zebrafish stocks. Genome-wide linkage analysis, using more than 5,000 sequence-based polymorphic restriction site associated (RAD-tag) markers and population genomic analysis of more than 30,000 single nucleotide polymorphisms in our *ABxNA crosses revealed a sex-associated locus on the end of the long arm of chr-4 for both cross families, and an additional locus in the middle of chr-3 in one cross family. Additional sequencing showed that two SNPs in dmrt1 previously suggested to be functional candidates for sex determination in a cross of ABxIndia wild-type zebrafish, are not associated with sex in our AB fish. Our data show that sex determination in zebrafish is polygenic and that different genes may influence sex determination in different strains or that different genes become more important under different environmental conditions. The association of the end of chr-4 with sex is remarkable because, unique in the karyotype, this chromosome arm shares features with known sex chromosomes: it is highly heterochromatic, repetitive, late replicating, and has reduced recombination. Our results reveal that chr-4 has functional and structural properties expected of a sex chromosome.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Adriana Rodríguez Marí
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Paul Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
37
|
Tokarz J, Mindnich R, Norton W, Möller G, Hrabé de Angelis M, Adamski J. Discovery of a novel enzyme mediating glucocorticoid catabolism in fish: 20beta-hydroxysteroid dehydrogenase type 2. Mol Cell Endocrinol 2012; 349:202-13. [PMID: 22061621 DOI: 10.1016/j.mce.2011.10.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 10/09/2011] [Accepted: 10/22/2011] [Indexed: 11/29/2022]
Abstract
Hydroxysteroid dehydrogenases (HSDs) are involved in metabolism and pre-receptor regulation of steroid hormones. While 17beta-HSDs and 11beta-HSDs are extensively studied in mammals, only few orthologs are characterized in fish. We discovered a novel zebrafish HSD candidate closely related to 17beta-HSD types 3 and 12, which has orthologs in other species. The enzyme catalyzes the conversion of cortisone to 20beta-hydroxycortisone identified by LC-MS/MS. We named the new enzyme 20beta-HSD type 2. All 20beta-HSD type 2 orthologs localize in the endoplasmic reticulum. Zebrafish 20beta-HSD type 2 is expressed during embryonic development showing the same expression pattern as 11beta-HSD type 2 known to oxidize cortisol to cortisone. In adult tissues 20beta-HSD type 2 shows a ubiquitous expression pattern with some minor sex-specific differences. In contrast to other enzymes metabolizing C21-steroids and being mostly involved in reproduction we propose that novel type 2 20beta-HSDs in teleost fish are important enzymes in cortisol catabolism.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
El Kihel L. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)--recent reports. Steroids 2012; 77:10-26. [PMID: 22037250 DOI: 10.1016/j.steroids.2011.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/14/2011] [Accepted: 09/18/2011] [Indexed: 12/24/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a multifunctional steroid with a broad range of biological effects in humans and animals. DHEA can be converted to multiple oxygenated metabolites in the brain and peripheral tissues. The mechanisms by which DHEA exerts its effects are not well understood. However, evidence that the effects of DHEA are mediated by its oxygenated metabolites has accumulated. This paper will review the panel of oxygenated DHEA metabolites (7, 16 and 17-hydroxylated derivatives) including a number of 5α-androstane derivatives, such as epiandrosterone (EpiA) metabolites. The most important aspects of the oxidative metabolism of DHEA in the liver, intestine and brain are described. Then, this article reviews the reported biological effects of oxygenated DHEA metabolites from recent findings with a specific focus on cancer, inflammatory and immune processes, osteoporosis, thermogenesis, adipogenesis, the cardiovascular system, the brain and the estrogen and androgen receptors.
Collapse
Affiliation(s)
- Laïla El Kihel
- Université de Caen Basse-Normandie, UFR des Sciences Pharmaceutiques, Centre d'Etudes et de Recherche sur le Médicament de Normandie, UPRES EA-4258, FR CNRS INC3M, Caen, France.
| |
Collapse
|
39
|
Saloniemi T, Jokela H, Strauss L, Pakarinen P, Poutanen M. The diversity of sex steroid action: novel functions of hydroxysteroid (17β) dehydrogenases as revealed by genetically modified mouse models. J Endocrinol 2012; 212:27-40. [PMID: 22045753 DOI: 10.1530/joe-11-0315] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Disturbed action of sex steroid hormones, i.e. androgens and estrogens, is involved in the pathogenesis of various severe diseases in humans. Interestingly, recent studies have provided data further supporting the hypothesis that the circulating hormone concentrations do not explain all physiological and pathological processes observed in hormone-dependent tissues, while the intratissue sex steroid concentrations are determined by the expression of steroid metabolising enzymes in the neighbouring cells (paracrine action) and/or by target cells themselves (intracrine action). This local sex steroid production is also a valuable treatment option for developing novel therapies against hormonal diseases. Hydroxysteroid (17β) dehydrogenases (HSD17Bs) compose a family of 14 enzymes that catalyse the conversion between the low-active 17-keto steroids and the highly active 17β-hydroxy steroids. The enzymes frequently expressed in sex steroid target tissues are, thus, potential drug targets in order to lower the local sex steroid concentrations. The present review summarises the recent data obtained for the role of HSD17B1, HSD17B2, HSD17B7 and HSD17B12 enzymes in various metabolic pathways and their physiological and pathophysiological roles as revealed by the recently generated genetically modified mouse models. Our data, together with that provided by others, show that, in addition to having a role in sex steroid metabolism, several of these HSD17B enzymes possess key roles in other metabolic processes: for example, HD17B7 is essential for cholesterol biosynthesis and HSD17B12 is involved in elongation of fatty acids. Additional studies in vitro and in vivo are to be carried out in order to fully define the metabolic role of the HSD17B enzymes and to evaluate their value as drug targets.
Collapse
Affiliation(s)
- Taija Saloniemi
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20014 Turku, Finland
| | | | | | | | | |
Collapse
|
40
|
Diotel N, Do Rego JL, Anglade I, Vaillant C, Pellegrini E, Vaudry H, Kah O. The brain of teleost fish, a source, and a target of sexual steroids. Front Neurosci 2011; 5:137. [PMID: 22194715 PMCID: PMC3242406 DOI: 10.3389/fnins.2011.00137] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 11/30/2011] [Indexed: 11/13/2022] Open
Abstract
Neurosteroids are defined as steroids de novo synthesized in the central nervous system. While the production of neurosteroids is well documented in mammals and amphibians, there is less information about teleosts, the largest group of fish. Teleosts have long been known for their high brain aromatase and 5α-reductase activities, but recent data now document the capacity of the fish brain to produce a large variety of sex steroids. This article aims at reviewing the available information regarding expression and/or activity of the main steroidogenic enzymes in the brain of fish. In addition, the distribution of estrogen, androgen, and progesterone nuclear receptors is documented in relation with the potential sites of production of neurosteroids. Interestingly, radial glial cells acting as neuronal progenitors, appear to be a potential source of neurosteroids, but also a target for centrally and/or peripherally produced steroids.
Collapse
Affiliation(s)
- Nicolas Diotel
- Neurogenesis and Œstrogens, UMR CNRS 6026, IFR 140, Université de Rennes 1 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Boujbiha MAM, Hamden K, Guermazi F, Bouslama A, Omezzine A, El Feki A. Impairment of spermatogenesis in rats by mercuric chloride: involvement of low 17β-estradiol level in induction of acute oxidative stress. Biol Trace Elem Res 2011; 142:598-610. [PMID: 20820944 DOI: 10.1007/s12011-010-8774-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 07/09/2010] [Indexed: 11/24/2022]
Abstract
Mercuric chloride (HgCl(2)) has been shown to affect the male reproductive organs, and oxidative stress has been linked with hypospermatogenesis and with male infertility. However, the specific mode of impairment of spermatogenesis during HgCl(2) exposure has not yet been clarified fully. Because of the involvement of 17β-estradiol (E2) in the male reproductive tract and its putative role on spermatogenesis, the present study aimed to investigate the possibility that HgCl(2)-induced oxidative stress-mediated modulation of the E2 level exerts adverse effects on testicular steroidogenic and gametogenic activities. HgCl(2) treatment at 50 and 100 ppm for 90 days by continuous oral administration in the drink water resulted in significant dose-dependent fashion decrease in serum and testicular E(2) levels and an increase in testicular testosterone levels in dose-dependent manner, without statistical alteration in serum testosterone level among HgCl(2) exposed groups compared to the control. Cauda epididymal sperm count and motility were decreased significantly (p < 0.01), in a dose-dependent manner, in the HgCl(2)-treated groups, and qualitative examination revealed inhibition of spermatogenesis and the preferential loss of maturing and elongated spermatids. The seminiferous tubules were dilated in treated animals. When compared to the control, increase in lipid peroxidation due to toxic effects of HgCl2 was accompanied by significant reduction (p < 0.01) in antioxidant enzymes activities, superoxide dismutase, catalase, and glutathione peroxidase of testes, implicating the presence of oxidative tissue damage. Furthermore, these tissue injuries caused functional impairment as evidenced with testicular elevated activity of lactate dehydrogenase. Unless oxidative stress can lead to cancer development, testis' tumor markers as beta human chorionic gonadotropin and alpha-fetoprotein levels have shown no significant differences in the HgCl(2)-exposed group compared with respect to the control. Large quantities of metal accumulated in the testis tissue are in agreement with the testis-activity failure verified in this tissue. These findings suggest that a decrease in E2 level after mercury exposure may render testis more susceptible to oxidative damage leading to its functional inactivation, thus providing new dimension to mechanisms underlying heavy metal-induced male infertility.
Collapse
Affiliation(s)
- Mohamed Ali Medali Boujbiha
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, P.O. Box 802, 3018 Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|
42
|
Zucchi S, Blüthgen N, Ieronimo A, Fent K. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males. Toxicol Appl Pharmacol 2011; 250:137-46. [DOI: 10.1016/j.taap.2010.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 12/27/2022]
|
43
|
Haller F, Moman E, Hartmann RW, Adamski J, Mindnich R. Molecular Framework of Steroid/Retinoid Discrimination in 17β-Hydroxysteroid Dehydrogenase Type 1 and Photoreceptor-associated Retinol Dehydrogenase. J Mol Biol 2010; 399:255-67. [DOI: 10.1016/j.jmb.2010.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|
44
|
Diotel N, Le Page Y, Mouriec K, Tong SK, Pellegrini E, Vaillant C, Anglade I, Brion F, Pakdel F, Chung BC, Kah O. Aromatase in the brain of teleost fish: expression, regulation and putative functions. Front Neuroendocrinol 2010; 31:172-92. [PMID: 20116395 DOI: 10.1016/j.yfrne.2010.01.003] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/20/2010] [Accepted: 01/24/2010] [Indexed: 12/25/2022]
Abstract
Unlike that of mammals, the brain of teleost fish exhibits an intense aromatase activity due to the strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. In situ hybridization, immunohistochemistry and expression of GFP (green fluorescent protein) in transgenic tg(cyp19a1b-GFP) fish demonstrate that aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. Although aromatase B-positive radial glial cells are most abundant in the preoptic area and the hypothalamus, they are observed throughout the entire central nervous system and spinal cord. In agreement with the fact that brain aromatase activity is correlated to sex steroid levels, the high expression of cyp19a1b is due to an auto-regulatory loop through which estrogens and aromatizable androgens up-regulate aromatase expression. This mechanism involves estrogen receptor binding on an estrogen response element located on the cyp19a1b promoter. Cell specificity is achieved by a mandatory cooperation between estrogen receptors and unidentified glial factors. Given the emerging roles of estrogens in neurogenesis, the unique feature of the adult fish brain suggests that, in addition to classical functions on brain sexual differentiation and sexual behaviour, aromatase expression in radial glial cells could be part of the mechanisms authorizing the maintenance of a high proliferative activity in the brain of fish.
Collapse
Affiliation(s)
- Nicolas Diotel
- Neurogenesis And OEstrogens, UMR CNRS 6026, IFR 140, Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hsu HJ, Lin JC, Chung BC. Zebrafish cyp11a1 and hsd3b genes: structure, expression and steroidogenic development during embryogenesis. Mol Cell Endocrinol 2009; 312:31-4. [PMID: 19682541 DOI: 10.1016/j.mce.2009.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/19/2009] [Accepted: 07/24/2009] [Indexed: 11/25/2022]
Abstract
Zebrafish has been used increasingly as a good animal model for a number of studies. To facilitate the use of this zebrafish model, the current report put emphasis on the study of two steroidogenic genes: cyp11a1 and hsd3b. These two genes encode enzymes that catalyze the first two steps of the steroidogenic pathway, and both enzymes are important for the synthesis of all steroids. Zebrafish cyp11a1 and hsd3b genes are expressed in the same cells in the gonads and interrenal gland. The interrenal gland is the counterpart of mammalian adrenal; it is located inside the head kidney and is developed parallel to the development of the pronephros. In addition, cyp11a1 and hsd3b are also expressed in the blastomeres of the early embryos before gastrulation, and in the extra-embryonic yolk syncytial layer during gastrulation. This early expression implies a novel role of steroids at gastrulation.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Institute of Molecular Biology, Academia Sinica, Academia Road Section 2, Nankang, 128 Taipei, Taiwan
| | | | | |
Collapse
|
46
|
Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30:259-301. [PMID: 19505496 DOI: 10.1016/j.yfrne.2009.05.006] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 413, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bellemare V, Laberge P, Noël S, Tchernof A, Luu-The V. Differential estrogenic 17beta-hydroxysteroid dehydrogenase activity and type 12 17beta-hydroxysteroid dehydrogenase expression levels in preadipocytes and differentiated adipocytes. J Steroid Biochem Mol Biol 2009; 114:129-34. [PMID: 19429442 DOI: 10.1016/j.jsbmb.2009.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 12/31/2008] [Accepted: 01/12/2009] [Indexed: 12/26/2022]
Abstract
Estradiol (E2) is produced locally in adipose tissue and could play an important role in fat distribution and accumulation, especially in women. It is well recognized that aromatase is expressed in adipose tissue; however the identity of its estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD) partner is not identified. To gain a better knowledge about the enzyme responsible for the conversion of estrone into estradiol, we determined the activity and expression levels of known estrogenic 17beta-HSDs, namely types 1, 7 and 12 17beta-HSD in preadipocytes before and after differentiation into mature adipocytes using an adipogenic media. Estrogenic 17beta-HSD activity was assessed using [(14)C]-labelled estrone, while mRNA expression levels of types 1, 7 and 12 17beta-HSD were quantified using real-time PCR and protein expression levels of type 12 17beta-HSD was determined using immunoblot analysis. The data indicate that there is a low conversion of E1 into E2 in preadipocytes; however this activity is increased approximately 5-fold (p<0.0001) in differentiated adipocytes. The increased estrogenic 17beta-HSD activity is consistent with the increase in protein expression levels of 17beta-HSD12.
Collapse
Affiliation(s)
- Véronique Bellemare
- Molecular Endocrinology and Oncology Research Center, Laval University Medical Research Center and Laval University, Québec, Canada
| | | | | | | | | |
Collapse
|
48
|
Moeller G, Adamski J. Integrated view on 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2009; 301:7-19. [PMID: 19027824 DOI: 10.1016/j.mce.2008.10.040] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are important enzymes in steroid metabolism. Long known members of the protein family seemed to be well characterised concerning their role in the regulation of the biological potency of steroid hormones, but today more and more evidence points to pivotal contributions of these enzymes in a variety of other metabolic pathways. Therefore, studies on 17beta-HSDs develop towards metabolomic survey. Latest research results give new insights into the complex metabolic interconnectivity of the 17beta-HSDs. In this paper metabolic activities of 17beta-HSDs will be compared, their interplay with endogenous substrates summarised, and interlacing pathways depicted. Strategies on deciphering the physiological role of 17beta-HSDs and the genetic predisposition for associated diseases will be presented.
Collapse
Affiliation(s)
- Gabriele Moeller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany.
| | | |
Collapse
|
49
|
Aka JA, Mazumdar M, Lin SX. Reductive 17beta-hydroxysteroid dehydrogenases in the sulfatase pathway: critical in the cell proliferation of breast cancer. Mol Cell Endocrinol 2009; 301:183-90. [PMID: 19038308 DOI: 10.1016/j.mce.2008.10.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 01/30/2023]
Abstract
Estradiol, the most potent estrogen, plays critical roles in tumor cell proliferation and breast cancer development. It can be synthesized via the aromatase pathway or the sulfatase pathway, and the later has been demonstrated to be more significant. Reductive 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyze the last step in estrogen activation and are thus critical in breast cancer development. 17beta-HSD Type 1 (17beta-HSD1) is of great importance since it efficiently synthesizes the most potent estrogen estradiol, as well as other estrogens as 5-androstene-3beta,17beta-diol and 5alpha-androstane-3beta,17beta-diol, and inactivates the most active androgen dihydrotestosterone (DHT), all contributing to the stimulation and development of breast cancers. Rational inhibitor design based on the new structure information has been developed, yielding interesting compounds and lead chemicals. This was demonstrated by a hybrid inhibitor that interacts with both the substrate and cofactor binding sites and a recently designed inhibitor 3-(3',17'beta-dihydroxyestra-1',3',5'(10')-trien-16'beta-methyl) benzamide which has been crystallized in complex with 17beta-HSD1. Both inhibitors demonstrate nM level K(i)in vitro. New non-steroidal inhibitors have been designed and reported very recently. The Type 7 17beta-HSD, expressed in several tissues including breast and ovary, can also contribute to estrogen synthesis and DHT inactivation in breast cancer cells. The enzyme role in steroid metabolism and cancer cell proliferation needs to be compared to that in cholesterogenesis. Breast cancer cell lines provide an excellent platform for such study. T47D, MCF-7 and MDA-MB-231-luc cells have been used to create xenografts in nude mice as animal models, now with the possibility of bioluminescent imaging to provide rapid, non-invasive, and quantitative analysis of tumor biomass and metastasis. Here we review the roles of the sulfatase and aromatase pathways and the contribution of the reductive 17beta-HSDs for hormone metabolism in breast cancer.
Collapse
Affiliation(s)
- Juliette A Aka
- Laboratory of Molecular Endocrinology and Oncology, CHUL Research Center (CHUQ) and Laval University, Quebec, Canada G1V 4G2
| | | | | |
Collapse
|
50
|
Mindnich R, Adamski J. Zebrafish 17beta-hydroxysteroid dehydrogenases: an evolutionary perspective. Mol Cell Endocrinol 2009; 301:20-6. [PMID: 19111899 DOI: 10.1016/j.mce.2008.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 01/13/2023]
Abstract
The term 17beta-hydroxysteroid dehydrogenase (17beta-HSD) describes an enzyme that stereospecifically reduces or oxidizes a keto- or hydroxy group at C17 of the steroid scaffold, respectively. Fourteen mammalian 17beta-HSDs have been identified so far and nine sequence homologs are found in zebrafish. 17beta-HSDs additionally active in fatty acid metabolism display high sequence conservation and widespread tissue expression. Homologs of these multifunctional 17beta-HSDs have been identified in flies, worms and yeast, and steroid-converting activity was demonstrated in some cases. The "classical" 17beta-HSDs, types 1, 2 and 3, are steroid-specific enzymes expressed in few tissues. They may have arisen at the beginning of vertebrate evolution allowing new, differently controlled modes of steroid hormone action. These findings reflect on two aspects: (1) the evolutionary origin of steroid-specific enzymes and (2) a possible conservation of steroid hormone function in invertebrates through currently unknown mechanisms.
Collapse
Affiliation(s)
- R Mindnich
- University of Pennsylvania, School of Medicine, Department of Pharmacology, 3620 Hamilton Walk, 135 John Morgan Building, Philadelphia, PA 19104, USA.
| | | |
Collapse
|