1
|
Adekunle YA, Samuel BB, Oluyemi WM, Adewumi AT, Mosebi S, Nahar L, Fatokun AA, Sarker SD. Oleanolic acid purified from the stem bark of Olax subscorpioidea Oliv. inhibits the function and catalysis of human 17 β-hydroxysteroid dehydrogenase 1. J Biomol Struct Dyn 2024:1-14. [PMID: 39485270 DOI: 10.1080/07391102.2024.2423173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/04/2024] [Indexed: 11/03/2024]
Abstract
Cancer is a leading cause of global death. Medicinal plants have gained increasing attention in cancer drug discovery. In this study, the stem bark extract of Olax subscorpioidea, which is used in ethnomedicine to treat cancer, was subjected to phytochemical investigation leading to the isolation of oleanolic acid (OA). The structure was elucidated by 1-dimensional and 2-dimensional nuclear magnetic resonance spectroscopic (NMR) data, and by comparing its data with previously reported data. Molecular docking was used to investigate the interactions of OA with nine selected cancer-related protein targets. OA docked well with human 17β-hydroxysteroid dehydrogenase type-1 (17βHSD1), caspase-3, and epidermal growth factor receptor tyrosine kinase (binding affinities: -9.8, -9.3, and -9.1 kcal/mol, respectively). OA is a triterpenoid compound with structural similarity to steroids. This similarity with the substrates of 17βHSD1 gives the inhibitor candidate an excellent opportunity to bind to 17βHSD1. The structural and functional dynamics of OA-17βHSD1 were investigated by molecular dynamics simulations at 240 ns. Molecular mechanics/Poisson-Boltzmann surface area (MMPBSA) studies showed that OA had a binding free energy that is comparable with that of vincristine (-52.76, and -63.56 kcal/mol, respectively). The average C-α root mean square of deviation (RMSD) value of OA (1.69 Å) compared with the unbound protein (2.01 Å) indicated its high stability at the protein's active site. The binding energy and stability at the active site of 17βHSD1 recorded in this study indicate that OA exhibited profound inhibitory potential. OA could be a good scaffold for developing new anti-breast cancer drugs.
Collapse
Affiliation(s)
- Yemi A Adekunle
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Babatunde B Samuel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Wande M Oluyemi
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Adeniyi T Adewumi
- Department of Life and Consumer Sciences, University of South Africa, Florida, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Florida, South Africa
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Amos A Fatokun
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
2
|
Lai J, Li C. Review on the pharmacological effects and pharmacokinetics of scutellarein. Arch Pharm (Weinheim) 2024; 357:e2400053. [PMID: 38849327 DOI: 10.1002/ardp.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/09/2024]
Abstract
Scutellarein is a flavonoid from Scutellaria baicalensis Georgi that has been shown to have a variety of pharmacological activities. This review aims to summarize the pharmacological and pharmacokinetic studies on scutellarein and provide useful information for relevant scholars. Pharmacological studies indicate that scutellarein possesses a diverse range of pharmacological properties, including but not limited to anti-inflammatory, antioxidant, antiviral, neuroprotective, hypoglycemic, hypolipidemic, anticancer, and cardiovascular protective effects. Further investigation reveals that the pharmacological effects of scutellarein are driven by multiple mechanisms. These mechanisms encompass the scavenging of free radicals, inhibition of the activation of inflammatory signaling pathways and expression of inflammatory mediators, inhibition of the activity of crucial viral proteins, suppression of gluconeogenesis, amelioration of insulin resistance, improvement of cerebral ischemia-reperfusion injury, induction of apoptosis in cancer cells, and prevention of myocardial hypertrophy, among others. In summary, these pharmacological studies suggest that scutellarein holds promise for the treatment of various diseases. It is imperative to conduct clinical studies to further elucidate the therapeutic effects of scutellarein. However, it is worth noting that studies on the pharmacokinetics reveal an inhibitory effect of scutellarein on uridine 5'-diphosphate glucuronide transferases and cytochrome P450 enzymes, potentially posing safety risks.
Collapse
Affiliation(s)
- Jiang Lai
- Department of Anorectal Surgery, The Third People's Hospital of Chengdu, Chengdu, China
| | - Chunxiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Kar TK, Sil S, Ghosh A, Barman A, Chattopadhyay S. Mitigation of letrozole induced polycystic ovarian syndrome associated inflammatory response and endocrinal dysfunction by Vitex negundo seeds. J Ovarian Res 2024; 17:76. [PMID: 38589892 PMCID: PMC11000293 DOI: 10.1186/s13048-024-01378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex endocrine disorder in women that necessitates effective and safe treatment alternatives. This study aimed to evaluate the therapeutic efficacy of Vitex negundo seed in a letrozole-induced PCOS rat model. RESULTS Findings of the present study demonstrated that administration of hydro-ethanolic extract of Vitex negundo (VNE) effectively restored endocrino-metabolic imbalances associated with PCOS, along with correction of antioxidant enzymes level, proinflammatory cytokines, and apoptotic bio-markers. LC-MS analysis confirmed the presence of cinnamic acid, plumbagin and nigundin B as the prominent phytochemicals in VNE. The observed beneficial effects could be attributed to the active compounds in Vitex negundo extract, which exhibited hypoglycemic, hypolipidemic, and catabolic effects on body weight. Additionally, the extract contributed to hormonal balance regulation by modulating the steroidogenic enzymes, specifically by tuning gonadotropins level and correcting the LH:FSH ratio, through the modulation of ERα signalling and downregulation of NR3C4 expression. The antioxidant properties of phytochemicals in Vitex negundo seed were apparent through the correction of SOD and catalase activity. While it's anti-inflammatory and antiapoptotic action were associated with the regulation of mRNA expression of TNF-α, IL-6, BAX, Bcl2. Molecular docking study further indicated the molecular interaction of above mentioned active phytocompounds of VNE with ERα, NR3C4 and with TNFα that plays a critical mechanistic gateway to the regulation of hormone signalling as well as synchronizing the inflammation cascade. Furthermore, the histomorphological improvement of the ovaries supported the ameliorative action of Vitex negundo extract in the letrozole-induced PCOS model. CONCLUSIONS This study indicates the potential of Vitex negundo seed as a multifaceted therapeutic option for PCOS. VNE offers a holistic strategy for PCOS with antiandrogenic, anti-inflammatory, and antioxidant properties, driven by its major compounds like cinnamic acid, plumbagine, and nigundin B.
Collapse
Affiliation(s)
- Tarun Kumar Kar
- Department of Biomedical Laboratory Science & Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Sananda Sil
- Department of Biomedical Laboratory Science & Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Angshita Ghosh
- Department of Biomedical Laboratory Science & Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Ananya Barman
- Department of Biomedical Laboratory Science & Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science & Management, Vidyasagar University, Midnapore, West Bengal, India.
| |
Collapse
|
4
|
El Menyiy N, Aboulaghras S, Bakrim S, Moubachir R, Taha D, Khalid A, Abdalla AN, Algarni AS, Hermansyah A, Ming LC, Rusu ME, Bouyahya A. Genkwanin: An emerging natural compound with multifaceted pharmacological effects. Biomed Pharmacother 2023; 165:115159. [PMID: 37481929 DOI: 10.1016/j.biopha.2023.115159] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Plant bioactive molecules could play key preventive and therapeutic roles in chronological aging and the pathogenesis of many chronic diseases, often accompanied by increased oxidative stress and low-grade inflammation. Dietary antioxidants, including genkwanin, could decrease oxidative stress and the expression of pro-inflammatory cytokines or pathways. The present study is the first comprehensive review of genkwanin, a methoxyflavone found in several plant species. Indeed, natural sources, and pharmacokinetics of genkwanin, the biological properties were discussed and highlighted in detail. This review analyzed and considered all original studies related to identification, isolation, quantification, investigation of the biological and pharmacological properties of genkwanin. We consulted all published papers in peer-reviewed journals in the English language from the inception of each database to 12 May 2023. Different phytochemical demonstrated that genkwanin is a non-glycosylated flavone found and isolated from several medicinal plants such as Genkwa Flos, Rosmarinus officinalis, Salvia officinalis, and Leonurus sibiricus. In vitro and in vivo biological and pharmacological investigations showed that Genkwanin exhibits remarkable antioxidant and anti-inflammatory activities, genkwanin, via activation of glucokinase, has shown antihyperglycemic activity with a potential role against metabolic syndrome and diabetes. Additionally, it revealed cardioprotective and neuroprotective properties, thus reducing the risk of cardiovascular diseases and assisting against neurodegenerative diseases. Furthermore, genkwanin showed other biological properties like antitumor capability, antibacterial, antiviral, and dermato-protective effects. The involved mechanisms include sub-cellular, cellular and molecular actions at different levels such as inducing apoptosis and inhibiting the growth and proliferation of cancer cells. Despite the findings from preclinical studies that have demonstrated the effects of genkwanin and its diverse mechanisms of action, additional research is required to comprehensively explore its therapeutic potential. Primarily, extensive studies should be carried out to enhance our understanding of the molecule's pharmacodynamic actions and pharmacokinetic pathways. Moreover, toxicological and clinical investigations should be undertaken to assess the safety and clinical efficacy of genkwanin. These forthcoming studies are of utmost importance in fully unlocking the potential of this molecule in the realm of therapeutic applications.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco.
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco.
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.
| | - Doaue Taha
- Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory, CERNE2D, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
5
|
Sinreih M, Gjorgoska M, Möller G, Adamski J, Rižner TL. 17β-Hydroxysteroid dehydrogenases types 1 and 2: Enzymatic assays based on radiometric and mass-spectrometric detection. Methods Enzymol 2023; 689:201-234. [PMID: 37802571 DOI: 10.1016/bs.mie.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1) has a key role in estrogen biosynthesis as it catalyzes the reduction of estrone to the most potent estrogen, estradiol. Estradiol has a high affinity for estrogen receptors and thus stimulates their transactivation, which leads to cell proliferation and numerous other effects. HSD17B2 catalyzes the oxidation of estradiol to the less potent estrone, thereby decreasing estrogen receptor activation, which results in reduction of estrogen-associated effects. HSD17B1 and HSD17B2 overexpressing E.coli homogenates or recombinant enzymes can be used for screening and development of drugs against various pathologies such as cancer, endometriosis or osteoporosis. Here we describe the preparation of HSD17B1 and HSD17B2 bacterial homogenates and purified recombinant HSD17B1 protein as enzyme sources as well as enzymatic assays based on radiometric and mass-spectrometric detection for enzyme characterization.
Collapse
Affiliation(s)
- Maša Sinreih
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljublijana, Slovenia
| | - Marija Gjorgoska
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljublijana, Slovenia
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Cancer, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jerzy Adamski
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljublijana, Slovenia; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Experimental Genetics, Neuherberg, Germany; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tea Lanišnik Rižner
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljublijana, Slovenia.
| |
Collapse
|
6
|
Erukainure OL, Oyenihi OR, Amaku JF, Chukwuma CI, Nde AL, Salau VF, Matsabisa MG. Cannabis sativa L. modulates altered metabolic pathways involved in key metabolisms in human breast cancer (MCF-7) cells: A metabolomics study. Heliyon 2023; 9:e16156. [PMID: 37215911 PMCID: PMC10196869 DOI: 10.1016/j.heliyon.2023.e16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
The present study investigated the ability of Cannabis sativa leaves infusion (CSI) to modulate major metabolisms implicated in cancer cells survival, as well as to induce cell death in human breast cancer (MCF-7) cells. MCF-7 cell lines were treated with CSI for 48 h, doxorubicin served as the standard anticancer drug, while untreated MCF-7 cells served as the control. CSI caused 21.2% inhibition of cell growth at the highest dose. Liquid chromatography-mass spectroscopy (LC-MS) profiling of the control cells revealed the presence of carbohydrate, vitamins, oxidative, lipids, nucleotides, and amino acids metabolites. Treatment with CSI caused a 91% depletion of these metabolites, while concomitantly generating selenomethionine, l-cystine, deoxyadenosine triphosphate, cyclic AMP, selenocystathionine, inosine triphosphate, adenosine phosphosulfate, 5'-methylthioadenosine, uric acid, malonic semialdehyde, 2-methylguanosine, ganglioside GD2 and malonic acid. Metabolomics analysis via pathway enrichment of the metabolites revealed the activation of key metabolic pathways relevant to glucose, lipid, amino acid, vitamin, and nucleotide metabolisms. CSI caused a total inactivation of glucose, vitamin, and nucleotide metabolisms, while inactivating key lipid and amino acid metabolic pathways linked to cancer cell survival. Flow cytometry analysis revealed an induction of apoptosis and necrosis in MCF-7 cells treated with CSI. High-performance liquid chromatography (HPLC) analysis of CSI revealed the presence of cannabidiol, rutin, cinnamic acid, and ferulic. These results portray the antiproliferative potentials of CSI as an alternative therapy for the treatment and management of breast cancer as depicted by its modulation of glucose, lipid, amino acid, vitamin, and nucleotide metabolisms, while concomitantly inducing cell death in MCF-7 cells.
Collapse
Affiliation(s)
- Ochuko L. Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Omolola R. Oyenihi
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - James F. Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| | - Chika I. Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein 9301, South Africa
| | - Adeline Lum Nde
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Veronica F. Salau
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Motlalepula G. Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
7
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
8
|
Lv Y, Mou Y, Su J, Liu S, Ding X, Yuan Y, Li G, Li G. The inhibitory effect and mechanism of Resina Draconis on the proliferation of MCF-7 breast cancer cells: a network pharmacology-based analysis. Sci Rep 2023; 13:3816. [PMID: 36882618 PMCID: PMC9992681 DOI: 10.1038/s41598-023-30585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Resina Draconis (RD) is known as the "holy medicine for promoting blood circulation" and possesses antitumor properties against various types of cancer, including breast cancer (BC); however, the underlying mechanism is not well understood. To explore the potential mechanism of RD against BC using network pharmacology and experimental validation, data on bioactive compounds, potential targets of RD, and related genes of BC were obtained from multiple public databases. Gene Ontology (GO) and KEGG pathway analyses were performed via the DAVID database. Protein interactions were downloaded from the STRING database. The mRNA and protein expression levels and survival analysis of the hub targets were analyzed using the UALCAN, HPA, Kaplan‒Meier mapper, and cBioPortal databases. Subsequently, molecular docking was used to verify the selected key ingredients and hub targets. Finally, the predicted results of network pharmacology methods were verified by cell experiments. In total, 160 active ingredients were obtained, and 148 RD target genes for the treatment of BC were identified. KEGG pathway analysis indicated that RD exerted its therapeutic effects on BC by regulating multiple pathways. Of these, the PI3K-AKT pathway was indicated to play an important role. In addition, RD treatment of BC seemed to involve the regulation of hub targets that were identified based on PPI interaction network analysis. Validation in different databases showed that AKT1, ESR1, HSP90AA1, CASP3, SRC and MDM2 may be involved in the carcinogenesis and progression of BC and that ESR1, IGF1 and HSP90AA1 were correlated with worse overall survival (OS) in BC patients. Molecular docking results showed that 103 active compounds have good binding activity with the hub targets, among which flavonoid compounds were the most important active components. Therefore, the sanguis draconis flavones (SDF) were selected for subsequent cell experiments. The experimental results showed that SDF significantly inhibited the cell cycle and cell proliferation of MCF-7 cells through the PI3K/AKT pathway and induced MCF-7 cell apoptosis. This study has preliminarily reported on the active ingredients, potential targets, and molecular mechanism of RD against BC, and RD was shown to exert its therapeutic effects on BC by regulating the PI3K/AKT pathway and related gene targets. Importantly, our work could provide a theoretical basis for further study of the complex anti-BC mechanism of RD.
Collapse
Affiliation(s)
- Yana Lv
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Yan Mou
- Yuxi Normal University, Yuxi, 653100, China
| | - Jing Su
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Shifang Liu
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Xuan Ding
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Yin Yuan
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Ge Li
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China. .,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| | - Guang Li
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China. .,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| |
Collapse
|
9
|
Human Estrogen Receptor Alpha Antagonists, Part 3: 3-D Pharmacophore and 3-D QSAR Guided Brefeldin A Hit-to-Lead Optimization toward New Breast Cancer Suppressants. Molecules 2022; 27:molecules27092823. [PMID: 35566172 PMCID: PMC9101642 DOI: 10.3390/molecules27092823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
The estrogen receptor α (ERα) is an important biological target mediating 17β-estradiol driven breast cancer (BC) development. Aiming to develop innovative drugs against BC, either wild-type or mutated ligand-ERα complexes were used as source data to build structure-based 3-D pharmacophore and 3-D QSAR models, afterward used as tools for the virtual screening of National Cancer Institute datasets and hit-to-lead optimization. The procedure identified Brefeldin A (BFA) as hit, then structurally optimized toward twelve new derivatives whose anticancer activity was confirmed both in vitro and in vivo. Compounds as SERMs showed picomolar to low nanomolar potencies against ERα and were then investigated as antiproliferative agents against BC cell lines, as stimulators of p53 expression, as well as BC cell cycle arrest agents. Most active leads were finally profiled upon administration to female Wistar rats with pre-induced BC, after which 3DPQ-12, 3DPQ-3, 3DPQ-9, 3DPQ-4, 3DPQ-2, and 3DPQ-1 represent potential candidates for BC therapy.
Collapse
|
10
|
Wang Q, Liu X, Liu H, Fu Y, Cheng Y, Zhang L, Shi W, Zhang Y, Chen J. Transcriptomic and Metabolomic Analysis of Wheat Kernels in Response to the Feeding of Orange Wheat Blossom Midges ( Sitodiplosis mosellana) in the Field. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1477-1493. [PMID: 35090120 DOI: 10.1021/acs.jafc.1c06239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The orange wheat blossom midge (Sitodiplosis mosellana Géhin) is an insect pest that feeds on wheat (Triticum aestivum L.). The resistance mechanisms of wheat to S. mosellana infestation are largely unknown. In this study, the wheat varieties LX99 and 6218 were identified as highly resistant and susceptible, respectively, via field investigations conducted over two consecutive years. Morphological and microstructural observations of mature wheat kernels following S. mosellana infestation revealed that the degree of cell structure damage in resistant LX99 grains was less than that in susceptible 6218 grains. Transcriptomic and metabolomic analyses of seeds following S. mosellana feeding showed that the differentially expressed genes and differentially accumulated metabolites from LX99 were mostly enriched in several primary and secondary metabolic pathways, including phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine biosynthesis. Additionally, phenylpropanoid- and flavonoid-related gene expression was significantly upregulated following S. mosellana infestation in LX99 relative to that in 6218. Some metabolites involved in phenylpropanoid/flavonoid pathways, such as cinnamic acid, coumarin, epigallocatechin, and naringenin, were only induced in infested LX99 kernels. These results suggest that phenylpropanoid/flavonoid pathways play important roles in wheat kernel resistance to S. mosellana attack and provide useful insights for the breeding and utilization of resistant varieties.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yumeng Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Lijiao Zhang
- Plant Protection and Epidemic Station of Luquan District, Hebei 050299, P. R. China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
11
|
Iqbal H, Menaa F, Khan NU, Razzaq A, Khan ZU, Ullah K, Kamal R, Sohail M, Thiripuranathar G, Uzair B, Rana NF, Khan BA, Menaa B. Two Promising Anti-Cancer Compounds, 2-Hydroxycinnaldehyde and 2-Benzoyloxycinnamaldehyde: Where do we stand? Comb Chem High Throughput Screen 2021; 25:808-818. [PMID: 33593253 DOI: 10.2174/1386207324666210216094428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/10/2021] [Accepted: 01/17/2021] [Indexed: 11/22/2022]
Abstract
Natural bioactive compounds with anti-carcinogenic activity are gaining tremendous interest in the field of oncology. Cinnamon, an aromatic condiment commonly used in tropical regions, appeared incredibly promising as adjuvant for cancer therapy. Indeed, its whole or active parts (e.g., bark, leaf) exhibited significant anti-carcinogenic activity, which is mainly due to two cinnamaldehyde derivatives, namely 2-hydroxycinnaldehyde (HCA) and 2-benzoyloxycinnamaldehyde (BCA). In addition to their anti-cancer activity, HCA and BCA exert immunomodulatory, anti-platelets, and anti-inflammatory activities. Highly reactive α,ß-unsaturated carbonyl pharmacophore, called Michael acceptor, contribute to their therapeutic effects. The molecular mechanisms, underlying their anti-tumoral and anti-metastatic effects are miscellaneous, strongly suggesting that these compounds are multi-targeting compounds. Nevertheless, unravelling the exact molecular mechanisms of HCA and BCA remain a challenging matter which is necessary for optimal controlled-drug targeting delivery, safety, and efficiency. Eventually, their poor pharmacological properties (e.g., systemic bioavailability and solubility) represent a limitation, and depend both on their administration route (e.g., per os, intravenously) and the nature of the formulation (e.g., free, smart nano-). This concise review focused on the potential of HCA and BCA as adjuvants in Cancer. We described their medicinal effects as well as provide an update about their molecular mechanisms reported either in-vitro, ex-vivo, or in animal models.
Collapse
Affiliation(s)
- Haroon Iqbal
- College of Pharmaceutical Sciences, Soochow University, Suzhou. China
| | - Farid Menaa
- Department of Oncology, California Innovations Corp., San Diego, CA. United States
| | - Naveed Ullah Khan
- College of Pharmaceutical Sciences, Soochow University, Suzhou. China
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou. China
| | | | - Kifayat Ullah
- College of Pharmaceutical Sciences, Soochow University, Suzhou. China
| | - Robia Kamal
- College of Pharmaceutical Sciences, Soochow University, Suzhou. China
| | - Muhammad Sohail
- Department of Pharmacy, School of Pharmacy, Yantai University, Yantai. China
| | - Gobika Thiripuranathar
- Institute of Chemistry Ceylon, College of Chemical Sciences, Welikada, Rajagiriya. Sri Lanka
| | - Bushra Uzair
- Department of Bioinformatics and Biotechnology, Islamic International University, Islamabad. Pakistan
| | - Nosheen Fatima Rana
- Department of Biomedical Engineering & Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad. Pakistan
| | - Barkat Ali Khan
- Department of Pharmacy, Gomal University, D.I. Khan. Pakistan
| | - Bouzid Menaa
- Department of Oncology, California Innovations Corp., San Diego, CA. United States
| |
Collapse
|
12
|
Mottinelli M, Sinreih M, Rižner TL, Leese MP, Potter BVL. N-Phenyl-1,2,3,4-tetrahydroisoquinoline: An Alternative Scaffold for the Design of 17β-Hydroxysteroid Dehydrogenase 1 Inhibitors. ChemMedChem 2020; 16:259-291. [PMID: 33151004 DOI: 10.1002/cmdc.202000762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 11/08/2022]
Abstract
17β-Hydroxysteroid dehydrogenases catalyse interconversion at the C17 position between oxidized and reduced forms of steroidal nuclear receptor ligands. The type 1 enzyme, expressed in malignant cells, catalyses reduction of the less-active estrone to estradiol, and inhibitors have therapeutic potential in estrogen-dependent diseases such as breast and ovarian cancers and in endometriosis. Synthetic decoration of the nonsteroidal N-phenyl-1,2,3,4-tetrahydroisoquinoline (THIQ) template was pursued by using Pomeranz-Fritsch-Bobbitt, Pictet-Spengler and Bischler-Napieralski approaches to explore the viability of this scaffold as a steroid mimic. Derivatives were evaluated biologically in vitro as type 1 enzyme inhibitors in a bacterial cell homogenate as source of recombinant protein. Structure-activity relationships are discussed. THIQs possessing a 6-hydroxy group, lipophilic substitutions at the 1- or 4-positions in combination with N-4'-chlorophenyl substitution were most favourable for activity. Of these, one compound had an IC50 of ca. 350 nM as a racemate, testifying to the applicability of this novel approach.
Collapse
Affiliation(s)
- Marco Mottinelli
- Wolfson Laboratory of Medicinal Chemistry Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, BA2 7AY, Bath, UK.,Present address: Department of Medicinal Chemistry School of Pharmacy, University of Florida, 1345 Center Dr., Gainesville, FL 32611, USA
| | - Maša Sinreih
- Institute of Biochemistry Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Tea L Rižner
- Institute of Biochemistry Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Mathew P Leese
- Wolfson Laboratory of Medicinal Chemistry Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| | - Barry V L Potter
- Drug Discovery & Medicinal Chemistry Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,Wolfson Laboratory of Medicinal Chemistry Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| |
Collapse
|
13
|
Din ZU, Farooq SU, Shahid M, Alghamdi O, Al-Hamoudi N, Vohra F, Abduljabbar T. The flavonoid 6-hydroxyflavone prevention of cisplatin-induced nephrotoxicity. Histol Histopathol 2020; 35:1197-1209. [PMID: 32909617 DOI: 10.14670/hh-18-251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, the flavonoid, 6-hydroxyflavone was investigated for its renal protective activity in the cisplatin rat model of nephrotoxicity. Male Sprague-Dawley rats weighing 200-250 g were included in the study. 6-Hydroxyflavone was daily administered at 25 and 50 mg/kg (i.p.), while ascorbic acid was used as a positive control and injected (i.p.) at 50 mg/kg for 15 days. The nephrotoxicity was evoked with a single cisplatin injection at 7.5 mg/kg on the tenth day of treatment. The renal function and levels of oxidative stress markers were assessed. Each tissue slide of different groups was observed under a compound microscope attached with a digital camera. Cisplatin significantly decreased the overall body weight with an increase in serum creatinine and urea and production of severe histopathological and oxidative stress in the kidneys. The daily treatment with 6-hydroxyflavone significantly attenuated the cisplatin associated detrimental changes in the body weight, and serum levels of creatinine and urea at both 25 mg/kg (P<0.05) and 50 mg/kg (P<0.01). The 6-hydroxyflavone treatment also preserved the renal histoarchitecture from the toxicological influence of cisplatin as evident from a significant reduction in the severity of histopathological changes in the renal tissues. Moreover, 6-hydroxyflavone also reduced the cisplatin-induced lipid peroxidation and corrected the renal antioxidant status. A similar protective effect was observed with the positive control, ascorbic acid (50 mg/kg). These findings show that the flavonoid 6-hydroxyflavone has potential nephroprotective properties and can be used for the management of chemotherapy associated renal disturbances.
Collapse
Affiliation(s)
- Zia Ud Din
- Department of Anatomy, Khyber Medical College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Syed Umer Farooq
- Department of Oral Pathology, Khyber College of Dentistry, Peshawar, Khyber Pakhtunkhwa Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan. .,Department of Pharmacy, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Osama Alghamdi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Nawwaf Al-Hamoudi
- Department of Periodontics and Community Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Sasidharan S, Saudagar P. Flavones reversibly inhibit Leishmania donovani tyrosine aminotransferase by binding to the catalytic pocket: An integrated in silico-in vitro approach. Int J Biol Macromol 2020; 164:2987-3004. [PMID: 32798546 DOI: 10.1016/j.ijbiomac.2020.08.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The current drugs for treating Leishmaniasis are toxic, non-economical and with the emergence of drug resistance makes the need for novel therapeutics urgent and necessary. In the current study, we report the identification of compounds TI 1-5 against tyrosine aminotransferase of L. donovani from a curated ZINC15 database containing 183,659 compounds. These flavonoid compounds had binding energies < -8 kcal/mol and interacted with the active site residues S151, K286, C290, and P291. Assessment of physicochemical descriptors and ADMET properties established the drug likeliness of these compounds. The all-atom molecular dynamic simulations of the TAT-TI complexes exhibited stable geometrical properties and further trajectory analysis revealed the high-affinity interactions of TI 1, 3, 4, and 5 with the active site residues. DFT calculations reported the high electrophilic nature of TI 2 while other TI compounds demonstrated good kinetic stability and reactivity. From in vitro studies, TI 3 and TI 4 had the highest inhibition with Ki values of 0.9 ± 0.2 μM and 0.30 ± 0.1 μM, respectively. Taken together, the results from this study indicate the potentiality of TI 1, 3, 4, and 5 as anti-leishmanial leads, and these compounds can be exploited to manage the growing Leishmaniasis crisis in the world.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India.
| |
Collapse
|
15
|
Anti-cancer effects of cinnamon: Insights into its apoptosis effects. Eur J Med Chem 2019; 178:131-140. [PMID: 31195168 DOI: 10.1016/j.ejmech.2019.05.067] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 01/21/2023]
Abstract
Cancer is known as a leading cause of death worldwide. In the last two decades, the incidence of cancer has been dramatically increased mostly due to lifestyle changes. The importance of this issue has attracted further attention to discover novel therapies to prevent and treat cancers. According to previous studies, drugs used to treat cancer have shown significant limitations. Therefore, the role of herbal medicines alone or in combination with chemotherapy drugs has been extensively studied in cancer treatment. Cinnamon is a natural component showing a wide range of pharmacological functions including anti-oxidant, anti-microbial and anti-cancer activities. Impaired apoptosis plays critical roles in the initiation and progression of cancer. Increasing evidence indicates that cinnamon, as a therapeutic agent, has anti-cancer effects via affecting numerous apoptosis-related pathways in cancer cells. Here, we highlighted anticancer properties of cinnamon, particularly through targeting apoptosis-related mechanisms.
Collapse
|
16
|
Salah M, Abdelsamie AS, Frotscher M. Inhibitors of 17β-hydroxysteroid dehydrogenase type 1, 2 and 14: Structures, biological activities and future challenges. Mol Cell Endocrinol 2019; 489:66-81. [PMID: 30336189 DOI: 10.1016/j.mce.2018.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
During the past 25 years, the modulation of estrogen action by inhibition of 17β-hydroxysteroid dehydrogenase types 1 and 2 (17β-HSD1 and 17β-HSD2), respectively, has been pursued intensively. In the search for novel treatment options for estrogen-dependent diseases (EDD) and in order to explore estrogenic signaling pathways, a large number of steroidal and nonsteroidal inhibitors of these enzymes has been described in the literature. The present review gives a survey on the development of inhibitor classes as well as the structural formulas and biological properties of their most interesting representatives. In addition, rationally designed dual inhibitors of both 17β-HSD1 and steroid sulfatase (STS) as well as the first inhibitors of 17β-HSD14 are covered.
Collapse
Affiliation(s)
- Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123, Saarbrücken, Germany
| | - Ahmed S Abdelsamie
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E81, 66123, Saarbrücken, Germany; Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123, Saarbrücken, Germany.
| |
Collapse
|
17
|
Li Y, Hong J, Li H, Qi X, Guo Y, Han M, Wang X. Genkwanin nanosuspensions: a novel and potential antitumor drug in breast carcinoma therapy. Drug Deliv 2017; 24:1491-1500. [PMID: 28961040 PMCID: PMC8241161 DOI: 10.1080/10717544.2017.1384519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, genkwanin (GKA) has been shown to display in vitro antitumor activity against some cancer cells, but its poor solubility restricted the in vivo study and further investigation of its antitumor therapeutic efficacy. In this paper, genkwanin nanosuspensions (GKA-NSps) were successfully prepared using D-alpha tocopherol acid polyethylene glycol succinate (TPGS) as a stabilizer using the precipitation-homogenization method. The obtained GKA-NSps had an average particle size of 183.1 ± 4.4 nm, a PDI value of 0.16 ± 0.07, a zeta potential of −16.2 ± 0.1 mV, and a drug loading content of 49.36 ± 0.14%. GKA-NSps showed spherical morphology and very good stability in normal saline, phosphate buffer saline (PBS, pH 7.4), 5% glucose, artificial gastric juice, artificial intestinal juice and plasma; thus, it is suitable for both oral and intravenous administration. The resultant GKA-NSps displayed sustained drug release behavior and stronger in vitro cytotoxicity against 4T1, MCF-7, MDA-MB-453, HeLa, HepG2, BT474, and A549 cells than free GKA. The in vivo study in MCF-7 tumor-bearing nude mice indicated that GKA-NSps (60 mg/kg, i.v.) achieved similar therapeutic efficacy as PTX injection (8 mg/kg, i.v.) (62.09% vs. 61.27%), while the minimal lethal dose was more than 320 mg/kg, indicating good safety. By using nanotechnology, our study suggested that some antitumor flavonoids of low potency, such as GKA, are promising as safe but effective anticancer drugs.
Collapse
Affiliation(s)
- Yijing Li
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , PR China
| | - Jingyi Hong
- b Institute of Allergy and Immunology , Shenzhen University School of Medicine , Shenzhen , Guangdong Province , PR China
| | - Haowen Li
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , PR China
| | - Xiaoyu Qi
- c School of Pharmacy , Heilongjiang University of Chinese Medicine , Harbin , PR China
| | - Yifei Guo
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , PR China
| | - Meihua Han
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , PR China
| | - Xiangtao Wang
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , PR China
| |
Collapse
|
18
|
Insight into the mode of action and selectivity of PBRM, a covalent steroidal inhibitor of 17β-hydroxysteroid dehydrogenase type 1. Biochem Pharmacol 2017; 144:149-161. [DOI: 10.1016/j.bcp.2017.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
|
19
|
Cassetta A, Stojan J, Krastanova I, Kristan K, Brunskole Švegelj M, Lamba D, Lanišnik Rižner T. Structural basis for inhibition of 17β-hydroxysteroid dehydrogenases by phytoestrogens: The case of fungal 17β-HSDcl. J Steroid Biochem Mol Biol 2017; 171:80-93. [PMID: 28259640 DOI: 10.1016/j.jsbmb.2017.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 01/03/2023]
Abstract
Phytoestrogens are plant-derived compounds that functionally and structurally mimic mammalian estrogens. Phytoestrogens have broad inhibitory activities toward several steroidogenic enzymes, such as the 17β-hydroxysteroid dehydrogenases (17β-HSDs), which modulate the biological potency of androgens and estrogens in mammals. However, to date, no crystallographic data are available to explain phytoestrogens binding to mammalian 17β-HSDs. NADP(H)-dependent 17β-HSD from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) has been the subject of extensive biochemical, kinetic and quantitative structure-activity relationship studies that have shown that the flavonols are the most potent inhibitors. In the present study, we investigated the structure-activity relationships of the ternary complexes between the holo form of 17β-HSDcl and the flavonols kaempferol and 3,7-dihydroxyflavone, in comparison with the isoflavones genistein and biochanin A. Crystallographic data are accompanied by kinetic analysis of the inhibition mechanisms for six flavonols (3-hydroxyflavone, 3,7-dihydroxyflavone, kaempferol, quercetin, fisetin, myricetin), one flavanone (naringenin), one flavone (luteolin), and two isoflavones (genistein, biochanin A). The kinetics analysis shows that the degree of hydroxylation of ring B significantly influences the overall inhibitory efficacy of the flavonols. A distinct binding mode defines the interactions between 17β-HSDcl and the flavones and isoflavones. Moreover, the complex with biochanin A reveals an unusual binding mode that appears to account for its greater inhibition of 17β-HSDcl with respect to genistein. Overall, these data provide a blueprint for identification of the distinct molecular determinants that underpin 17β-HSD inhibition by phytoestrogens.
Collapse
Affiliation(s)
- Alberto Cassetta
- Istituto di Cristallografia, UOS Trieste, Consiglio Nazionale delle Ricerche, S. S. 14-Km 163.5, I-34149, Trieste, Italy.
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - Ivet Krastanova
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S. C. p. A., S. S. 14-Km 163.5, I-34149, Trieste, Italy
| | - Katja Kristan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Mojca Brunskole Švegelj
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Doriano Lamba
- Istituto di Cristallografia, UOS Trieste, Consiglio Nazionale delle Ricerche, S. S. 14-Km 163.5, I-34149, Trieste, Italy
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Hong SH, Ismail IA, Kang SM, Han DC, Kwon BM. Cinnamaldehydes in Cancer Chemotherapy. Phytother Res 2016; 30:754-67. [PMID: 26890810 DOI: 10.1002/ptr.5592] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 12/16/2022]
Abstract
Cinnamaldehyde and cinnamaldehyde-derived compounds are candidates for the development of anticancer drugs that have received extensive research attention. In this review, we summarize recent findings detailing the positive and negative aspects of cinnamaldehyde and its derivatives as potential anticancer drug candidates. Furthermore, we describe the in vivo pharmacokinetics and metabolism of cinnamaldehydes. The oxidative and antioxidative properties of cinnamaldehydes, which contribute to their potential in chemotherapy, have also been discussed. Moreover, the mechanism(s) by which cinnamaldehydes induce apoptosis in cancer cells have been explored. In addition, evidence of the regulatory effects of cinnamaldehydes on cancer cell invasion and metastasis has been described. Finally, the application of cinnamaldehydes in treating various types of cancer, including breast, prostate, and colon cancers, has been discussed in detail. The effects of cinnamaldehydes on leukemia, hepatocellular carcinoma, and oral cancer have been summarized briefly. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Su-Hyung Hong
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Korea
| | - Ismail Ahmed Ismail
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Korea.,Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Sung-Min Kang
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Korea
| | - Dong Cho Han
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology in Korea, 125 Gwahakro Yoosunggu, Daejeon, 305-806, Korea
| | - Byoung-Mog Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology in Korea, 125 Gwahakro Yoosunggu, Daejeon, 305-806, Korea
| |
Collapse
|
21
|
Koirala N, Thuan NH, Ghimire GP, Thang DV, Sohng JK. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme Microb Technol 2016; 86:103-16. [PMID: 26992799 DOI: 10.1016/j.enzmictec.2016.02.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 12/16/2022]
Abstract
Among the natural products, flavonoids have been particularly attractive, highly studied and become one of the most important promising agent to treat cancer, oxidant stress, pathogenic bacteria, inflammations, cardio-vascular dysfunctions, etc. Despite many promising roles of flavonoids, expectations have not been fulfilled when studies were extended to the in vivo condition, particularly in humans. Instability and very low oral bioavailability of dietary flavonoids are the reasons behind this. Researches have demonstrated that the methylation of these flavonoids could increase their promise as pharmaceutical agents leading to novel applications. Methylation of the flavonoids via theirs free hydroxyl groups or C atom dramatically increases their metabolic stability and enhances the membrane transport, leading to facilitated absorption and highly increased oral bioavailability. In this paper, we concentrated on analysis of flavonoid methoxides including O- and C-methoxide derivatives in aspect of structure, bioactivities and description of almost all up-to-date O- and C-methyltransferases' enzymatic characteristics. Furthermore, modern biological approaches for synthesis and production of flavonoid methoxides using metabolic engineering and synthetic biology have been focused and updated up to 2015. This review will give a handful information regarding the methylation of flavonoids, methyltransferases and biotechnological synthesis of the same.
Collapse
Affiliation(s)
- Niranjan Koirala
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung Street, Haichau District, Danang City, Viet Nam.
| | - Gopal Prasad Ghimire
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Duong Van Thang
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| |
Collapse
|
22
|
Zhang Z, Wei B, Xia Y, Xu C, Chen X. Tissue Distribution of Prednisone/Prednisolone is Affected by TCM Danmo Capsule in Rats. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.681.688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Järvensivu P, Saloniemi-Heinonen T, Awosanya M, Koskimies P, Saarinen N, Poutanen M. HSD17B1 expression enhances estrogen signaling stimulated by the low active estrone, evidenced by an estrogen responsive element-driven reporter gene in vivo. Chem Biol Interact 2015; 234:126-34. [DOI: 10.1016/j.cbi.2015.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/19/2014] [Accepted: 01/07/2015] [Indexed: 01/13/2023]
|
24
|
Abdelsamie AS, Bey E, Hanke N, Empting M, Hartmann RW, Frotscher M. Inhibition of 17β-HSD1: SAR of bicyclic substituted hydroxyphenylmethanones and discovery of new potent inhibitors with thioether linker. Eur J Med Chem 2014; 82:394-406. [DOI: 10.1016/j.ejmech.2014.05.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 01/19/2023]
|
25
|
Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPS-activated macrophages. PLoS One 2014; 9:e96741. [PMID: 24800851 PMCID: PMC4011752 DOI: 10.1371/journal.pone.0096741] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/10/2014] [Indexed: 11/25/2022] Open
Abstract
Genkwanin is one of the major non-glycosylated flavonoids in many herbs with anti-inflammatory activities. Although its anti-inflammatory activity in vivo has been reported, the potential molecular mechanisms remain obscure. In this study, by pharmacological and genetic approaches, we explore the anti-inflammatory effects of genkwanin in LPS-activated RAW264.7 macrophages. Genkwanin potently decreases the proinflammatory mediators, such as iNOS, TNF-α, IL-1β and IL-6, at the transcriptional and translational levels without cytotoxicity, indicating the excellent anti-inflammatory potency of genkwanin in vitro. Mechanism study shows that genkwanin significantly suppresses the p38- and JNK-mediated AP-1 signaling pathway and increases the mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression at the posttranscriptional level. We also confirmed that microRNA-101 (miR-101) is a negative regulator of MKP-1 expression. Moreover, regardless of miR-101-deficient cells or miR-101-abundant cells, the suppression effects of genkwanin on supernatant proinflammatory mediators' levels are far less than that in respective negative control cells, suggesting that genkwanin exerts anti-inflammatory effect mainly through reducing miR-101 production. However, genkwanin can't affect the level of phospho-Akt (p-Akt), indicating that the phosphorylation of Akt may be not responsible for the effect of genkwanin on miR-101 production. We conclude that genkwanin exerts its anti-inflammatory effect mainly through the regulation of the miR-101/MKP-1/MAPK pathway.
Collapse
|
26
|
Effect of Eclipta prostrata on 11Beta-Hydroxysteroid Dehydrogenase in Rat Liver and Kidney. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:651053. [PMID: 24876875 PMCID: PMC4021844 DOI: 10.1155/2014/651053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/24/2022]
Abstract
Eclipta prostrata (EP) is often prescribed in combination with glucocorticoid to treat glomerular nephritis, nephrotic syndrome, and IgA nephropathy in clinical practice of Traditional Chinese Medicine. Previous studies from our laboratory revealed that coadministration of EP significantly increased the plasma concentration of prednisolone while decreased the level of cotreated prednisone in rats. However, the underlying mechanism remains unclear. 11β-Hydroxysteroid dehydrogenase (11β-HSD) belongs to the family of oxidoreductases that catalyze the interconversion of prednisone to active prednisolone. Therefore, the current study aimed to investigate the effects of EP on the activity and expression of 11β-HSD in rat liver and kidney. The results showed that oral administration of EP significantly increased the activity of 11β-HSD I in the liver and 11β-HSD II in the kidney by employing the microsomal incubation system. Moreover, gene and protein expressions of 11β-HSD I and 11β-HSD II were also increased in rat liver and kidney, respectively. These results suggest that the effects of EP on 11β-HSD may attribute to the mechanism that administration of EP improves the efficacy and reduces adverse drug reactions of glucocorticoid in patients undergoing combinational therapy.
Collapse
|
27
|
Ye L, Guo J, Ge RS. Environmental pollutants and hydroxysteroid dehydrogenases. VITAMINS AND HORMONES 2014; 94:349-90. [PMID: 24388197 DOI: 10.1016/b978-0-12-800095-3.00013-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydroxysteroid dehydrogenases (HSD) are a group of steroidogenic enzymes that are involved in the steroid biosynthesis and metabolism. Four classes of HSDs, namely, 3β-, 11β-, 17β-, and 20α-HSDs, are discussed. 3β-HSDs catalyze the conversion of pregnenolone, 17α-hydroxypregnenolone, and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone, and androstenedione, respectively. 11β-HSDs catalyze the interconversion between active cortisol and inactive cortisone. 17β-HSDs catalyze the interconversion between 17β-hydroxyl steroids and 17-ketoandrogens and estrogens. 20α-HSDs catalyze the conversion of progesterone into 20α-hydroxyprogesterone. Many environmental pollutants directly inhibit one or more enzymes of these HSDs, thus interfering with endogenous active steroid hormone levels. These chemicals include industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A, and benzophenone), pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane, and prochloraz), and plant constituents (genistein, gossypol, and licorice). This chapter reviews these inhibitors targeting on HSDs.
Collapse
Affiliation(s)
- Leping Ye
- The 2nd Affiliated Hospital and Research Academy of Reproductive Biomedicine of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jingjing Guo
- The 2nd Affiliated Hospital and Research Academy of Reproductive Biomedicine of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Ren-Shan Ge
- The 2nd Affiliated Hospital and Research Academy of Reproductive Biomedicine of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
28
|
Patel K, Gadewar M, Tahilyani V, Patel DK. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin J Integr Med 2013; 19:792-800. [DOI: 10.1007/s11655-013-1595-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Indexed: 11/29/2022]
|
29
|
Johnson CH, Manna SK, Krausz KW, Bonzo JA, Divelbiss RD, Hollingshead MG, Gonzalez FJ. Global metabolomics reveals urinary biomarkers of breast cancer in a mcf-7 xenograft mouse model. Metabolites 2013; 3:658-72. [PMID: 24958144 PMCID: PMC3901288 DOI: 10.3390/metabo3030658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 11/23/2022] Open
Abstract
Global metabolomics analysis has the potential to uncover novel metabolic pathways that are differentially regulated during carcinogenesis, aiding in biomarker discovery for early diagnosis and remission monitoring. Metabolomics studies with human samples can be problematic due to high inter-individual variation; however xenografts of human cancers in mice offer a well-controlled model system. Urine was collected from a xenograft mouse model of MCF-7 breast cancer and analyzed by mass spectrometry-based metabolomics to identify metabolites associated with cancer progression. Over 10 weeks, 24 h urine was collected weekly from control mice, mice dosed with estradiol cypionate (1 mg/mL), mice inoculated with MCF-7 cells (1 × 107) and estradiol cypionate (1 mg/mL), and mice dosed with MCF-7 cells (1 × 107) only (n = 10/group). Mice that received both estradiol cypionate and MCF-7 cells developed tumors from four weeks after inoculation. Five urinary metabolites were identified that were associated with breast cancer; enterolactone glucuronide, coumaric acid sulfate, capric acid glucuronide, an unknown metabolite, and a novel mammalian metabolite, "taurosebacic acid". These metabolites revealed a correlation between tumor growth, fatty acid synthesis, and potential anti-proliferative effects of gut microbiota-metabolized food derivatives. These biomarkers may be of value for early diagnosis of cancer, monitoring of cancer therapeutics, and may also lead to future mechanistic studies.
Collapse
Affiliation(s)
- Caroline H Johnson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Soumen K Manna
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jessica A Bonzo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Raymond D Divelbiss
- Developmental Therapeutics Program, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Melinda G Hollingshead
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Righi G, Silvestri IP, Barontini M, Crisante F, Di Manno A, Pelagalli R, Bovicelli P. Efficient synthesis of scutellarein. Nat Prod Res 2012; 26:1278-84. [DOI: 10.1080/14786419.2011.566224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Henn C, Einspanier A, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. Lead Optimization of 17β-HSD1 Inhibitors of the (Hydroxyphenyl)naphthol Sulfonamide Type for the Treatment of Endometriosis. J Med Chem 2012; 55:3307-18. [DOI: 10.1021/jm201735j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claudia Henn
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2 3, D-66041 Saarbrücken, Germany
- Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus C2 3, 66123 Saarbrücken,
Germany
| | - Almuth Einspanier
- Faculty of Veterinary
Medicine, Institute of Physiological Chemistry, An den Tierkliniken
1, 04103 Leipzig, Germany
| | | | - Martin Frotscher
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2 3, D-66041 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2 3, D-66041 Saarbrücken, Germany
- Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus C2 3, 66123 Saarbrücken,
Germany
| |
Collapse
|
32
|
Spadaro A, Frotscher M, Hartmann RW. Optimization of hydroxybenzothiazoles as novel potent and selective inhibitors of 17β-HSD1. J Med Chem 2012; 55:2469-73. [PMID: 22277094 DOI: 10.1021/jm201711b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
17β-HSD1 is a novel target for the treatment of estrogen-dependent diseases, as it catalyzes intracellular estradiol formation. Starting from two recently described compounds, highly active and selective inhibitors were developed. Benzoyl 6 and benzamide 17 are the most selective compounds toward 17β-HSD2 described so far. They also showed a promising profile regarding activity in T47-D cells, selectivity toward ERα and ERβ, inhibition of hepatic CYP enzymes, metabolic stability, and inhibition of marmoset 17β-HSD1 and 17β-HSD2.
Collapse
Affiliation(s)
- Alessandro Spadaro
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| | | | | |
Collapse
|
33
|
Spadaro A, Negri M, Marchais-Oberwinkler S, Bey E, Frotscher M. Hydroxybenzothiazoles as new nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1). PLoS One 2012; 7:e29252. [PMID: 22242164 PMCID: PMC3252304 DOI: 10.1371/journal.pone.0029252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/23/2011] [Indexed: 01/25/2023] Open
Abstract
17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC₅₀-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics.
Collapse
Affiliation(s)
- Alessandro Spadaro
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- ElexoPharm GmbH, Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | | | | | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
34
|
Starčević Š, Turk S, Brus B, Cesar J, Lanišnik Rižner T, Gobec S. Discovery of highly potent, nonsteroidal 17β-hydroxysteroid dehydrogenase type 1 inhibitors by virtual high-throughput screening. J Steroid Biochem Mol Biol 2011; 127:255-61. [PMID: 21920439 DOI: 10.1016/j.jsbmb.2011.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/15/2011] [Accepted: 08/14/2011] [Indexed: 01/03/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the formation of the potent proliferation-stimulating hormone estradiol, and it is thus involved in the development of hormone-dependent breast cancer. Due to its high substrate specificity and the known relationships between its overexpression and disease incidence, 17β-HSD1 is considered an attractive target for drug development. Here, we have used structure-based virtual high-throughput screening to successfully identify potent nonsteroidal 17β-HSD1 inhibitors. Computational screening of a drug-like database containing 13 million compounds identified hits with a 2-benzylidenebenzofuran-3(2H)-one scaffold that we show to be highly potent 17β-HSD1 inhibitors. The most potent in the series, compound 1, showed an IC(50) of 45nM in our 17β-HSD1 inhibition assay, and also showed good selectivity for 17β-HSD1 over 17β-HSD2.
Collapse
Affiliation(s)
- Štefan Starčević
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
35
|
Starčević Š, Brožič P, Turk S, Cesar J, Lanišnik Rižner T, Gobec S. Synthesis and Biological Evaluation of (6- and 7-Phenyl) Coumarin Derivatives as Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1. J Med Chem 2010; 54:248-61. [PMID: 21138273 DOI: 10.1021/jm101104z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Štefan Starčević
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Petra Brožič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Samo Turk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jožko Cesar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
36
|
Oster A, Hinsberger S, Werth R, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. Bicyclic substituted hydroxyphenylmethanones as novel inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases. J Med Chem 2010; 53:8176-86. [PMID: 20977238 DOI: 10.1021/jm101073q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Estradiol (E2), the most important estrogen in humans, is involved in the initiation and progression of estrogen-dependent diseases such as breast cancer and endometriosis. Its local production in the target cell is regulated by 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), which catalyzes E2-formation by reduction of the weak estrogen estrone (E1). Because the enzyme is expressed in the diseased tissues, inhibition of 17β-HSD1 is considered as a promising therapy for the treatment of estrogen-dependent diseases. For the development of novel inhibitors, a structure- and ligand-based design strategy was applied, resulting in bicyclic substituted hydroxyphenylmethanones. In vitro testing revealed high inhibitory potencies toward human placental 17β-HSD1. Compounds were further evaluated with regard to selectivity (17β-HSD2, estrogen receptors ERα and ERβ), intracellular activity (T47D cells), and metabolic stability. The most promising compounds, 14 and 15, showed IC(50) values in the low nanomolar range in the cell-free and cellular assays (8-27 nM), more than 30-fold selectivity toward 17β-HSD2 and no affinity toward the ERs. The data obtained make these inhibitors interesting candidates for further preclinical evaluation.
Collapse
Affiliation(s)
- Alexander Oster
- Pharmaceutical and Medicinal Chemistry, Saarland University, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C23, D-66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Takemura H, Uchiyama H, Ohura T, Sakakibara H, Kuruto R, Amagai T, Shimoi K. A methoxyflavonoid, chrysoeriol, selectively inhibits the formation of a carcinogenic estrogen metabolite in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 2010; 118:70-6. [PMID: 19833205 DOI: 10.1016/j.jsbmb.2009.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 10/01/2009] [Accepted: 10/06/2009] [Indexed: 11/26/2022]
Abstract
A 17beta-estradiol (E(2)) is hydrolyzed to 2-hydroxy-E(2) (2-OHE(2)) and 4-hydroxy-E(2) (4-OHE(2)) via cytochrome P450 (CYP) 1A1 and 1B1, respectively. In estrogen target tissues including the mammary gland, ovaries, and uterus, CYP1B1 is highly expressed, and 4-OHE(2) is predominantly formed in cancerous tissues. In this study, we investigated the inhibitory effects of chrysoeriol (luteorin-3'-methoxy ether), which is a natural methoxyflavonoid, against activity of CYP1A1 and 1B1 using in vitro and cultured cell techniques. Chrysoeriol selectively inhibited human recombinant CYP1B1-mediated 7-ethoxyresorufin-O-deethylation (EROD) activity 5-fold more than that of CYP1A1-mediated activity in a competitive manner. Additionally, chrysoeriol inhibited E(2) hydroxylation was catalyzed by CYP1B1, but not by CYP1A1. Methylation of 4-OHE(2), which is thought to be a detoxification process, was not affected by the presence of chrysoeriol. In human breast cancer MCF-7 cells, chrysoeriol did not affect the gene expression of CYP1A1 and 1B1, but significantly inhibited the formation of 4-methoxy E(2) without any effects on the formation of 2-methoxy E(2). In conclusion, we present the first report to show that chrysoeriol is a chemopreventive natural ingredient that can selectively inhibit CYP1B1 activity and prevent the formation of carcinogenic 4-OHE(2) from E(2.).
Collapse
Affiliation(s)
- Hitomi Takemura
- Institute for Environmental Sciences, University of Shizuoka, Suruga, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Michiels PJA, Ludwig C, Stephan M, Fischer C, Möller G, Messinger J, van Dongen M, Thole H, Adamski J, Günther UL. Ligand-based NMR spectra demonstrate an additional phytoestrogen binding site for 17beta-hydroxysteroid dehydrogenase type 1. J Steroid Biochem Mol Biol 2009; 117:93-8. [PMID: 19631742 DOI: 10.1016/j.jsbmb.2009.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 01/21/2023]
Abstract
The enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) has become an important drug target for breast cancer because it catalyzes the interconversion of estrone to the biologically more potent estradiol which also plays a crucial role in the etiology of breast cancer. Patients with an increased expression of the 17beta-HSD1 gene have a significantly worse outcome than patients without. Inhibitors for 17beta-HSD1 are therefore included in therapy development. Here we have studied binding of 17beta-HSD1 to substrates and a number of inhibitors using NMR spectroscopy. Ligand observed NMR spectra show a strong pH dependence for the phytoestrogens luteolin and apigenin but not for the natural ligands estradiol and estrone. Moreover, NMR competition experiments show that the phytoestrogens do not replace the estrogens despite their similar inhibition levels in the in vitro assay. These results strongly support an additional 17beta-HSD1 binding site for phytoestrogens which is neither the substrate nor the co-factor binding site. Docking experiments suggest the dimer interface as a possible location. An additional binding site for the phytoestrogens may open new opportunities for the design of inhibitors, not only for 17beta-HSD1, but also for other family members of the short chain dehydrogenases.
Collapse
Affiliation(s)
- Paul J A Michiels
- HWB-NMR, CR UK Institute of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tai BH, Cuong NM, Huong TT, Choi EM, Kim JA, Kim YH. Chrysoeriol isolated from the leaves of Eurya ciliata stimulates proliferation and differentiation of osteoblastic MC3T3-E1 cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2009; 11:817-823. [PMID: 20183330 DOI: 10.1080/10286020903117317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chrysoeriol (1) was isolated as the main constituent from the methanol extract of the dried leaves of Eurya ciliata Merr. To investigate the bioactivities of 1 on bone metabolism, its effects on the function of osteoblastic MC3T3-E1 cells were studied. Compound 1 significantly increased the growth of MC3T3-E1 cells and caused a significant elevation of alkaline phosphatase activity, collagen content, and nodule mineralization in the cells (P < 0.05). Our data indicate that the enhancement of osteoblast function by 1 may be useful in the prevention of osteoporosis.
Collapse
Affiliation(s)
- Bui Huu Tai
- Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | |
Collapse
|
40
|
Hatti KS, Diwakar L, Rao GV, Kush A, Reddy GC. Abyssinones and related flavonoids as potential steroidogenesis modulators. Bioinformation 2009; 3:399-402. [PMID: 19759815 PMCID: PMC2732035 DOI: 10.6026/97320630003399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/08/2009] [Accepted: 05/11/2009] [Indexed: 02/04/2023] Open
Abstract
Abyssinones and related flavonoids were screened against 3 enzymes (3betaHSD, 17betaHSD and Aromatase) of steroidogenesis pathway. The virtual screening experiment shows high affinity for flavonones than their respective chalcones. A 4' -OH blocked prenylated flavonone 2b (2-(2', 2'-dimethyl chroman-6'-yl)-7-hydroxy chroman-4-one) had consistent binding affinity to all the three enzymes used in this study showing higher binding affinity to aromatase. A good correlation was observed between cytotoxic data (MCF-7, breast cancer cell line) and docking results indicating flavonone as a better steroidogenesis modulator in hormone dependent cancer.
Collapse
Affiliation(s)
- Kaushik S Hatti
- Vittal Mallya Scientific Research Foundation, PB No 406, K.R. Road; Bangalore 560004, India
| | - Latha Diwakar
- Vittal Mallya Scientific Research Foundation, PB No 406, K.R. Road; Bangalore 560004, India
| | - G Venkateswara Rao
- Vittal Mallya Scientific Research Foundation, PB No 406, K.R. Road; Bangalore 560004, India
| | - Anil Kush
- Vittal Mallya Scientific Research Foundation, PB No 406, K.R. Road; Bangalore 560004, India
| | - G Chandrasekara Reddy
- Vittal Mallya Scientific Research Foundation, PB No 406, K.R. Road; Bangalore 560004, India
| |
Collapse
|