1
|
Lv Y, Gu G, Zeng R, Liu Z, Wu J, Zheng Y. Proteomics analysis of carotid body tumor revealed potential mechanisms and molecular differences among Shamblin classifications. Exp Biol Med (Maywood) 2023; 248:1785-1798. [PMID: 37845830 PMCID: PMC10792421 DOI: 10.1177/15353702231199475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 08/13/2023] [Indexed: 10/18/2023] Open
Abstract
Carotid body tumors (CBTs) are a rare type of paraganglioma, and surgical resection is the only effective treatment. Because of the proximity of CBTs to the carotid artery, jugular vein, and cranial nerve, surgery is extremely difficult, with high risks of hemorrhage and neurovascular injury. The Shamblin classification is used for CBT clinical evaluation; however, molecular mechanisms underlying classification differences remain unclear. This study aimed to investigate pathogenic mechanisms and molecular differences between CBT types. In Shamblin I, II, and III tumors, differentially expressed proteins (DEPs) were identified using direct data-independent acquisition (DIA). DEPs were validated using immunohistochemistry. Proteomics profiling of three Shamblin subtypes differed significantly. Bioinformatics analysis showed that adrenomedullin signaling, protein kinase A signaling, vascular endothelial growth factor (VEGF) signaling, ephrin receptor signaling, gap junction signaling, interleukin (IL)-1 signaling, actin cytoskeleton signaling, endothelin-1 signaling, angiopoietin signaling, peroxisome proliferator-activated receptor (PPAR) signaling, bone morphogenetic protein (BMP) signaling, hypoxia-inducible factor 1-alpha (HIF-1α) signaling, and IL-6 signaling pathways were significantly enriched. Furthermore, 60 DEPs changed significantly with tumor progression. Immunohistochemistry validated several important DEPs, including aldehyde oxidase 1 (AOX1), mediator complex subunit 22 (MED22), carnitine palmitoyltransferase 1A (CPT1A), and heat shock transcription factor 1 (HSF1). To our knowledge, this is the first application of proteomics quantification in CBT. Our results will deepen the understanding of CBT-related pathogenesis and aid in identifying therapeutic targets for CBT treatment.
Collapse
Affiliation(s)
- Yanze Lv
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Guangchao Gu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Rong Zeng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhili Liu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jianqiang Wu
- Clinical Research Institute, National Science and Technology Key Infrastructure on Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
2
|
Violon F, Bouys L, Berthon A, Ragazzon B, Barat M, Perlemoine K, Guignat L, Terris B, Bertherat J, Sibony M. Impact of Morphology in the Genotype and Phenotype Correlation of Bilateral Macronodular Adrenocortical Disease (BMAD): A Series of Clinicopathologically Well-Characterized 35 Cases. Endocr Pathol 2023. [PMID: 36864263 DOI: 10.1007/s12022-023-09751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Bilateral macronodular adrenocortical disease (BMAD) is characterized by the development of adrenal macronodules resulting in a pituitary-ACTH independent Cushing's syndrome. Although there are important similarities observed between the rare microscopic descriptions of this disease, the small series published are not representative of the molecular and genetic heterogenicity recently described in BMAD. We analyzed the pathological features in a series of BMAD and determined if there is correlation between these criteria and the characteristics of the patients. Two pathologists reviewed the slides of 35 patients who underwent surgery for suspicion of BMAD in our center between 1998 and 2021. An unsupervised multiple factor analysis based on microscopic characteristics divided the cases into 4 subtypes according to the architecture of the macronodules (containing or not round fibrous septa) and the proportion of the different cell types: clear, eosinophilic compact, and oncocytic cells. The correlation study with genetic revealed subtype 1 and subtype 2 are associated with the presence of ARMC5 and KDM1A pathogenic variants, respectively. By immunohistochemistry, all cell types expressed CYP11B1 and HSD3B1. HSD3B2 staining was predominantly expressed by clear cells whereas CYP17A1 staining was predominant on compact eosinophilic cells. This partial expression of steroidogenic enzymes may explain the low efficiency of cortisol production in BMAD. In subtype 1, trabeculae of eosinophilic cylindrical cells expressed DAB2 but not CYP11B2. In subtype 2, KDM1A expression was weaker in nodule cells than in normal adrenal cells; alpha inhibin expression was strong in compact cells. This first microscopic description of a series of 35 BMAD reveals the existence of 4 histopathological subtypes, 2 of which are strongly correlated with the presence of known germline genetic alterations. This classification emphasizes that BMAD has heterogeneous pathological characteristics that correlate with some genetic alterations identified in patients.
Collapse
Affiliation(s)
- Florian Violon
- Université Paris-Cité, Institut Cochin, CNRS UMR8104, Inserm U1016, Paris, France
- Department of Pathology, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Lucas Bouys
- Université Paris-Cité, Institut Cochin, CNRS UMR8104, Inserm U1016, Paris, France
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Annabel Berthon
- Université Paris-Cité, Institut Cochin, CNRS UMR8104, Inserm U1016, Paris, France
| | - Bruno Ragazzon
- Université Paris-Cité, Institut Cochin, CNRS UMR8104, Inserm U1016, Paris, France
| | - Maxime Barat
- Université Paris-Cité, Institut Cochin, CNRS UMR8104, Inserm U1016, Paris, France
| | - Karine Perlemoine
- Université Paris-Cité, Institut Cochin, CNRS UMR8104, Inserm U1016, Paris, France
| | - Laurence Guignat
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Benoit Terris
- Department of Pathology, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jérôme Bertherat
- Université Paris-Cité, Institut Cochin, CNRS UMR8104, Inserm U1016, Paris, France.
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France.
| | - Mathilde Sibony
- Université Paris-Cité, Institut Cochin, CNRS UMR8104, Inserm U1016, Paris, France.
- Department of Pathology, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
3
|
Recurrent Cushing Syndrome from Metastatic Adrenocortical Carcinoma with Fumarate Hydratase gene mutation. AACE Clin Case Rep 2022; 8:259-263. [DOI: 10.1016/j.aace.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/16/2022] [Accepted: 09/10/2022] [Indexed: 11/20/2022] Open
|
4
|
Rizk-Rabin M, Chaoui-Ibadioune S, Vaczlavik A, Ribes C, Polak M, Ragazzon B, Bertherat J. Link between steroidogenesis, the cell cycle, and PKA in adrenocortical tumor cells. Mol Cell Endocrinol 2020; 500:110636. [PMID: 31678420 DOI: 10.1016/j.mce.2019.110636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/09/2019] [Accepted: 10/26/2019] [Indexed: 02/04/2023]
Abstract
Adrenocortical tumors (ACTs) frequently cause steroid excess and present cell-cycle dysregulation. cAMP/PKA signaling is involved in steroid synthesis and play a role in cell-cycle regulation. We investigated, by cell synchronization in the different phases of the cell-cycle, the control of steroidogenesis and the contribution of PKA in adrenocortical cells (H295R and culture of primary pigmented nodular adrenocortical disease cells). Cells showed increased steroidogenesis and a maximal PKA activity at G2 phase, and a reduction at G1 phase. PRKACA overexpression, or cAMP stimulation, enhanced PKA activity and induced steroidogenesis in all synchronized groups but is not sufficient to drive cell-cycle progression. PRKAR1A inactivation enhanced PKA activity and induced STAR gene expression, only in cells in G1, and triggered cell-cycle progression in all groups. These findings provide evidence for a tight association between steroidogenesis and cell-cycle in ACTs. Moreover, PRKAR1A is essential for mediating the function of PKA activity on both steroidogenesis and cell-cycle progression in adrenocortical cells.
Collapse
Affiliation(s)
- Marthe Rizk-Rabin
- Institut Cochin, U1016, CNRS (UMR 8104), Université Paris Descartes, Paris, France.
| | | | - Anna Vaczlavik
- Institut Cochin, U1016, CNRS (UMR 8104), Université Paris Descartes, Paris, France
| | - Christopher Ribes
- Institut Cochin, U1016, CNRS (UMR 8104), Université Paris Descartes, Paris, France
| | - Michel Polak
- Institut Cochin, U1016, CNRS (UMR 8104), Université Paris Descartes, Paris, France; Hopital Necker Enfants Maladies, Department of Endocrinology, Paris, France
| | - Bruno Ragazzon
- Institut Cochin, U1016, CNRS (UMR 8104), Université Paris Descartes, Paris, France
| | - Jerôme Bertherat
- Institut Cochin, U1016, CNRS (UMR 8104), Université Paris Descartes, Paris, France; Hôpital Cochin, Department of Endocrinology. Center for Rare Adrenal Diseases, Paris, France
| |
Collapse
|
5
|
Iacobone M, Belluzzi A, Torresan F. Surgical approaches and results of treatment for hereditary paragangliomas. Best Pract Res Clin Endocrinol Metab 2019; 33:101298. [PMID: 31401056 DOI: 10.1016/j.beem.2019.101298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Paragangliomas (PGL) are rare neuroendocrine tumours; parasympathetic PGL are predominantly non-secreting and located at the skull base and neck, while sympathetic PGL are typically catecholamine-secreting and located at abdomino-pelvic level. Approximately 40% of PGL may be caused by germline mutations; hereditary variants should be suspected especially in case of positive family history, early onset, multifocal, or recurrent PGL. Significant genotype-phenotype correlation has been recognized, including syndromic presentation, location, multifocality and risk of malignancy. Surgical resection remains the only curative strategy, but the outcomes may be unsatisfactory because of surgical morbidity and recurrence rate. However, due to the rarity of the disease, most data derive from case-report or limited series. This paper was aimed to review the available literature on the epidemiology, diagnosis, clinical features, treatment of PGL in order to discuss the surgical approach and the results of treatment in hereditary PGL.
Collapse
Affiliation(s)
- Maurizio Iacobone
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| | - Amanda Belluzzi
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| | - Francesca Torresan
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| |
Collapse
|
6
|
Iacobone M, Citton M, Viel G, Schiavone D, Torresan F. Surgical approaches in hereditary endocrine tumors. Updates Surg 2017; 69:181-191. [PMID: 28455835 DOI: 10.1007/s13304-017-0451-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Abstract
Endocrine tumors of thyroid, adrenal and parathyroid glands may be due to germline and inheritable mutations in 5-30% of patients. Medullary Thyroid Carcinoma, Pheochromocytoma, Paraganglioma, and Familial Primary Hyperparathyroidism are the most frequent entity. Hereditary endocrine tumors usually have a suggestive familial history; they occur earlier than sporadic variants, are multifocal, and have increased recurrence rates. They may be present as isolated variant or associated to other neoplasms in a syndromic setting. Genetic diagnosis should be preferably available before surgery because specific and targeted operative management are needed to achieve the best chance of cure. This review was aimed to discuss the surgical approaches for some of the most frequent hereditary endocrine tumors of thyroid, adrenal and parathyroid glands, focusing on medullary thyroid carcinoma, Pheochromocytoma, Paraganglioma and hereditary primary hyperparathyroidism (pHPT). Hereditary Medullary Thyroid Carcinoma is caused by RET mutations, and may be associated to Pheochromocytomas in MEN 2 setting. Total thyroidectomy and at least central neck nodal dissection is required. The availability of genetic screening allows prophylactic or early surgery in asymptomatic patients, with subsequent definitive cure. Hereditary Pheochromocytomas may be present in several syndromes (MEN 2, VHL, NF1, Paraganglioma/Pheochromocytoma syndrome); it may involve both adrenals; in these cases, a cortical sparing adrenalectomy should be performed to avoid permanent hypocorticosurrenalism. Hereditary Primary Hyperparathyroidism may frequently occur associated to MEN 1, MEN 2A, MEN 4, Hyperparathyroidism-Jaw Tumor Syndrome; it may involve all the parathyroid glands, requiring subtotal parathyroidectomy or total parathyroidectomy plus autotransplantation. In some cases, a selective parathyroidectomy might be performed.
Collapse
Affiliation(s)
- Maurizio Iacobone
- Minimally Invasive Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| | - Marilisa Citton
- Minimally Invasive Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Giovanni Viel
- Minimally Invasive Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Donatella Schiavone
- Minimally Invasive Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Francesca Torresan
- Minimally Invasive Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| |
Collapse
|
7
|
Faillot S, Assie G. ENDOCRINE TUMOURS: The genomics of adrenocortical tumors. Eur J Endocrinol 2016; 174:R249-65. [PMID: 26739091 DOI: 10.1530/eje-15-1118] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/06/2016] [Indexed: 01/01/2023]
Abstract
The last decade witnessed the emergence of genomics, a set of high-throughput molecular measurements in biological samples. These pan-genomic and agnostic approaches have revolutionized the molecular biology and genetics of malignant and benign tumors. These techniques have been applied successfully to adrenocortical tumors. Exome sequencing identified new major drivers in all tumor types, including KCNJ5, ATP1A1, ATP2B3 and CACNA1D mutations in aldosterone-producing adenomas (APA), PRKACA mutations in cortisol-producing adenomas (CPA), ARMC5 mutations in primary bilateral macronodular adrenocortical hyperplasia (PBMAH) and ZNRF3 mutations in adrenocortical carcinomas (ACC). Moreover, the various genomic approaches - including exome sequencing, transcriptome, miRNome, genome and methylome - converge into a single molecular classification of adrenocortical tumors. Especially for ACC, two main molecular groups have emerged, showing major differences in outcomes. These ACC groups differ by their gene expression profiles, but also by recurrent mutations and specific DNA hypermethylation patterns in the subgroup of poor outcome. The clinical impact of these findings is just starting. The main altered signaling pathways now become therapeutic targets. The molecular groups of diseases individualize robust subtypes within diseases such as APA, CPA, PBMAH and ACC. A revised nosology of adrenocortical tumors should impact the clinical research. Obvious consequences also include genetic counseling for the new genetic diseases such as ARMC5 mutations in PBMAH, and a better prognostication of ACC based on targeted measurements of a few discriminant molecular alterations. Identifying the main molecular groups of adrenocortical tumors by extensively gathering the molecular variations is a significant step forward towards precision medicine.
Collapse
Affiliation(s)
- Simon Faillot
- Institut CochinINSERM U1016, CNRS 8104, Paris Descartes University, Paris, FranceSIRIC (Site de Recherche Intégré sur le Cancer) CARPEM (CAncer Research for PErsonalized Medicine)Assistance Publique Hôpitaux de Paris, Paris, FranceDepartment of EndocrinologyReference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris, France Institut CochinINSERM U1016, CNRS 8104, Paris Descartes University, Paris, FranceSIRIC (Site de Recherche Intégré sur le Cancer) CARPEM (CAncer Research for PErsonalized Medicine)Assistance Publique Hôpitaux de Paris, Paris, FranceDepartment of EndocrinologyReference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Guillaume Assie
- Institut CochinINSERM U1016, CNRS 8104, Paris Descartes University, Paris, FranceSIRIC (Site de Recherche Intégré sur le Cancer) CARPEM (CAncer Research for PErsonalized Medicine)Assistance Publique Hôpitaux de Paris, Paris, FranceDepartment of EndocrinologyReference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris, France Institut CochinINSERM U1016, CNRS 8104, Paris Descartes University, Paris, FranceSIRIC (Site de Recherche Intégré sur le Cancer) CARPEM (CAncer Research for PErsonalized Medicine)Assistance Publique Hôpitaux de Paris, Paris, FranceDepartment of EndocrinologyReference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| |
Collapse
|
8
|
Pillai S, Gopalan V, Smith RA, Lam AKY. Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era. Crit Rev Oncol Hematol 2016; 100:190-208. [DOI: 10.1016/j.critrevonc.2016.01.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/13/2015] [Accepted: 01/20/2016] [Indexed: 12/18/2022] Open
|
9
|
London E, Wassif CA, Horvath A, Tatsi C, Angelousi A, Karageorgiadis AS, Porter FD, Stratakis CA. Cholesterol Biosynthesis and Trafficking in Cortisol-Producing Lesions of the Adrenal Cortex. J Clin Endocrinol Metab 2015; 100:3660-7. [PMID: 26204136 PMCID: PMC4596036 DOI: 10.1210/jc.2015-2212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022]
Abstract
CONTEXT Cortisol-producing adenomas (CPAs), primary pigmented nodular adrenocortical disease (PPNAD), and primary macronodular adrenocortical hyperplasia (PMAH) cause ACTH-independent Cushing syndrome (CS). Investigation of their pathogenesis has demonstrated their integral link to the cAMP-dependent protein kinase signaling pathway. OBJECTIVE The aim of this study was to identify differences in cholesterol biosynthesis among different CS-causing adrenocortical tumors. Because of the concomitant associations of cAMP levels with cholesterol and with steroid biosynthesis, we hypothesized that benign cortisol-producing tumors would display aberration of these pathways. DESIGN AND SETTING Twenty-three patients with CPA, PPNAD, or PMAH who underwent adrenalectomy for CS were included in the study. Preoperative biochemical analyses were performed, and excised adrenal tissues were studied. MAIN OUTCOME MEASURES Serum, urinary hormone levels, serum lipid profiles, and anthropometric data were obtained preoperatively. Adrenal tissues were analyzed for total protein, cholesterol, and neutral sterol content by mass spectrometry and expression of HMGCR, LDLR, ABCA1, DHCR24, and STAR genes. RESULTS There were differences in cholesterol content and markers of cholesterol biosynthesis and metabolism that distinguished CPAs from PMAH and PPNAD; cholesterol, lathosterol, and lathosterol/cholesterol ratio were significantly higher in CPAs. ABCA1 mRNA was lower among CPAs compared to tissues from bilateral adrenocortical hyperplasia (PMAH and PPNAD), and mRNA expression of LDL-R, DCHR24, and HMGCR tended to be higher in CPA tumor tissues. CONCLUSION CPAs displayed characteristics of "cholesterol-starved" tissues when compared to PPNAD and PMAH and appeared to have increased intrinsic cholesterol production and uptake from the periphery, as well as decreased cholesterol efflux. This has implications for a potential new way of treating these tumors.
Collapse
Affiliation(s)
- Edra London
- Sections on Endocrinology and Genetics (E.L., A.H., C.T., A.A., A.S.K., C.A.S.) and Molecular Dysmorphology (C.A.W., F.D.P.), Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Christopher A Wassif
- Sections on Endocrinology and Genetics (E.L., A.H., C.T., A.A., A.S.K., C.A.S.) and Molecular Dysmorphology (C.A.W., F.D.P.), Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Anelia Horvath
- Sections on Endocrinology and Genetics (E.L., A.H., C.T., A.A., A.S.K., C.A.S.) and Molecular Dysmorphology (C.A.W., F.D.P.), Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Christina Tatsi
- Sections on Endocrinology and Genetics (E.L., A.H., C.T., A.A., A.S.K., C.A.S.) and Molecular Dysmorphology (C.A.W., F.D.P.), Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Anna Angelousi
- Sections on Endocrinology and Genetics (E.L., A.H., C.T., A.A., A.S.K., C.A.S.) and Molecular Dysmorphology (C.A.W., F.D.P.), Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Alexander S Karageorgiadis
- Sections on Endocrinology and Genetics (E.L., A.H., C.T., A.A., A.S.K., C.A.S.) and Molecular Dysmorphology (C.A.W., F.D.P.), Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Forbes D Porter
- Sections on Endocrinology and Genetics (E.L., A.H., C.T., A.A., A.S.K., C.A.S.) and Molecular Dysmorphology (C.A.W., F.D.P.), Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Constantine A Stratakis
- Sections on Endocrinology and Genetics (E.L., A.H., C.T., A.A., A.S.K., C.A.S.) and Molecular Dysmorphology (C.A.W., F.D.P.), Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
10
|
Abstract
The majority of benign adrenal cortex lesions leading to Cushing syndrome are associated to one or another abnormality of the cAMP/cGMP-phosphodiesterase signaling pathway. Phosphodiesterases (PDEs) are key regulatory enzymes of intracellular cAMP/cGMP levels. These second messengers play important regulatory roles in controlling steroidogenesis in the adrenal. Disruption of PDEs has been associated with a number of adrenal diseases. Specifically, genetic mutations have been associated with benign adrenal lesions, leading to Cushing syndrome and/or related adrenal hyperplasias. A Genome Wide Association study, in 2006, led to the identification of mutations in 2 PDE genes: PDE8B and PDE11A; mutations in these 2 genes modulate steroidogenesis. Further human studies have identified PDE2 as also directly regulating steroidogenesis. PDE2 decreases aldosterone production. This review focuses on the most recent knowledge we have gained on PDEs and their association with adrenal steroidogenesis and altered function, through analysis of patient cohorts and what we have learned from mouse studies.
Collapse
Affiliation(s)
- E Szarek
- Section of Endocrinology and Genetics, Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - C A Stratakis
- Section of Endocrinology and Genetics, Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
A Novel PRKAR1A Gene Mutation Associated With Primary Pigmented Nodular Adrenocortical Disease. Am J Med Sci 2014; 348:177-8. [DOI: 10.1097/maj.0000000000000296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Otero C, Peñaloza JP, Rodas PI, Fernández-Ramires R, Velasquez L, Jung JE. Temporal and spatial regulation of cAMP signaling in disease: role of cyclic nucleotide phosphodiesterases. Fundam Clin Pharmacol 2014; 28:593-607. [PMID: 24750474 DOI: 10.1111/fcp.12080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 01/19/2023]
Abstract
Since its discovery, cAMP has been proposed as one of the most versatile second messengers. The remarkable feature of cAMP to tightly control highly diverse physiological processes, including metabolism, homeostasis, secretion, muscle contraction, cell proliferation and migration, immune response, and gene transcription, is reflected by millions of different articles worldwide. Compartmentalization of cAMP in space and time, maintained by mainly phosphodiesterases, contributes to the maintenance of equilibrium inside the cell where one signal can trigger many different events. Novel cAMP sensors seem to carry out certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Measuring space and time events with biosensors will increase our current knowledge on the pathophysiology of diseases, such as chronic obstructive pulmonary disease, asthma, cognitive impairment, cancer, and renal and heart failure. Further insights into the cAMP dynamics will help to optimize the pharmacological treatment for these diseases.
Collapse
Affiliation(s)
- Carolina Otero
- Center for Integrative Medicine and Innovative Science, Universidad Andres Bello, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnologia, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
13
|
Salpea P, Stratakis CA. Carney complex and McCune Albright syndrome: an overview of clinical manifestations and human molecular genetics. Mol Cell Endocrinol 2014; 386:85-91. [PMID: 24012779 PMCID: PMC3943598 DOI: 10.1016/j.mce.2013.08.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
Endocrine neoplasia syndromes feature a wide spectrum of benign and malignant tumors of endocrine and non-endocrine organs associated with other clinical manifestations. This study outlines the main clinical features, genetic basis, and molecular mechanisms behind two multiple endocrine neoplasia syndromes that share quite a bit of similarities, but one can be inherited whereas the other is always sporadic, Carney complex (CNC) and McCune-Albright (MAS), respectively. Spotty skin pigmentation, cardiac and other myxomas, and different types of endocrine tumors and other characterize Carney complex, which is caused largely by inactivating Protein kinase A, regulatory subunit, type I, Alpha (PRKAR1A) gene mutations. The main features of McCune-Albright are fibrous dysplasia of bone (FD), café-au-lait macules and precocious puberty; the disease is caused by activating mutations in the Guanine Nucleotide-binding protein, Alpha-stimulating activity polypeptide (GNAS) gene which are always somatic. We review the clinical manifestations of the two syndromes and provide an update on their molecular genetics.
Collapse
Affiliation(s)
- Paraskevi Salpea
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver, National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver, National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Lerario AM, Moraitis A, Hammer GD. Genetics and epigenetics of adrenocortical tumors. Mol Cell Endocrinol 2014; 386:67-84. [PMID: 24220673 PMCID: PMC3943605 DOI: 10.1016/j.mce.2013.10.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/24/2013] [Indexed: 02/08/2023]
Abstract
Adrenocortical tumors are common neoplasms. Most are benign, nonfunctional and clinically irrelevant. However, adrenocortical carcinoma is a rare disease with a dismal prognosis and no effective treatment apart from surgical resection. The molecular genetics of adrenocortical tumors remain poorly understood. For decades, molecular studies relied on a small number of samples and were directed to candidate-genes. This approach, based on the elucidation of the genetics of rare genetic syndromes in which adrenocortical tumors are a manifestation, has led to the discovery of major dysfunctional molecular pathways in adrenocortical tumors, such as the IGF pathway, the Wnt pathway and TP53. However, with the advent of high-throughput methodologies and the organization of international consortiums to obtain a larger number of samples and high-quality clinical data, this paradigm is rapidly changing. In the last decade, genome-wide expression profile studies, microRNA profiling and methylation profiling allowed the identification of subgroups of tumors with distinct genetic markers, molecular pathways activation patterns and clinical behavior. As a consequence, molecular classification of tumors has proven to be superior to traditional histological and clinical methods in prognosis prediction. In addition, this knowledge has also allowed the proposal of molecular-targeted approaches to provide better treatment options for advanced disease. This review aims to summarize the most relevant data on the rapidly evolving field of genetics of adrenal disorders.
Collapse
Affiliation(s)
- Antonio M Lerario
- Adrenal Disorders Unit - LIM/42, Department of Endocrinology and Metabolism, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HC-FMUSP), Sao Paulo, Brazil
| | - Andreas Moraitis
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine Endocrine Oncology Program, University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-5902, USA
| | - Gary D Hammer
- Endocrine Oncology Program, Center for Organogenesis, University of Michigan Health System, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
15
|
Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, Ahmad F, Manganiello V, Stratakis CA. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014; 35:195-233. [PMID: 24311737 PMCID: PMC3963262 DOI: 10.1210/er.2013-1053] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that have the unique function of terminating cyclic nucleotide signaling by catalyzing the hydrolysis of cAMP and GMP. They are critical regulators of the intracellular concentrations of cAMP and cGMP as well as of their signaling pathways and downstream biological effects. PDEs have been exploited pharmacologically for more than half a century, and some of the most successful drugs worldwide today affect PDE function. Recently, mutations in PDE genes have been identified as causative of certain human genetic diseases; even more recently, functional variants of PDE genes have been suggested to play a potential role in predisposition to tumors and/or cancer, especially in cAMP-sensitive tissues. Mouse models have been developed that point to wide developmental effects of PDEs from heart function to reproduction, to tumors, and beyond. This review brings together knowledge from a variety of disciplines (biochemistry and pharmacology, oncology, endocrinology, and reproductive sciences) with emphasis on recent research on PDEs, how PDEs affect cAMP and cGMP signaling in health and disease, and what pharmacological exploitations of PDEs may be useful in modulating cyclic nucleotide signaling in a way that prevents or treats certain human diseases.
Collapse
Affiliation(s)
- Monalisa F Azevedo
- Section on Endocrinology Genetics (M.F.A., F.R.F., E.B., A.H., I.L., R.B.d.A., C.A.S.), Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892; Section of Endocrinology (M.F.A.), University Hospital of Brasilia, Faculty of Medicine, University of Brasilia, Brasilia 70840-901, Brazil; Group for Advanced Molecular Investigation (F.R.F., R.B.d.A.), Graduate Program in Health Science, Medical School, Pontificia Universidade Catolica do Paraná, Curitiba 80215-901, Brazil; Cardiovascular Pulmonary Branch (F.A., V.M.), National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892; and Pediatric Endocrinology Inter-Institute Training Program (C.A.S.), NICHD, NIH, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stratakis CA. cAMP/PKA signaling defects in tumors: genetics and tissue-specific pluripotential cell-derived lesions in human and mouse. Mol Cell Endocrinol 2013; 371:208-20. [PMID: 23485729 PMCID: PMC3625474 DOI: 10.1016/j.mce.2013.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 12/21/2022]
Abstract
In the last few years, bench and clinical studies led to significant new insight into how cyclic adenosine monophosphate (cAMP) signaling, the molecular pathway that had been identified in the early 2000s as the one involved in most benign cortisol-producing adrenal hyperplasias, affects adrenocortical growth and development, as well as tumor formation. A major discovery was the identification of tissue-specific pluripotential cells (TSPCs) as the culprit behind tumor formation not only in the adrenal, but also in bone. Discoveries in animal studies complemented a number of clinical observations in patients. Gene identification continued in parallel with mouse and other studies on the cAMP signaling and other pathways.
Collapse
Affiliation(s)
- Constantine A Stratakis
- Section on Genetics & Endocrinology (SEGEN), Program on Developmental Endocrinology & Genetics, NICHD, NIH, Bethesda MD 20892, USA.
| |
Collapse
|
17
|
Stratakis CA. Joy and discovery are inseparable from academic commitment. Endocr Relat Cancer 2013; 20:P1-6. [PMID: 23250906 DOI: 10.1530/erc-12-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Constantine A Stratakis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
18
|
Hofland J, de Herder WW, Derks L, Hofland LJ, van Koetsveld PM, de Krijger RR, van Nederveen FH, Horvath A, Stratakis CA, de Jong FH, Feelders RA. Regulation of steroidogenesis in a primary pigmented nodular adrenocortical disease-associated adenoma leading to virilization and subclinical Cushing's syndrome. Eur J Endocrinol 2013; 168:67-74. [PMID: 23065993 PMCID: PMC4100689 DOI: 10.1530/eje-12-0594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT Primary pigmented nodular adrenocortical disease (PPNAD) can lead to steroid hormone overproduction. Mutations in the cAMP protein kinase A regulatory subunit type 1A (PRKAR1A) are causative of PPNAD. Steroidogenesis in PPNAD can be modified through a local glucocorticoid feed-forward loop. OBJECTIVE Investigation of regulation of steroidogenesis in a case of PPNAD with virilization. MATERIALS AND METHODS A 33-year-old woman presented with primary infertility due to hyperandrogenism. Elevated levels of testosterone and subclinical ACTH-independent Cushing's syndrome led to the discovery of an adrenal tumor, which was diagnosed as PPNAD. In vivo evaluation of aberrantly expressed hormone receptors showed no steroid response to known stimuli. Genetic analysis revealed a PRKAR1A protein-truncating Q28X mutation. After adrenalectomy, steroid levels normalized. Tumor cells were cultured and steroidogenic responses to ACTH and dexamethasone were measured and compared with those in normal adrenal and adrenocortical carcinoma cells. Expression levels of 17β-hydroxysteroid dehydrogenase (17β-HSD) types 3 and 5 and steroid receptors were quantified in PPNAD, normal adrenal, and adrenal adenoma tissues. RESULTS Isolated PPNAD cells, analogous to normal adrenal cells, showed both increased steroidogenic enzyme expression and steroid secretion in response to ACTH. Dexamethasone did not affect steroid production in the investigated types of adrenal cells. 17β-HSD type 5 was expressed at a higher level in the PPNAD-associated adenoma compared with control adrenal tissue. CONCLUSION PPNAD-associated adenomas can cause virilization and infertility by adrenal androgen overproduction. This may be due to steroidogenic control mechanisms that differ from those described for PPNAD without large adenomas.
Collapse
Affiliation(s)
- Johannes Hofland
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Stratakis CA. Research and development in the molecular genetics of pituitary adenomas and related tumors. Expert Rev Endocrinol Metab 2012; 7:593-598. [PMID: 30754126 DOI: 10.1586/eem.12.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interview by Rona Williamson Constantine A Stratakis received his MD and Doctor of Medical Sciences degrees from the University of Athens (Greece) in 1989 and 1994, respectively; he did predoctoral work at the Unit of Endocrinology, Department of Experimental Pharmacology of the same University and at Hospital Cochin (Paris, France), before joining the Developmental Endocrinology Branch of the then National Institute of Child Health & Human Development (NICHD) at the NIH (MD, USA). He continued his postgraduate medical education at Georgetown University Medical School (DC, USA), where he finished a residency in Pediatrics and two fellowships, in Pediatric Endocrinology, followed by Medical Genetics and Clinical Dysmorphology (in a joint program with the then newly founded National Center for Genomic Research, now NHGRI). Dr Stratakis is Board-certified in Pediatrics, Pediatric Endocrinology and Medical Genetics; after a brief stint as faculty at Georgetown University Department of Pediatrics and the Fairfax Children's Hospital, he joined the Developmental Endocrinology Branch, NICHD, NIH as a Unit Chief in 1996; he continued there as a Senior Investigator and Chief of the Section on Genetics & Endocrinology. Since 2002, he is the Director of the Pediatric Endocrinology Training Fellowship and from 2007 to 2011, he served as Branch Chief and then Head of the Program on Developmental Endocrinology & Genetics (PDEGEN), the largest Department of the Intramural Clinical Research program of NICHD at the NIH Clinical Center. He is the author of more than 400 publications, and has served as a regular Reviewer in more than 100 journals, including Science, Nature Genetics, New England Journal of Medicine and others; he was Editor-in-Chief of the Journal of Endocrine Genetics (2000-2005) and is currently serving on the Editorial Boards of several journals; as of 1 January 2010, Dr Stratakis is a Deputy Editor of the Journal of Clinical Endocrinology & Metabolism, the leading journal in endocrinology. Dr Stratakis has been the recipient of the 1999 Pharmacia-Endocrine Society Award for Excellence in Published Clinical Research, three NIH Merit Awards and other honors, and has been named Visiting Professor in academic centers around the world. He was awarded the 2009 Ernst Oppenheimer Award of the Endocrine Society. Dr Stratakis has been the Scientific Director of the Eunice Kennedy Shriver National Institute of Child Health & Human Development since 2011.
Collapse
|
20
|
Single nucleotide polymorphism microarray analysis in cortisol-secreting adrenocortical adenomas identifies new candidate genes and pathways. Neoplasia 2012; 14:206-18. [PMID: 22496620 DOI: 10.1593/neo.111758] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 02/04/2023] Open
Abstract
The genetic mechanisms underlying adrenocortical tumor development are still largely unknown. We used high-resolution single nucleotide polymorphism microarrays (Affymetrix SNP 6.0) to detect copy number alterations (CNAs) and copy-neutral losses of heterozygosity (cnLOH) in 15 cortisol-secreting adrenocortical adenomas with matched blood samples. We focused on microalterations aiming to discover new candidate genes involved in early tumorigenesis and/or autonomous cortisol secretion. We identified 962 CNAs with a median of 18 CNAs per sample. Half of them involved noncoding regions, 89% were less than 100 kb, and 28% were found in at least two samples. The most frequently gained regions were 5p15.33, 6q16.1, 7p22.3-22.2, 8q24.3, 9q34.2-34.3, 11p15.5, 11q11, 12q12, 16q24.3, 20p11.1-20q21.11, and Xq28 (≥20% of cases), most of them being identified in the same three adenomas. These regions contained among others genes like NOTCH1, CYP11B2, HRAS, and IGF2. Recurrent losses were less common and smaller than gains, being mostly localized at 1p, 6q, and 11q. Pathway analysis revealed that Notch signaling was the most frequently altered. We identified 46 recurrent CNAs that each affected a single gene (31 gains and 15 losses), including genes involved in steroidogenesis (CYP11B1) or tumorigenesis (CTNNB1, EPHA7, SGK1, STIL, FHIT). Finally, 20 small cnLOH in four cases affecting 15 known genes were found. Our findings provide the first high-resolution genome-wide view of chromosomal changes in cortisol-secreting adenomas and identify novel candidate genes, such as HRAS, EPHA7, and SGK1. Furthermore, they implicate that the Notch1 signaling pathway might be involved in the molecular pathogenesis of adrenocortical tumors.
Collapse
|
21
|
Ceyhan O, Birsoy K, Hoffman CS. Identification of biologically active PDE11-selective inhibitors using a yeast-based high-throughput screen. ACTA ACUST UNITED AC 2012; 19:155-63. [PMID: 22284362 DOI: 10.1016/j.chembiol.2011.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 01/21/2023]
Abstract
The biological roles of cyclic nucleotide phosphodiesterase 11 (PDE11) enzymes are poorly understood, in part due to the lack of selective inhibitors. To address the need for such compounds, we completed an ~200,000 compound high-throughput screen (HTS) for PDE11 inhibitors using a yeast-based growth assay, and identified 4 potent and selective PDE11 inhibitors. One compound, along with two structural analogs, elevates cAMP and cortisol levels in human adrenocortical cells, consistent with gene association studies that link PDE11 activity to adrenal function. As such, these compounds can immediately serve as chemical tools to study PDE11 function in cell culture, and as leads to develop therapeutics for the treatment of adrenal insufficiencies. Our results further validate this yeast-based HTS platform for the discovery of potent, selective, and biologically active PDE inhibitors.
Collapse
Affiliation(s)
- Ozge Ceyhan
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
22
|
Anselmo J, Medeiros S, Carneiro V, Greene E, Levy I, Nesterova M, Lyssikatos C, Horvath A, Carney JA, Stratakis CA. A large family with Carney complex caused by the S147G PRKAR1A mutation shows a unique spectrum of disease including adrenocortical cancer. J Clin Endocrinol Metab 2012; 97:351-9. [PMID: 22112814 PMCID: PMC3275364 DOI: 10.1210/jc.2011-2244] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Most tumors in Carney complex (CNC) are benign, including primary pigmented nodular adrenocortical disease (PPNAD), the main endocrine tumor in CNC. Adrenocortical cancer (AC) has never been observed in the syndrome. Herein, we describe a large Azorean family with CNC caused by a point mutation in the PRKAR1A gene coding for type 1-α (RIα) regulatory subunit of the cAMP-dependent protein kinase A, in which the index patient presented with AC. OBJECTIVE We studied the genotype-phenotype correlation in CNC. DESIGN AND SETTING We reported on case series and in vitro testing of the PRKAR1A mutation in a tertiary care referral center. PATIENTS Twenty-two members of a family were investigated for Cushing syndrome and other CNC components; their DNA was sequenced for PRKAR1A mutations. RESULTS Cushing syndrome due to PPNAD occurred in four patients, including the proposita who presented with AC and three who had Cushing syndrome and/or PPNAD. Lentigines were found in six additional patients who did not have PPNAD. A base substitution (c.439A>G/p.S147G) in PRKAR1A was identified in the proposita, in the three others with PPNAD, in the proposita's twin daughters who had lentigines but no evidence of hypercortisolism, and in five other family members, including one without lentigines or evidence of hypercortisolism. Unlike in other RIα defects, loss of heterozygosity was not observed in AC. The S147G mutation was compared to other expressed PRKAR1A mutations; it led to decreased cAMP and catalytic subunit binding by RIα and increased protein kinase A activity in vitro. CONCLUSIONS In a large family with CNC, one amino acid substitution caused a spectrum of adrenal disease that ranged from lack of manifestations to cancer. PPNAD and AC were the only manifestations of CNC in these patients, in addition to lentigines. These data have implications for counseling patients with CNC and are significant in documenting the first case of AC in the context of PPNAD.
Collapse
Affiliation(s)
- João Anselmo
- Serviço de Endocrinologia e Nutriço, Ponta Delgada, São Miguel 9500, Azores, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Azevedo MF, Stratakis CA. The transcriptome that mediates increased cyclic adenosine monophosphate signaling in PRKAR1A defects and other settings. Endocr Pract 2012; 17 Suppl 3:2-7. [PMID: 21454229 DOI: 10.4158/ep10412.ra] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To review current knowledge on the involvement of cyclic adenosine monophosphate (cAMP) and interacting signaling pathways in predisposition to tumor formation in primary pigmented nodular adrenocortical disease (PPNAD), a type of bilateral adrenal hyperplasia (BAH) related to the multiple endocrine neoplasia Carney complex, and also in isolated PPNAD and other BAHs. METHODS We review the pertinent literature and discuss genetic defects associated with various endocrine and nonendocrine tumors. RESULTS A decade ago, we discovered that PPNAD and the Carney complex are caused by PRKAR1A mutations. PRKAR1A encodes the protein kinase A (PKA) regulatory subunit type IA, an important regulator of cAMP signaling in most cells. Recently, we described PKA or PRKAR1A abnormalities in a variety of other BAHs; in some of these cases, mutations in additional genes of the cAMP signaling pathway, the phosphodiesterases, were identified. Transcriptomic analyses of human lesions or animal models showed that abnormal cAMP/PKA signaling in the adrenal glands, and also in other tissues such as bone, leads to proliferation of tissue-specific pluripotential cells through activation of Wnt signaling. CONCLUSION Recent findings indicate the relevance of cAMP signaling in the pathogenesis of adrenocortical disease and point to the Wnt signaling pathway as a potential important mediator of tumorigenesis related to increased cAMP or PKA signaling (or both).
Collapse
Affiliation(s)
- Monalisa F Azevedo
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
24
|
Son GH, Chung S, Kim K. The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol 2011; 32:451-65. [PMID: 21802440 DOI: 10.1016/j.yfrne.2011.07.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/25/2011] [Accepted: 07/06/2011] [Indexed: 12/27/2022]
Abstract
The mammalian circadian timing system is organized in a hierarchy, with the master clock residing in the suprachiasmatic nucleus (SCN) of the hypothalamus and subsidiary peripheral clocks in other brain regions as well as peripheral tissues. Since the local oscillators in most cells contain a similar molecular makeup to that in the central pacemaker, determining the role of the peripheral clocks in the regulation of rhythmic physiology and behavior is an important issue. Glucocorticoids (GCs) are a class of multi-functional adrenal steroid hormones, which exhibit a robust circadian rhythm, with a peak linked with the onset of the daily activity phase. It has long been believed that the production and secretion of GC is primarily governed through the hypothalamus-pituitary-adrenal (HPA) neuroendocrine axis in mammals. Growing evidence, however, strongly supports the notion that the periodicity of GC involves the integrated activity of multiple regulatory mechanisms related to circadian timing system along with the classical HPA neuroendocrine regulation. The adrenal-intrinsic oscillator as well as the central pacemaker plays a pivotal role in its rhythmicity. GC influences numerous biological processes, such as metabolic, cardiovascular, immune and even higher brain functions, and also acts as a resetting signal for the ubiquitous peripheral clocks, suggesting its importance in harmonizing circadian physiology and behavior. In this review, we will therefore focus on the recent advances in our understanding of the circadian regulation of adrenal GC and its functional relevance.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biological Sciences, Seoul National University, Brain Research Center for the 21st Century Frontier Program in Neuroscience, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
25
|
Wang GL, Jiang PJ, Wang XH, Chen W. Construction of a eukaryotic expression plasmid encoding the human PKAR IIβ gene and its expression in human gastric cancer BGC-823 cells. Shijie Huaren Xiaohua Zazhi 2011; 19:1446-1450. [DOI: 10.11569/wcjd.v19.i14.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a eukaryotic expression plasmid encoding the human protein kinase A regulatory subunit II beta (PKAR IIβ) gene and to examine its expression and localization in BGC-823 gastric cells using green fluorescent protein as a reporter.
METHODS: The coding sequence of the PKAR IIβ gene was amplified from the plasmid pRSETB-PKARIIβ by PCR and subcloned into pEGFP-C1 vector after digestion with Xho I and EcoR I. After the identity of recombinant plasmid was verified by direct sequencing, the plasmid was transfected into BGC-823 cells. The expression of the recombinant plasmid in BGC-823 cells was detected by Western blot. The localization of GFP-PKARIIβ in BGC-823 cells was observed by laser scanning confocal microscopy.
RESULTS: The coding sequence of the PKARIIβ gene was inserted into the pEGFP-C1 vector successfully. Restriction enzymes digestion showed that the length of the insert was 1.2 kb, matching the expected size. The expression of GFP-PKARIIβ fusion protein, which had a molecular weight of 72 000 Da, was detected in BGC-823 cells by Western blot. The GFP-PKARIIβ protein was localized predominantly to the cytoplasm but sparsely to the nucleus of HEK293 and BGC-823 cells.
CONCLUSION: A recombinant plasmid expressing the PKARIIβ gene has been successfully constructed and provides a tool for future investigation of PKARIIβ functions. The GFP-PKARIIβ fusion protein was expressed mainly in the cytoplasm of HEK293 and BGC7901 cells.
Collapse
|
26
|
Chung S, Son GH, Kim K. Circadian rhythm of adrenal glucocorticoid: Its regulation and clinical implications. Biochim Biophys Acta Mol Basis Dis 2011; 1812:581-91. [DOI: 10.1016/j.bbadis.2011.02.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
27
|
Almeida MQ, Stratakis CA. How does cAMP/protein kinase A signaling lead to tumors in the adrenal cortex and other tissues? Mol Cell Endocrinol 2011; 336:162-8. [PMID: 21111774 PMCID: PMC3049838 DOI: 10.1016/j.mce.2010.11.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
The overwhelming majority of benign lesions of the adrenal cortex leading to Cushing syndrome are linked to one or another abnormality of the cAMP signaling pathway. A small number of both massive macronodular adrenocortical disease and cortisol-producing adenomas harbor somatic GNAS mutations. Micronodular adrenocortical hyperplasias are either pigmented (the classic form being that of primary pigmented nodular adrenocortical disease) or non-pigmented; micronodular adrenocortical hyperplasias can be seen in the context of other conditions or isolated; for example, primary pigmented nodular adrenocortical disease usually occurs in the context of Carney complex, but isolated primary pigmented nodular adrenocortical disease has also been described. Both Carney complex and isolated primary pigmented nodular adrenocortical disease are caused by germline PRKAR1A mutations; somatic mutations of this gene that regulates cAMP-dependent protein kinase are also found in cortisol-producing adenomas, and abnormalities of PKA are present in most cases of massive macronodular adrenocortical disease. Micronodular adrenocortical hyperplasias and some cortisol-producing adenomas are associated with phosphodiesterase 11A and 8B defects, coded, respectively, by the PDE11A and PDE8B genes. Mouse models of Prkar1a deficiency also show that increased cAMP signaling leads to tumors in adrenal cortex and other tissues. In this review, we summarize all recent data from ours and other laboratories, supporting the view that Wnt-signaling acts as an important mediator of tumorigenicity induced by abnormal PRKAR1A function and aberrant cAMP signaling.
Collapse
Affiliation(s)
- Madson Q. Almeida
- Section on Endocrinology and Genetics (SEGEN), Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics (SEGEN), Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892
- Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892
| |
Collapse
|
28
|
Almeida MQ, Harran M, Bimpaki EI, Hsiao HP, Horvath A, Cheadle C, Watkins T, Nesterova M, Stratakis CA. Integrated genomic analysis of nodular tissue in macronodular adrenocortical hyperplasia: progression of tumorigenesis in a disorder associated with multiple benign lesions. J Clin Endocrinol Metab 2011; 96:E728-38. [PMID: 21252250 PMCID: PMC3070257 DOI: 10.1210/jc.2010-2420] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Massive macronodular adrenocortical disease or ACTH-independent macronodular adrenal hyperplasia (AIMAH) is a clinically and genetically heterogeneous disorder. OBJECTIVE AND DESIGN Whole-genome expression profiling and oligonucleotide array comparative genomic hybridization changes were analyzed in samples of different nodules from the same patients with AIMAH. Quantitative RT-PCR and staining were employed to validate the mRNA array data. RESULTS Chromosomal gains were more frequent in larger nodules when compared with smaller nodules from the same patients. Among the 50 most overexpressed genes, 50% had a chromosomal locus that was amplified in the comparative genomic hybridization data. Although the list of most over- and underexpressed genes was similar between the nodules of different size, the gene set enrichment analysis identified different pathways associated with AIMAH that corresponded to the size; the smaller nodules were mainly enriched for metabolic pathways, whereas p53 signaling and cancer genes were enriched in larger nodules. Confirmatory studies demonstrated that BCL2, E2F1, EGF, c-KIT, MYB, PRKCA, and CTNNB1 were overexpressed in the larger nodules at messenger and/or protein levels. Chromosomal enrichment analysis showed that chromosomes 20q13 and 14q23 might be involved in progression of AIMAH from smaller to larger tumors. CONCLUSION Integrated transcriptomic and genomic data for AIMAH provides supporting evidence to the hypothesis that larger adrenal lesions, in the context of this chronic, polyclonal hyperplasia, accumulate an increased number of genomic and, subsequently, transcript abnormalities. The latter shows that the disease appears to start with mainly tissue metabolic derangements, as suggested by the study of the smaller nodules, but larger lesions showed aberrant expression of oncogenic pathways.
Collapse
Affiliation(s)
- Madson Q Almeida
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Almeida MQ, Stratakis CA. Carney complex and other conditions associated with micronodular adrenal hyperplasias. Best Pract Res Clin Endocrinol Metab 2010; 24:907-14. [PMID: 21115159 PMCID: PMC3000540 DOI: 10.1016/j.beem.2010.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carney complex (CNC) is a multiple neoplasia syndrome that is inherited in an autosomal dominant manner and is characterized by skin tumors and pigmented lesions, myxomas, schwannomas, and various endocrine tumors. Inactivating mutations of the PRKAR1A gene coding for the regulatory type I-α (RIα) subunit of protein kinase A (PKA) are responsible for the disease in most CNC patients. The overall penetrance of CNC among PRKAR1A mutation carriers is near 98%. Most PRKAR1A mutations result in premature stop codon generation and lead to nonsense-mediated mRNA decay. CNC is genetically and clinically heterogeneous, with specific mutations providing some genotype-phenotype correlation. Phosphodiesterase-11A (the PDE11A gene) and -8B (the PDE8B gene) mutations were found in patients with isolated adrenal hyperplasia and Cushing syndrome, as well in patients with PPNAD. Recent evidences demonstrated that dysregulation of cAMP/PKA pathway can modulate other signaling pathways and contributes to adrenocortical tumorigenesis.
Collapse
Affiliation(s)
- Madson Q Almeida
- Section on Endocrinology & Genetics, Program on Developmental Endocrinology & Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | |
Collapse
|
30
|
Faucz FR, Stratakis CA. Adrenal cortex and micro-RNAs: An update. Cell Cycle 2010; 9:4039-40. [PMID: 20980809 PMCID: PMC3230470 DOI: 10.4161/cc.9.20.13626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 09/13/2010] [Indexed: 11/19/2022] Open
Affiliation(s)
- Fabio Rueda Faucz
- Section on Endocrinology Genetics, Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA.
| | | |
Collapse
|
31
|
Pereira AM, Hes FJ, Horvath A, Woortman S, Greene E, Bimpaki E, Alatsatianos A, Boikos S, Smit JW, Romijn JA, Nesterova M, Stratakis CA. Association of the M1V PRKAR1A mutation with primary pigmented nodular adrenocortical disease in two large families. J Clin Endocrinol Metab 2010; 95:338-42. [PMID: 19915019 PMCID: PMC2805491 DOI: 10.1210/jc.2009-0993] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Carney complex (CNC) is a familial multiple neoplasia syndrome frequently associated with primary pigmented nodular adrenocortical disease (PPNAD), a bilateral form of micronodular adrenal hyperplasia that leads to Cushing's syndrome (CS). Germline PRKAR1A mutations cause CNC and only rarely isolated PPNAD. PATIENTS AND METHODS PRKAR1A mutation analysis in two large families with CS and no other CNC manifestations demonstrated a M1V germline mutation; a total of 21 asymptomatic individuals were screened, and mutation carriers were evaluated for CNC. The mutation was expressed in vitro and functionally tested for its effects on protein kinase A function. RESULTS Presymptomatic testing identified five first-degree relatives who were M1V carriers and who were all diagnosed with subclinical, mild CS at ages ranging from 20-56 yr. There were no other signs of CNC. In a cell-free system, we detected a shorter compared with the wild-type type 1alpha regulatory subunit of protein kinase A (PRKAR1A) protein (43 kDa). This was not identified in cell lines from the patients or in transfection experiments in HEK293 cells that showed no detectable PRKAR1A protein from the M1V-bearing constructs. In these cells, the mutant mRNA was expressed in a 1:1 ratio. CONCLUSION In two large families, the M1V PRKAR1A mutation resulted in a PPNAD-only phenotype with significant variability both in terms of age of onset and clinical severity. Expression studies showed a unique effect of this sequence change. This study has implications for genetic counseling of carriers of this PRKAR1A mutation and patients with CNC and PPNAD and for the study of PRKAR1A-related tumorigenesis.
Collapse
Affiliation(s)
- Alberto M Pereira
- Department of Endocrinology and Metabolism and Center for Human, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Current World Literature. Curr Opin Oncol 2010; 22:70-5. [DOI: 10.1097/cco.0b013e328334b4d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Honour JW. Diagnosis of diseases of steroid hormone production, metabolism and action. J Clin Res Pediatr Endocrinol 2009; 1:209-26. [PMID: 21274298 PMCID: PMC3005746 DOI: 10.4274/jcrpe.v1i5.209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 08/24/2009] [Indexed: 12/01/2022] Open
Abstract
Biochemical tests have been the basis for investigations of disorders affecting steroid hormones. In recent years it has been possible however to study the genes that determine functional enzymes, cofactors, receptors, transcription factors and signaling systems that are involved in the process. Analyses of mutations are available as a diagnostic service for only a few of these genes although research laboratories may be able to provide a service. Both biochemical and genetic research have brought to light new disorders. Some genes for transcription factors involved in the development of the endocrine organs have also been identified and patients with defects in these processes have been found. This paper will review general aspects of adrenal disorders with emphasis on clinical and laboratory findings. As with all endocrine investigations there are few single measurements that provide a definitive answer to a diagnosis. Timing of samples in relation to age, gender and time of day needs to be considered.
Collapse
|
34
|
Hsiao HP, Kirschner LS, Bourdeau I, Keil MF, Boikos SA, Verma S, Robinson-White AJ, Nesterova M, Lacroix A, Stratakis CA. Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J Clin Endocrinol Metab 2009; 94:2930-7. [PMID: 19509103 PMCID: PMC2730864 DOI: 10.1210/jc.2009-0516] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE ACTH-independent macronodular adrenal hyperplasia (AIMAH) is often associated with subclinical cortisol secretion or atypical Cushing's syndrome (CS). We characterized a large series of patients of AIMAH and compared them with patients with other adrenocortical tumors. DESIGN AND PATIENTS We recruited 82 subjects with: 1) AIMAH (n = 16); 2) adrenocortical cortisol-producing adenoma with CS (n = 15); 3) aldosterone-producing adenoma (n = 19); and 4) single adenomas with clinically nonsignificant cortisol secretion (n = 32). METHODS Urinary free cortisol (UFC) and 17-hydroxycorticosteroid (17OHS) were collected at baseline and during dexamethasone testing; aberrant receptor responses was also sought by clinical testing and confirmed molecularly. Peripheral and/or tumor DNA was sequenced for candidate genes. RESULTS AIMAH patients had the highest 17OHS excretion, even when UFCs were within or close to the normal range. Aberrant receptor expression was highly prevalent. Histology showed at least two subtypes of AIMAH. For three patients with AIMAH, there was family history of CS; germline mutations were identified in three other patients in the genes for menin (one), fumarate hydratase (one), and adenomatosis polyposis coli (APC) (one); a PDE11A gene variant was found in another. One patient had a GNAS mutation in adrenal nodules only. There were no mutations in any of the tested genes in the patients of the other groups. CONCLUSIONS AIMAH is a clinically and genetically heterogeneous disorder that can be associated with various genetic defects and aberrant hormone receptors. It is frequently associated with atypical CS and increased 17OHS; UFCs and other measures of adrenocortical activity can be misleadingly normal.
Collapse
Affiliation(s)
- Hui-Pin Hsiao
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Iliopoulos D, Bimpaki EI, Nesterova M, Stratakis CA. MicroRNA signature of primary pigmented nodular adrenocortical disease: clinical correlations and regulation of Wnt signaling. Cancer Res 2009; 69:3278-82. [PMID: 19351815 PMCID: PMC3124768 DOI: 10.1158/0008-5472.can-09-0155] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNAs comprise a novel group of gene regulators implicated in the development of different types of cancer; however, their role in primary pigmented nodular adrenocortical disease (PPNAD) has not been investigated. PPNAD is a bilateral adrenal hyperplasia often associated with Carney complex, a multiple neoplasia syndrome; both disorders are caused by protein kinase A (PKA) regulatory subunit type 1A (PRKARIA)-inactivating mutations. We identified a 44-microRNA gene signature of PPNAD after comparing PPNAD with normal adrenal samples. Specifically, 33 microRNAs were up-regulated and 11 down-regulated in PPNAD relative to normal tissues. These results were validated by stem loop real-time PCR analysis. Comparison of microRNA microarray data with clinicopathologic variables revealed a negative correlation (r = -0.9499) between let-7b expression and cortisol levels in patients with PPNAD. Integration of microRNA microarray with serial analysis of gene expression data together with bioinformatic algorithm predictions revealed nine microRNA-gene target pairs with a potential role in adrenal pathogenesis. Using a PPNAD cell line, we showed that miR-449 was up-regulated and identified its direct target, WNT1-inducible signaling pathway protein 2 (WISP2); in addition, pharmacologic inhibition of PKA resulted in the up-regulation of miR-449 leading to the suppression of WISP2. Overall, we investigated, for the first time, the microRNA profile and its clinical significance in PPNAD; these data also suggest that PKA, via microRNA regulation, affects the Wnt signaling pathway, which through expression and clinical studies is suspected to be a primary mediator of PRKAR1A-related tumorigenesis.
Collapse
Affiliation(s)
- Dimitrios Iliopoulos
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston MA 02115
| | - Eirini I Bimpaki
- Section on Endocrinology and Genetics (SEGEN), Program in Developmental Endocrinology & Genetics (PDEGEN), National Institute of Child Health & Human Development (NICHD)
| | - Maria Nesterova
- Section on Endocrinology and Genetics (SEGEN), Program in Developmental Endocrinology & Genetics (PDEGEN), National Institute of Child Health & Human Development (NICHD)
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Program in Developmental Endocrinology & Genetics (PDEGEN), National Institute of Child Health & Human Development (NICHD)
| |
Collapse
|