1
|
Zhang C, Nie Y, Xu B, Mu C, Tian GG, Li X, Cheng W, Zhang A, Li D, Wu J. Luteinizing Hormone Receptor Mutation (LHR N316S) Causes Abnormal Follicular Development Revealed by Follicle Single-Cell Analysis and CRISPR/Cas9. Interdiscip Sci 2024; 16:976-989. [PMID: 39150470 PMCID: PMC11512921 DOI: 10.1007/s12539-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Abnormal interaction between granulosa cells and oocytes causes disordered development of ovarian follicles. However, the interactions between oocytes and cumulus granulosa cells (CGs), oocytes and mural granulosa cells (MGs), and CGs and MGs remain to be fully explored. Using single-cell RNA-sequencing (scRNA-seq), we determined the transcriptional profiles of oocytes, CGs and MGs in antral follicles. Analysis of scRNA-seq data revealed that CGs may regulate follicular development through the BMP15-KITL-KIT-PI3K-ARF6 pathway with elevated expression of luteinizing hormone receptor (LHR). Because internalization of the LHR is regulated by Arf6, we constructed LHRN316S mice by CRISPR/Cas9 to further explore mechanisms of follicular development and novel treatment strategies for female infertility. Ovaries of LHRN316S mice exhibited reduced numbers of corpora lutea and ovulation. The LHRN316S mice had a reduced rate of oocyte maturation in vitro and decreased serum progesterone levels. Mating LHRN316S female mice with ICR wild type male mice revealed that the infertility rate of LHRN316S mice was 21.4% (3/14). Litter sizes from LHRN316S mice were smaller than those from control wild type female mice. The oocytes from LHRN316S mice had an increased rate of maturation in vitro after progesterone administration in vitro. Furthermore, progesterone treated LHRN316S mice produced offspring numbers per litter equivalent to WT mice. These findings provide key insights into cellular interactions in ovarian follicles and provide important clues for infertility treatment.
Collapse
Affiliation(s)
- Chen Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Hematology, Tangdu Hospital, Xi'an, 710032, China
| | - Yongqiang Nie
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunlan Mu
- School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyong Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwei Cheng
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
2
|
Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, Persani L. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne) 2024; 15:1464803. [PMID: 39391877 PMCID: PMC11466302 DOI: 10.3389/fendo.2024.1464803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Primary ovarian insufficiency (POI) is a disorder of insufficient ovarian follicle function before the age of 40 years with an estimated prevalence of 3.7% worldwide. Its relevance is emerging due to the increasing number of women desiring conception late or beyond the third decade of their lives. POI clinical presentation is extremely heterogeneous with a possible exordium as primary amenorrhea due to ovarian dysgenesis or with a secondary amenorrhea due to different congenital or acquired abnormalities. POI significantly impacts non only on the fertility prospect of the affected women but also on their general, psychological, sexual quality of life, and, furthermore, on their long-term bone, cardiovascular, and cognitive health. In several cases the underlying cause of POI remains unknown and, thus, these forms are still classified as idiopathic. However, we now know the age of menopause is an inheritable trait and POI has a strong genetic background. This is confirmed by the existence of several candidate genes, experimental and natural models. The most common genetic contributors to POI are the X chromosome-linked defects. Moreover, the variable expressivity of POI defect suggests it can be considered as a multifactorial or oligogenic defect. Here, we present an updated review on clinical findings and on the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI. We also provide current information on the management of the premature hypoestrogenic state as well as on fertility preservation in subjects at risk of POI.
Collapse
Affiliation(s)
- Silvia Federici
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisabetta V. Munari
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Frixou
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
3
|
Liu W, Chen C, Gao Y, Cui X, Zhang Y, Gu L, He Y, Li J, Gao S, Gao R, Jiang C. Transcriptome Dynamics and Cell Dialogs Between Oocytes and Granulosa Cells in Mouse Follicle Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad001. [PMID: 38955498 PMCID: PMC11423849 DOI: 10.1093/gpbjnl/qzad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/17/2023] [Accepted: 09/20/2023] [Indexed: 07/04/2024]
Abstract
The development and maturation of follicles is a sophisticated and multistage process. The dynamic gene expression of oocytes and their surrounding somatic cells and the dialogs between these cells are critical to this process. In this study, we accurately classified the oocyte and follicle development into nine stages and profiled the gene expression of mouse oocytes and their surrounding granulosa cells and cumulus cells. The clustering of the transcriptomes showed the trajectories of two distinct development courses of oocytes and their surrounding somatic cells. Gene expression changes precipitously increased at Type 4 stage and drastically dropped afterward within both oocytes and granulosa cells. Moreover, the number of differentially expressed genes between oocytes and granulosa cells dramatically increased at Type 4 stage, most of which persistently passed on to the later stages. Strikingly, cell communications within and between oocytes and granulosa cells became active from Type 4 stage onward. Cell dialogs connected oocytes and granulosa cells in both unidirectional and bidirectional manners. TGFB2/3, TGFBR2/3, INHBA/B, and ACVR1/1B/2B of TGF-β signaling pathway functioned in the follicle development. NOTCH signaling pathway regulated the development of granulosa cells. Additionally, many maternally DNA methylation- or H3K27me3-imprinted genes remained active in granulosa cells but silent in oocytes during oogenesis. Collectively, Type 4 stage is the key turning point when significant transcription changes diverge the fate of oocytes and granulosa cells, and the cell dialogs become active to assure follicle development. These findings shed new insights on the transcriptome dynamics and cell dialogs facilitating the development and maturation of oocytes and follicles.
Collapse
Affiliation(s)
- Wenju Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Chuan Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xinyu Cui
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuhan Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Liang Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuanlin He
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Nazou E, Potiris A, Mavrogianni D, Drakaki E, Vogiatzis AA, Sarli V, Vrantza T, Zikopoulos A, Louis K, Skentou C, Panagopoulos P, Drakakis P, Stavros S. Oocyte Maturation and miRNAs: Studying a Complicate Interaction to Reveal Possible Biomarkers for Female Infertility. Diseases 2024; 12:121. [PMID: 38920553 PMCID: PMC11202488 DOI: 10.3390/diseases12060121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Cellular metabolism, apoptosis, fertilization, and proliferation of granulosa cells belong to a battery of processes where microRNAs can be detected and associated with infertility. The aim of the present review is to focus on mammalian oocyte maturation events and the association between oocyte growth and miRNA expression. PubMed/Medline, Google Scholar and Scopus databases were searched, and 33 studies were included. Regarding the correlation among miRNA expression and the regulation of granulosa cells and cumulus cells, the most important miRNAs were let-7b, let-7c and miR-21. Additionally, the loss of Dicer, an enzyme involved in miRNA biogenesis, is probably a crucial factor in oogenesis, oocyte maturation and embryogenesis. Furthermore, miRNAs interfere with different cellular mechanisms like apoptosis, steroidogenesis, genome integrity, angiogenesis, antioxidative response and, consequently, oocyte maturation. Hence, it is of major importance to clarify the role and mechanism of each miRNA as understanding its action may develop new tools and establish new diagnostic and treatment approaches for infertility and ovarian disorders.
Collapse
Affiliation(s)
- Eleni Nazou
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (E.N.); (A.-A.V.); (V.S.); (T.V.); (A.Z.); (K.L.); (P.P.); (P.D.); (S.S.)
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (E.N.); (A.-A.V.); (V.S.); (T.V.); (A.Z.); (K.L.); (P.P.); (P.D.); (S.S.)
| | - Despoina Mavrogianni
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (D.M.); (E.D.)
| | - Eirini Drakaki
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (D.M.); (E.D.)
| | - Aris-Anargyros Vogiatzis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (E.N.); (A.-A.V.); (V.S.); (T.V.); (A.Z.); (K.L.); (P.P.); (P.D.); (S.S.)
| | - Vaia Sarli
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (E.N.); (A.-A.V.); (V.S.); (T.V.); (A.Z.); (K.L.); (P.P.); (P.D.); (S.S.)
| | - Tereza Vrantza
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (E.N.); (A.-A.V.); (V.S.); (T.V.); (A.Z.); (K.L.); (P.P.); (P.D.); (S.S.)
| | - Athanasios Zikopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (E.N.); (A.-A.V.); (V.S.); (T.V.); (A.Z.); (K.L.); (P.P.); (P.D.); (S.S.)
| | - Konstantinos Louis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (E.N.); (A.-A.V.); (V.S.); (T.V.); (A.Z.); (K.L.); (P.P.); (P.D.); (S.S.)
| | - Chara Skentou
- Department of Obstetrics and Gynecology, Medical School, University of Ioannina, 45110 Ioannina, Greece;
| | - Periklis Panagopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (E.N.); (A.-A.V.); (V.S.); (T.V.); (A.Z.); (K.L.); (P.P.); (P.D.); (S.S.)
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (E.N.); (A.-A.V.); (V.S.); (T.V.); (A.Z.); (K.L.); (P.P.); (P.D.); (S.S.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (E.N.); (A.-A.V.); (V.S.); (T.V.); (A.Z.); (K.L.); (P.P.); (P.D.); (S.S.)
| |
Collapse
|
5
|
Zhang Y, Zhang Z, Sheng X. A more natural follicle culture system: Detailed steps of In Vitro 3D follicle culture with alginate gel. MethodsX 2024; 12:102756. [PMID: 38883585 PMCID: PMC11176788 DOI: 10.1016/j.mex.2024.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/11/2024] [Indexed: 06/18/2024] Open
Abstract
Follicle culture is a process of dividing follicle unit structures from ovaries for continued culture in vitro in an incubator, which simulates the in vivo environment. Alginate gel is the most stable and most convenient 3D material currently used in follicle culture. We performed in vitro follicle culture following the standard operating procedure recommended by the Follicle Handbook and we have summarized our experience and skills in details. Through several experiments, we found only follicles tightly surrounded by theca cells can grow healthily until the preovulatory stage. In addition, the hardness of alginate gel is crucial for constructing the 3D culture system, and selecting appropriate tools can reduce damage to the alginate gel and shorten the time follicles are exposed to room temperature. Our detailed operation improves bioavailability and provides a more natural environment for the entire process of follicular growth.•Alginate gel is still the most suitable 3D material used for in vitro follicle culture.•Follicle integrity and the hardness of alginate gel are the keys for in vitro culture.•Detailed operation steps better protect the follicular microenvironment and improve bioavailability.
Collapse
Affiliation(s)
- Yang Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, PR China
| | - Zhe Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, PR China
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Yu M, Zhang S, Ma Z, Qiang J, Wei J, Sun L, Kocher TD, Wang D, Tao W. Disruption of Zar1 leads to arrested oogenesis by regulating polyadenylation via Cpeb1 in tilapia (Oreochromis niloticus). Int J Biol Macromol 2024; 260:129632. [PMID: 38253139 DOI: 10.1016/j.ijbiomac.2024.129632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.
Collapse
Affiliation(s)
- Miao Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shiyi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhisheng Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, United States of America
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Guo C, Zhang K, Li C, Xing R, Xu S, Wang D, Wang X. Cyp19a1a Promotes Ovarian Maturation through Regulating E2 Synthesis with Estrogen Receptor 2a in Pampus argenteus (Euphrasen, 1788). Int J Mol Sci 2024; 25:1583. [PMID: 38338860 PMCID: PMC10855460 DOI: 10.3390/ijms25031583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In the artificial breeding of Pampus argenteus (Euphrasen, 1788), female fish spawn before male release sperm, which indicates rapid ovarian development. In fish, aromatase is responsible for converting androgens into estrogens and estrogen plays a crucial role in ovarian development. In this study, we aimed to investigate the potential role of brain-type and ovarian-type aromatase to study the rapid ovarian development mechanism. The results showed that cyp19a1a was mainly expressed in the ovary and could be classified as the ovarian type, whereas cyp19a1b could be considered as the brain type for its expression was mainly in the brain. During ovarian development, the expression of cyp19a1a in the ovary significantly increased from stage IV to stage V and Cyp19a1a signals were present in the follicle cells, while cyp19a1b expression in the pituitary gland decreased from stage IV to stage V. To further investigate the function of Cyp19a1a, recombinant Cyp19a1a (rCyp19a1a) was produced and specific anti-Cyp19a1a antiserum was obtained. The expressions of cyp19a1a, estrogen receptors 2 alpha (esr2a), and androgen receptor alpha (arα) were significantly upregulated in the presence of rCyp19a1a. Meanwhile, cyp19a1a was expressed significantly after E2 treatment in both ovarian and testicular tissue culture. Taken together, we found two forms of aromatase in silver pomfret. The ovarian-type aromatase might play an important role in ovarian differentiation and maturation, and participate in E2 synthesis through co-regulation with esr2a. The brain-type aromatase cyp19a1b might be involved in the regulation of both brain and gonadal development.
Collapse
Affiliation(s)
- Chunyang Guo
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Kai Zhang
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
| | - Chang Li
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
| | - Ruixue Xing
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
| | - Shanliang Xu
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Danli Wang
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Xubo Wang
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| |
Collapse
|
8
|
Wen Y, Zhan J, Li C, Li P, Wang C, Wu J, Xu Y, Zhang Y, Zhou Y, Li E, Nie H, Wu X. G-protein couple receptor (GPER1) plays an important role during ovarian folliculogenesis and early development of the Chinese Alligator. Anim Reprod Sci 2023; 255:107295. [PMID: 37422950 DOI: 10.1016/j.anireprosci.2023.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
The critical role of the G protein-coupled receptor 1 (GPER1), a member of the seven-transmembrane G protein-coupled receptor family, in the functional regulation of oocytes accumulated abundant theories in the early research on model animals. However, the full-length cDNA encoding GPER1 and its role in the folliculogenesis has not been illustrated in crocodilians. 0.5, 3, and 12 months old Alligator sinensis cDNA samples were used to clone the full-length cDNA encoding GPER1. Immunolocalization and quantitative analysis were performed using Immunofluorescence technique, RT-PCR and Western blot. Simultaneously, studies on GPER1's promoter deletion and cis-acting transcriptional regulation mechanism were conducted. Immunolocalization staining for the germline marker DDX4 and GPER1 demonstrated that DDX4-positive oocytes were clustered tightly together within the nests, whereas scarcely any detectable GPER1 was present in the oocytes nest in Stage I. After that, occasionally GPER1-positive immunosignal was observed in oocytes and somatic cells additional with the primordial follicles, and it was mainly located at the granulosa cells or thecal cells within the early PFs in the Stage III. The single mutation of the putative SP1 motif, double mutating of Ets/SP1 and SP1/CRE binding sites all depressed promoter activities. This result will help to investigate the role of GPER1 in the early folliculogenesis of A. sinensis.
Collapse
Affiliation(s)
- Yue Wen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Jixiang Zhan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Changcheng Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Pengfei Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Chong Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Jie Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yunlu Xu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yuqian Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou 242000, People's Republic of China
| | - En Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Haitao Nie
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China.
| | - Xiaobing Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China.
| |
Collapse
|
9
|
Jiang X, Cheng Y, Zhu Y, Xu C, Li Q, Xing X, Li W, Zou J, Meng L, Azhar M, Cao Y, Tong X, Qin W, Zhu X, Bao J. Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice. Nat Commun 2023; 14:3729. [PMID: 37349316 PMCID: PMC10287700 DOI: 10.1038/s41467-023-39256-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
In mammals, the production of mature oocytes necessitates rigorous regulation of the discontinuous meiotic cell-cycle progression at both the transcriptional and post-transcriptional levels. However, the factors underlying this sophisticated but explicit process remain largely unclear. Here we characterize the function of N-acetyltransferase 10 (Nat10), a writer for N4-acetylcytidine (ac4C) on RNA molecules, in mouse oocyte development. We provide genetic evidence that Nat10 is essential for oocyte meiotic prophase I progression, oocyte growth and maturation by sculpting the maternal transcriptome through timely degradation of poly(A) tail mRNAs. This is achieved through the ac4C deposition on the key CCR4-NOT complex transcripts. Importantly, we devise a method for examining the poly(A) tail length (PAT), termed Hairpin Adaptor-poly(A) tail length (HA-PAT), which outperforms conventional methods in terms of cost, sensitivity, and efficiency. In summary, these findings provide genetic evidence that unveils the indispensable role of maternal Nat10 in oocyte development.
Collapse
Affiliation(s)
- Xue Jiang
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yu Cheng
- School of Information Science and Technology, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yuzhang Zhu
- Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Caoling Xu
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Qiaodan Li
- Laboratory animal center, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Xuemei Xing
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Wenqing Li
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Jiaqi Zou
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Lan Meng
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Muhammad Azhar
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yuzhu Cao
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), 510600, Guangzhou, China.
| | - Xiaoli Zhu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
| | - Jianqiang Bao
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
- Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
| |
Collapse
|
10
|
Kim YJ, Cho YI, Jang J, Koo YD, Park SW, Lee JH. Lovastatin, an Up-Regulator of Low-Density Lipoprotein Receptor, Enhances Follicular Development in Mouse Ovaries. Int J Mol Sci 2023; 24:ijms24087263. [PMID: 37108426 PMCID: PMC10139027 DOI: 10.3390/ijms24087263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian aging hampers in vitro fertilization in assisted reproductive medicine and has no cure. Lipoprotein metabolism is associated with ovarian aging. It remains unclear how to overcome poor follicular development with aging. Upregulation of the low-density lipoprotein receptor (LDLR) enhances oogenesis and follicular development in mouse ovaries. This study investigated whether upregulation of LDLR expression using lovastatin enhances ovarian activity in mice. We performed superovulation using a hormone and used lovastatin to upregulate LDLR. We histologically analyzed the functional activity of lovastatin-treated ovaries and investigated gene and protein expression of follicular development markers, using RT-qPCR and Western blotting. Histological analysis showed that lovastatin significantly increased the numbers of antral follicles and ovulated oocytes per ovary. The in vitro maturation rate was 10% higher for lovastatin-treated ovaries than for control ovaries. Relative LDLR expression was 40% higher in lovastatin-treated ovaries than in control ovaries. Lovastatin significantly increased steroidogenesis in ovaries and promoted the expression of follicular development marker genes such as anti-Mullerian hormone, Oct3/4, Nanog, and Sox2. In conclusion, lovastatin enhanced ovarian activity throughout follicular development. Therefore, we suggest that upregulation of LDLR may help to improve follicular development in clinical settings. Modulation of lipoprotein metabolism can be used with assisted reproductive technologies to overcome ovarian aging.
Collapse
Affiliation(s)
- Yu Jin Kim
- CHA Fertility Center Seoul Station, Seoul 04637, Republic of Korea
| | - Yong Il Cho
- Wonju Severance Christian Hospital, Wonju 22070, Republic of Korea
| | - JuYi Jang
- Department of Biomedical Sciences, CHA University, Pocheon 11160, Republic of Korea
| | - Yun Dong Koo
- Department of Biomedical Sciences, CHA University, Pocheon 11160, Republic of Korea
| | - Sung Woon Park
- CHA Fertility Center Seoul Station, Seoul 04637, Republic of Korea
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Seoul 04637, Republic of Korea
- Department of Biomedical Sciences, CHA University, Pocheon 11160, Republic of Korea
| |
Collapse
|
11
|
Gravholt CH, Viuff M, Just J, Sandahl K, Brun S, van der Velden J, Andersen NH, Skakkebaek A. The Changing Face of Turner Syndrome. Endocr Rev 2023; 44:33-69. [PMID: 35695701 DOI: 10.1210/endrev/bnac016] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 01/20/2023]
Abstract
Turner syndrome (TS) is a condition in females missing the second sex chromosome (45,X) or parts thereof. It is considered a rare genetic condition and is associated with a wide range of clinical stigmata, such as short stature, ovarian dysgenesis, delayed puberty and infertility, congenital malformations, endocrine disorders, including a range of autoimmune conditions and type 2 diabetes, and neurocognitive deficits. Morbidity and mortality are clearly increased compared with the general population and the average age at diagnosis is quite delayed. During recent years it has become clear that a multidisciplinary approach is necessary toward the patient with TS. A number of clinical advances has been implemented, and these are reviewed. Our understanding of the genomic architecture of TS is advancing rapidly, and these latest developments are reviewed and discussed. Several candidate genes, genomic pathways and mechanisms, including an altered transcriptome and epigenome, are also presented.
Collapse
Affiliation(s)
- Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Mette Viuff
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Kristian Sandahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Sara Brun
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Janielle van der Velden
- Department of Pediatrics, Radboud University Medical Centre, Amalia Children's Hospital, 6525 Nijmegen, the Netherlands
| | - Niels H Andersen
- Department of Cardiology, Aalborg University Hospital, Aalborg 9000, Denmark
| | - Anne Skakkebaek
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus 8200 N, Denmark
| |
Collapse
|
12
|
Chhabria S, Takle V, Sharma N, Kharkar P, Pansare K, Tripathi A, Tripathi A, Bhartiya D. Extremely Active Nano-formulation of Resveratrol (XAR™) attenuates and reverses chemotherapy-induced damage in mice ovaries and testes. J Ovarian Res 2022; 15:115. [PMID: 36271409 PMCID: PMC9585716 DOI: 10.1186/s13048-022-01043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/23/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fertility preservation and restoration in cancer patients/survivors is the need of present times when increased numbers of patients get cured of cancer but face infertility as a serious side effect. Resveratrol has beneficial effects on chemoablated ovaries and testes in mice but has failed to enter the clinics because of extremely poor bioavailability. The present study was undertaken to evaluate the protective and curative effects of Extremely active Resveratrol (XAR™)- a nano-formulation of resveratrol with significantly improved bioavailability- on mouse ovary and testis after chemotherapy. Effects of XAR™ and FSH were compared on stimulation of follicle growth in adult mice ovaries. XAR™ (25 mg/kg) was administered for two days prior to chemotherapy to study the protective effects on the mouse gonads. XAR™ was also administered for 14 days post chemoablation to study the regenerative effects. Besides effect on numbers of primordial and growing follicles and spermatogenesis, the effect of XAR™ was also evaluated on the transcripts specific for ovarian/testicular stem/progenitor/germ cells, their proliferation, differentiation, meiosis, and the antioxidant indices. RESULTS Similar to FSH, XAR™ increased the numbers of primordial follicles (PF) as well as growing follicles. It protected the gonads from the adverse effects of chemotherapy and showed the ability to regenerate non-functional, chemoablated gonads. Besides stimulating follicle growth in adult ovaries similar to FSH, XAR™ also protected the testes from the adverse effects of chemotherapy and improved spermatogenesis. This was accompanied by improved anti-oxidant indices. CONCLUSIONS The results of the present study potentiate the use of XAR™ in pilot clinical studies to protect gonadal function during oncotherapy and also regenerate non-functional gonads in cancer survivors by improving antioxidant indices and stem cell-based tissue regeneration.
Collapse
Affiliation(s)
- Sagar Chhabria
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Vaishnavi Takle
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Nripen Sharma
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Prashant Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle (West), Mumbai, 400 056, India
| | - Kshama Pansare
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Deepa Bhartiya
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India.
| |
Collapse
|
13
|
Li Y, Tang Y, Wang L, Li X, Deng L, Deng W, Zheng Y, Wang D, Wei L. Transcription factor Sox3 is required for oogenesis in the teleost fish Nile tilapia. Int J Biol Macromol 2022; 222:2639-2647. [DOI: 10.1016/j.ijbiomac.2022.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
14
|
Iegorova V, Naraine R, Psenicka M, Zelazowska M, Sindelka R. Comparison of RNA localization during oogenesis within Acipenser ruthenus and Xenopus laevis. Front Cell Dev Biol 2022; 10:982732. [PMID: 36204678 PMCID: PMC9531136 DOI: 10.3389/fcell.2022.982732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The oocyte is a unique cell, from which develops a complex organism comprising of germ layers, tissues and organs. In some vertebrate species it is known that the asymmetrical localization of biomolecules within the oocyte is what drives the spatial differentiation of the daughter cells required for embryogenesis. This asymmetry is first established to produce an animal-vegetal (A-V) axis which reflects the future specification of the ectoderm, mesoderm, and endoderm layers. Several pathways for localization of vegetal maternal transcripts have already been described using a few animal models. However, there is limited information about transcripts that are localized to the animal pole, even though there is accumulating evidence indicating its active establishment. Here, we performed comparative TOMO-Seq analysis on two holoblastic cleavage models: Xenopus laevis and Acipenser ruthenus oocytes during oogenesis. We found that there were many transcripts that have a temporal preference for the establishment of localization. In both models, we observed vegetal transcript gradients that were established during either the early or late oogenesis stages and transcripts that started their localization during the early stages but became more pronounced during the later stages. We found that some animal gradients were already established during the early stages, however the majority were formed during the later stages of oogenesis. Some of these temporally localized transcripts were conserved between the models, while others were species specific. Additionally, temporal de novo transcription and also degradation of transcripts within the oocyte were observed, pointing to an active remodeling of the maternal RNA pool.
Collapse
Affiliation(s)
- Viktoriia Iegorova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Ravindra Naraine
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Martin Psenicka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Monika Zelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- *Correspondence: Radek Sindelka,
| |
Collapse
|
15
|
Li X, Zhu M, Zang M, Cao D, Xie Z, Liang H, Bian Z, Zhao T, Hu Z, Xu EY. PUMILIO-mediated translational control of somatic cell cycle program promotes folliculogenesis and contributes to ovarian cancer progression. Cell Mol Life Sci 2022; 79:279. [PMID: 35507203 PMCID: PMC11072887 DOI: 10.1007/s00018-022-04254-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
Translational control is a fundamental mechanism regulating animal germ cell development. Gonadal somatic cells provide support and microenvironment for germ cell development to ensure fertility, yet the roles of translational control in gonadal somatic compartment remain largely undefined. We found that mouse homolog of conserved fly germline stem cell factor Pumilio, PUM1, is absent in oocytes of all growing follicles after the primordial follicle stage, instead, it is highly expressed in somatic compartments of ovaries. Global loss of Pum1, not oocyte-specific loss of Pum1, led to a significant reduction in follicular number and size as well as fertility. Whole-genome identification of PUM1 targets in ovarian somatic cells revealed an enrichment of cell proliferation pathway, including 48 key regulators of cell phase transition. Consistently granulosa cells proliferation is reduced and the protein expression of the PUM-bound Cell Cycle Regulators (PCCR) were altered accordingly in mutant ovaries, and specifically in granulosa cells. Increase in negative regulator expression and decrease in positive regulators in the mutant ovaries support a coordinated translational control of somatic cell cycle program via PUM proteins. Furthermore, postnatal knockdown, but not postnatal oocyte-specific loss, of Pum1 in Pum2 knockout mice reduced follicular growth and led to similar expression alteration of PCCR genes, supporting a critical role of PUM-mediated translational control in ovarian somatic cells for mammalian female fertility. Finally, expression of human PUM protein and its regulated cell cycle targets exhibited significant correlation with ovarian cancer and prognosis for cancer survival. Hence, PUMILIO-mediated cell cycle regulation represents an important mechanism in mammalian female reproduction and human cancer biology.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mengyi Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Min Zang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Dandan Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhengyao Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haibo Liang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zexin Bian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tingting Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Department of Neurology, Center for Reproductive Science, Feinberg School of Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA.
| |
Collapse
|
16
|
Boizet-Bonhoure B, Déjardin S, Rossitto M, Poulat F, Philibert P. Using Experimental Models to Decipher the Effects of Acetaminophen and NSAIDs on Reproductive Development and Health. FRONTIERS IN TOXICOLOGY 2022; 4:835360. [PMID: 35295217 PMCID: PMC8915900 DOI: 10.3389/ftox.2022.835360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin (acetylsalicylic acid), diclofenac and ibuprofen (IBU), and analgesic drugs, such as acetaminophen (APAP, or paracetamol), are widely used to treat inflammation and pain. APAP and IBU are over-the-counter drugs and are among the most commonly taken drugs in the first trimester of pregnancy, even in combination. Furthermore, these drugs and their metabolites are released in the environment, and can be frequently detected in wastewater, surface water, and importantly in drinking water. Although their environmental concentrations are much lower than the therapeutics doses, this suggests an uncontrolled low-dose exposure of the general population, including pregnant women and young children, two particularly at risk populations. Epidemiological studies show that exposure to these molecules in the first and second trimester of gestation can favor genital malformations in new-born boys. To investigate the cellular, molecular and mechanistic effects of exposure to these molecules, ex vivo studies with human or rodent gonadal explants and in vivo experiments in rodents have been performed in the past years. This review recapitulates recent data obtained in rodent models after in utero or postnatal exposure to these drugs. The first part of this review discusses the mechanisms by which NSAIDs and analgesics may impair gonadal development and maturation, puberty development, sex hormone production, maturation and function of adult organs, and ultimately fertility in the exposed animals and their offspring. Like other endocrine disruptors, NSAIDs and APAP interfere with endocrine gland function and may have inter/transgenerational adverse effects. Particularly, they may target germ cells, resulting in reduced quality of male and female gametes, and decreased fertility of exposed individuals and their descendants. Then, this review discusses the effects of exposure to a single drug (APAP, aspirin, or IBU) or to combinations of drugs during early embryogenesis, and the consequences on postnatal gonadal development and adult reproductive health. Altogether, these data may increase medical and public awareness about these reproductive health concerns, particularly in women of childbearing age, pregnant women, and parents of young children.
Collapse
Affiliation(s)
- Brigitte Boizet-Bonhoure
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- *Correspondence: Brigitte Boizet-Bonhoure,
| | - Stéphanie Déjardin
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | | | - Francis Poulat
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Pascal Philibert
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- Laboratory of Biochemistry and Molecular Biology, Carèmeau Hospital, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
17
|
Chen M, Dong F, Chen M, Shen Z, Wu H, Cen C, Cui X, Bao S, Gao F. PRMT5 regulates ovarian follicle development by facilitating Wt1 translation. eLife 2021; 10:68930. [PMID: 34448450 PMCID: PMC8483736 DOI: 10.7554/elife.68930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/26/2021] [Indexed: 01/20/2023] Open
Abstract
Protein arginine methyltransferase 5 (Prmt5) is the major type II enzyme responsible for symmetric dimethylation of arginine. Here, we found that PRMT5 was expressed at high level in ovarian granulosa cells of growing follicles. Inactivation of Prmt5 in granulosa cells resulted in aberrant follicle development and female infertility. In Prmt5-knockout mice, follicle development was arrested with disorganized granulosa cells in which WT1 expression was dramatically reduced and the expression of steroidogenesis-related genes was significantly increased. The premature differentiated granulosa cells were detached from oocytes and follicle structure was disrupted. Mechanism studies revealed that Wt1 expression was regulated by PRMT5 at the protein level. PRMT5 facilitated IRES-dependent translation of Wt1 mRNA by methylating HnRNPA1. Moreover, the upregulation of steroidogenic genes in Prmt5-deficient granulosa cells was repressed by Wt1 overexpression. These results demonstrate that PRMT5 participates in granulosa cell lineage maintenance by inducing Wt1 expression. Our study uncovers a new role of post-translational arginine methylation in granulosa cell differentiation and follicle development. Infertility in women can be caused by many factors, such as defects in the ovaries. An important part of the ovaries for fertility are internal structures called follicles, which house early forms of egg cells. A follicle grows and develops until the egg is finally released from the ovary into the fallopian tube, where the egg can then be fertilised. In the follicle, an egg is surrounded by other types of cells, such as granulosa cells. The egg and neighbouring cells must maintain healthy contacts with each other, otherwise the follicle can stop growing and developing, potentially causing infertility. The development of a follicle depends on an array of proteins. For example, the transcription factor WT1 controls protein levels by activating other genes and their proteins and is produced in high numbers by granulosa cells at the beginning of follicle development. Although WT1 levels dip towards the later stages of follicle development, insufficient levels can lead to defects. So far, it has been unclear how levels of WT1in granulose cells are regulated. Chen, Dong et al. studied mouse follicles to reveal more about the role of WT1 in follicle development. The researchers measured protein levels in mouse granulosa cells as the follicles developed, and discovered elevated levels of PRMT5, a protein needed for egg cells to form and survive in the follicles. Blocking granulosa cells from producing PRMT5 led to abnormal follicles and infertility in mice. Moreover, mice that had been engineered to lack PRMT5 developed abnormal follicles, where the egg and surrounding granulosa cells were not attached to each other, and the granulosa cells had low levels of WT1. Further experiments revealed that PRMT5 controlled WT1 levels by adding small molecules called methyl groups to another regulatory protein called HnRNPA1. The addition of methyl groups to genes or their proteins is an important modification that takes place in many processes within a cell. Chen, Dong et al. reveal that this activity also plays a key role in maintaining healthy follicle development in mice, and that PRMT5 is necessary for controlling WT1. Identifying all of the intricate mechanism involved in regulating follicle development is important for finding ways to combat infertility.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fangfang Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haowei Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Tao W, Shi H, Yang J, Diakite H, Kocher TD, Wang D. Homozygous mutation of foxh1 arrests oogenesis causing infertility in female Nile tilapia†. Biol Reprod 2021; 102:758-769. [PMID: 31837141 DOI: 10.1093/biolre/ioz225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/13/2019] [Accepted: 12/13/2019] [Indexed: 01/15/2023] Open
Abstract
Foxh1, a member of fox gene family, was first characterized as a transcriptional partner in the formation of the Smad protein complex. Recent studies have shown foxh1 is highly expressed in the cytoplasm of oocytes in both tilapia and mouse. However, its function in oogenesis remains unexplored. In the present study, foxh1-/- tilapia was created by CRISPR/Cas9. At 180 dah (days after hatching), the foxh1-/- XX fish showed oogenesis arrest and a significantly lower GSI. The transition of oocytes from phase II to phase III and follicle cells from one to two layers was blocked, resulting in infertility of the mutant. Transcriptomic analysis revealed that expression of genes involved in estrogen synthesis and oocyte growth were altered in the foxh1-/- ovaries. Loss of foxh1 resulted in significantly decreased Cyp19a1a and increased Cyp11b2 expression, consistent with significantly lower concentrations of serum estradiol-17β (E2) and higher concentrations of 11-ketotestosterone (11-KT). Moreover, administration of E2 rescued the phenotypes of foxh1-/- XX fish, as indicated by the appearance of phase III and IV oocytes and absence of Cyp11b2 expression. Taken together, these results suggest that foxh1 functions in the oocytes to regulate oogenesis by promoting cyp19a1a expression, and therefore estrogen production. Disruption of foxh1 may block the estrogen synthesis and oocyte growth, leading to the arrest of oogenesis and thus infertility in tilapia.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongjuan Shi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China and
| | - Jing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hamidou Diakite
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
19
|
Sun B, Yeh J. Onco-fertility and personalized testing for potential for loss of ovarian reserve in patients undergoing chemotherapy: proposed next steps for development of genetic testing to predict changes in ovarian reserve. FERTILITY RESEARCH AND PRACTICE 2021; 7:13. [PMID: 34193292 PMCID: PMC8244159 DOI: 10.1186/s40738-021-00105-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
Women of reproductive age undergoing chemotherapy face the risk of irreversible ovarian insufficiency. Current methods of ovarian reserve testing do not accurately predict future reproductive potential for patients undergoing chemotherapy. Genetic markers that more accurately predict the reproductive potential of each patient undergoing chemotherapy would be critical tools that would be useful for evidence-based fertility preservation counselling. To assess the possible approaches to take to develop personalized genetic testing for these patients, we review current literature regarding mechanisms of ovarian damage due to chemotherapy and genetic variants associated with both the damage mechanisms and primary ovarian insufficiency. The medical literature point to a number of genetic variants associated with mechanisms of ovarian damage and primary ovarian insufficiency. Those variants that appear at a higher frequency, with known pathways, may be considered as potential genetic markers for predictive ovarian reserve testing. We propose developing personalized testing of the potential for loss of ovarian function for patients with cancer, prior to chemotherapy treatment. There are advantages of using genetic markers complementary to the current ovarian reserve markers of AMH, antral follicle count and day 3 FSH as predictors of preservation of fertility after chemotherapy. Genetic markers will help identify upstream pathways leading to high risk of ovarian failure not detected by present clinical markers. Their predictive value is mechanism-based and will encourage research towards understanding the multiple pathways contributing to ovarian failure after chemotherapy.
Collapse
Affiliation(s)
- Bei Sun
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - John Yeh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, University of Massachusetts Medical School, UMass Memorial Medical Center, 119 Belmont Street, Worcester, MA, 01605, USA.
| |
Collapse
|
20
|
Naillat F, Saadeh H, Nowacka-Woszuk J, Gahurova L, Santos F, Tomizawa SI, Kelsey G. Oxygen concentration affects de novo DNA methylation and transcription in in vitro cultured oocytes. Clin Epigenetics 2021; 13:132. [PMID: 34183052 PMCID: PMC8240245 DOI: 10.1186/s13148-021-01116-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reproductive biology methods rely on in vitro follicle cultures from mature follicles obtained by hormonal stimulation for generating metaphase II oocytes to be fertilised and developed into a healthy embryo. Such techniques are used routinely in both rodent and human species. DNA methylation is a dynamic process that plays a role in epigenetic regulation of gametogenesis and development. In mammalian oocytes, DNA methylation establishment regulates gene expression in the embryos. This regulation is particularly important for a class of genes, imprinted genes, whose expression patterns are crucial for the next generation. The aim of this work was to establish an in vitro culture system for immature mouse oocytes that will allow manipulation of specific factors for a deeper analysis of regulatory mechanisms for establishing transcription regulation-associated methylation patterns. RESULTS An in vitro culture system was developed from immature mouse oocytes that were grown to germinal vesicles (GV) under two different conditions: normoxia (20% oxygen, 20% O2) and hypoxia (5% oxygen, 5% O2). The cultured oocytes were sorted based on their sizes. Reduced representative bisulphite sequencing (RRBS) and RNA-seq libraries were generated from cultured and compared to in vivo-grown oocytes. In the in vitro cultured oocytes, global and CpG-island (CGI) methylation increased gradually along with oocyte growth, and methylation of the imprinted genes was similar to in vivo-grown oocytes. Transcriptomes of the oocytes grown in normoxia revealed chromatin reorganisation and enriched expression of female reproductive genes, whereas in the 5% O2 condition, transcripts were biased towards cellular stress responses. To further confirm the results, we developed a functional assay based on our model for characterising oocyte methylation using drugs that reduce methylation and transcription. When histone methylation and transcription processes were reduced, DNA methylation at CGIs from gene bodies of grown oocytes presented a lower methylation profile. CONCLUSIONS Our observations reveal changes in DNA methylation and transcripts between oocytes cultured in vitro with different oxygen concentrations and in vivo-grown murine oocytes. Oocytes grown under 20% O2 had a higher correlation with in vivo oocytes for DNA methylation and transcription demonstrating that higher oxygen concentration is beneficial for the oocyte maturation in ex vivo culture condition. Our results shed light on epigenetic mechanisms for the development of oocytes from an immature to GV oocyte in an in vitro culture model.
Collapse
Affiliation(s)
- Florence Naillat
- Epigenetics Program, Babraham Institute, Cambridge, CB22 3AT, UK. .,Diseases Network Research Unit, Faculty of Biochemistry and Molecular Medicine, Oulu University, Oulu, Finland.
| | - Heba Saadeh
- Epigenetics Program, Babraham Institute, Cambridge, CB22 3AT, UK.,Department of Computer Science, King Abdullah II School of Information Technology, The University of Jordan, Amman, Jordan
| | - Joanna Nowacka-Woszuk
- Epigenetics Program, Babraham Institute, Cambridge, CB22 3AT, UK.,Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - Lenka Gahurova
- Epigenetics Program, Babraham Institute, Cambridge, CB22 3AT, UK.,Laboratory of Early Mammalian Development, Department of Molecular Biology and Genetics, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Fatima Santos
- Epigenetics Program, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Shin-Ichi Tomizawa
- Epigenetics Program, Babraham Institute, Cambridge, CB22 3AT, UK.,School of Medicine, Yokohama City University, Yokohama, Japan
| | - Gavin Kelsey
- Epigenetics Program, Babraham Institute, Cambridge, CB22 3AT, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
21
|
Human Granulosa Cells-Stemness Properties, Molecular Cross-Talk and Follicular Angiogenesis. Cells 2021; 10:cells10061396. [PMID: 34198768 PMCID: PMC8229878 DOI: 10.3390/cells10061396] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
The ovarian follicle is the basic functional unit of the ovary, comprising theca cells and granulosa cells (GCs). Two different types of GCs, mural GCs and cumulus cells (CCs), serve different functions during folliculogenesis. Mural GCs produce oestrogen during the follicular phase and progesterone after ovulation, while CCs surround the oocyte tightly and form the cumulus oophurus and corona radiata inner cell layer. CCs are also engaged in bi-directional metabolite exchange with the oocyte, as they form gap-junctions, which are crucial for both the oocyte’s proper maturation and GC proliferation. However, the function of both GCs and CCs is dependent on proper follicular angiogenesis. Aside from participating in complex molecular interplay with the oocyte, the ovarian follicular cells exhibit stem-like properties, characteristic of mesenchymal stem cells (MSCs). Both GCs and CCs remain under the influence of various miRNAs, and some of them may contribute to polycystic ovary syndrome (PCOS) or premature ovarian insufficiency (POI) occurrence. Considering increasing female fertility problems worldwide, it is of interest to develop new strategies enhancing assisted reproductive techniques. Therefore, it is important to carefully consider GCs as ovarian stem cells in terms of the cellular features and molecular pathways involved in their development and interactions as well as outline their possible application in translational medicine.
Collapse
|
22
|
Guo S, Quan S, Zou S. Roles of the Notch Signaling Pathway in Ovarian Functioning. Reprod Sci 2021; 28:2770-2778. [PMID: 34008156 DOI: 10.1007/s43032-021-00610-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
The Notch signaling pathway regulates cell invasion, adhesion, proliferation, apoptosis, and differentiation via cell-to-cell interactions and plays important physiological roles in the ovary. This review summarizes current knowledge about the Notch signaling pathway in relation to ovarian functions and reveals the potential underlying mechanisms. We conducted an in-depth review of relevant literature to determine the current status of research into the Notch signaling pathway in relation to ovarian functioning and reveal potential underlying mechanisms. The activation of different Notch receptors promotes the formation of primordial follicles and proliferation of granulosa cells and inhibits steroid secretion. Abnormal regulation of the Notch signaling pathway or direct mutations might lead to over-activation or under-activation of the receptors, resulting in Notch upregulation or downregulation. It can also disrupt the normal physiological functions of the ovary. The lncRNA HOTAIR and growth hormones improved premature ovarian failure (POF) and promoted follicle maturation in a mouse model of POF by upregulating Notch1 expression. They also stimulated the Notch1 signaling pathway, increased the level of plasma estradiol, and decreased the level of plasma follicle-stimulating hormone. Thus, Notch1 could serve as a novel therapeutic target for POF. Several studies have reported multiple roles of Notch in regulating female primordial follicle formation and follicle maturation. Direct mutations in Notch-related molecules or abnormal gene regulation in the signaling pathway can lead to ovarian dysfunction. However, the underlying mechanisms are not fully understood.
Collapse
Affiliation(s)
- Shuhan Guo
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Song Quan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Siyi Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Gan RH, Wang Y, Li Z, Yu ZX, Li XY, Tong JF, Wang ZW, Zhang XJ, Zhou L, Gui JF. Functional Divergence of Multiple Duplicated Foxl2 Homeologs and Alleles in a Recurrent Polyploid Fish. Mol Biol Evol 2021; 38:1995-2013. [PMID: 33432361 PMCID: PMC8097289 DOI: 10.1093/molbev/msab002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evolutionary fates of duplicated genes have been widely investigated in many polyploid plants and animals, but research is scarce in recurrent polyploids. In this study, we focused on foxl2, a central player in ovary, and elaborated the functional divergence in gibel carp (Carassius gibelio), a recurrent auto-allo-hexaploid fish. First, we identified three divergent foxl2 homeologs (Cgfoxl2a-B, Cgfoxl2b-A, and Cgfoxl2b-B), each of them possessing three highly conserved alleles and revealed their biased retention/loss. Then, their abundant sexual dimorphism and biased expression were uncovered in hypothalamic-pituitary-gonadal axis. Significantly, granulosa cells and three subpopulations of thecal cells were distinguished by cellular localization of CgFoxl2a and CgFoxl2b, and the functional roles and the involved process were traced in folliculogenesis. Finally, we successfully edited multiple foxl2 homeologs and/or alleles by using CRISPR/Cas9. Cgfoxl2a-B deficiency led to ovary development arrest or complete sex reversal, whereas complete disruption of Cgfoxl2b-A and Cgfoxl2b-B resulted in the depletion of germ cells. Taken together, the detailed cellular localization and functional differences indicate that Cgfoxl2a and Cgfoxl2b have subfunctionalized and cooperated to regulate folliculogenesis and gonad differentiation, and Cgfoxl2b has evolved a new function in oogenesis. Therefore, the current study provides a typical case of homeolog/allele diversification, retention/loss, biased expression, and sub-/neofunctionalization in the evolution of duplicated genes driven by polyploidy and subsequent diploidization from the recurrent polyploid fish.
Collapse
Affiliation(s)
- Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Xi Yu
- Ningxia Fisheries Research Institute, Yinchuan, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Cai H, Liu B, Wang H, Sun G, Feng L, Chen Z, Zhou J, Zhang J, Zhang T, He M, Yang T, Guo Q, Teng Z, Xin Q, Zhou B, Zhang H, Xia G, Wang C. SP1 governs primordial folliculogenesis by regulating pregranulosa cell development in mice. J Mol Cell Biol 2021; 12:230-244. [PMID: 31282930 PMCID: PMC7181717 DOI: 10.1093/jmcb/mjz059] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/20/2019] [Accepted: 06/12/2019] [Indexed: 01/05/2023] Open
Abstract
Establishment of the primordial follicle (PF) pool is pivotal for the female reproductive lifespan; however, the mechanism of primordial folliculogenesis is poorly understood. Here, the transcription factor SP1 was shown to be essential for PF formation in mice. Our results showed that SP1 is present in both oocytes and somatic cells during PF formation in the ovary. Knockdown of Sp1 expression, especially in pregranulosa cells, significantly suppressed nest breakdown, oocyte apoptosis, and PF formation, suggesting that SP1 expressed by somatic cells functions in the process of primordial folliculogenesis. We further demonstrated that SP1 governs the recruitment and maintenance of Forkhead box L2-positive (FOXL2+) pregranulosa cells using an Lgr5-EGFP-IRES-CreERT2 (Lgr5-KI) reporter mouse model and a FOXL2+ cell-specific knockdown model. At the molecular level, SP1 functioned mainly through manipulation of NOTCH2 expression by binding directly to the promoter of the Notch2 gene. Finally, consistent with the critical role of granulosa cells in follicle survival in vitro, massive loss of oocytes in Sp1 knockdown ovaries was evidenced before puberty after the ovaries were transplanted under the renal capsules. Conclusively, our results reveal that SP1 controls the establishment of the ovarian reserve by regulating pregranulosa cell development in the mammalian ovary.
Collapse
Affiliation(s)
- Han Cai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bingying Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huarong Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Guanghong Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lizhao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiawei Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meina He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tingting Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qirui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Teng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiliang Xin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Yu C, Cvetesic N, Hisler V, Gupta K, Ye T, Gazdag E, Negroni L, Hajkova P, Berger I, Lenhard B, Müller F, Vincent SD, Tora L. TBPL2/TFIIA complex establishes the maternal transcriptome through oocyte-specific promoter usage. Nat Commun 2020; 11:6439. [PMID: 33353944 PMCID: PMC7755920 DOI: 10.1038/s41467-020-20239-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/20/2020] [Indexed: 01/28/2023] Open
Abstract
During oocyte growth, transcription is required to create RNA and protein reserves to achieve maternal competence. During this period, the general transcription factor TATA binding protein (TBP) is replaced by its paralogue, TBPL2 (TBP2 or TRF3), which is essential for RNA polymerase II transcription. We show that in oocytes TBPL2 does not assemble into a canonical TFIID complex. Our transcript analyses demonstrate that TBPL2 mediates transcription of oocyte-expressed genes, including mRNA survey genes, as well as specific endogenous retroviral elements. Transcription start site (TSS) mapping indicates that TBPL2 has a strong preference for TATA-like motif in core promoters driving sharp TSS selection, in contrast with canonical TBP/TFIID-driven TATA-less promoters that have broader TSS architecture. Thus, we show a role for the TBPL2/TFIIA complex in the establishment of the oocyte transcriptome by using a specific TSS recognition code.
Collapse
Affiliation(s)
- Changwei Yu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Nevena Cvetesic
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Vincent Hisler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Kapil Gupta
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Emese Gazdag
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Petra Hajkova
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Imre Berger
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Boris Lenhard
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France.
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France.
- Université de Strasbourg, 67404, Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France.
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France.
- Université de Strasbourg, 67404, Illkirch, France.
| |
Collapse
|
26
|
Takada Y, Iyyappan R, Susor A, Kotani T. Posttranscriptional regulation of maternal Pou5f1/Oct4 during mouse oogenesis and early embryogenesis. Histochem Cell Biol 2020; 154:609-620. [PMID: 32930837 DOI: 10.1007/s00418-020-01915-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
Protein syntheses at appropriate timings are important for promoting diverse biological processes and are controlled at the levels of transcription and translation. Pou5f1/Oct4 is a transcription factor that is essential for vertebrate embryonic development. However, the precise timings when the mRNA and protein of Pou5f1/Oct4 are expressed during oogenesis and early stages of embryogenesis remain unclear. We analyzed the expression patterns of mRNA and protein of Pou5f1/Oct4 in mouse oocytes and embryos by using a highly sensitive in situ hybridization method and a monoclonal antibody specific to Pou5f1/Oct4, respectively. Pou5f1/Oct4 mRNA was detected in growing oocytes from the primary follicle stage to the fully grown GV stage during oogenesis. In contrast, Pou5f1/Oct4 protein was undetectable during oogenesis, oocyte maturation and the first cleavage stage but subsequently became detectable in the nuclei of early 2-cell-stage embryos. Pou5f1/Oct4 protein at this stage was synthesized from maternal mRNAs stored in oocytes. The amount of Pou5f1/Oct4 mRNA in the polysomal fraction was small in GV-stage oocytes but was significantly increased in fertilized eggs. Taken together, our results indicate that the synthesis of Pou5f1/Oct4 protein during oogenesis and early stages of embryogenesis is controlled at the level of translation and suggest that precise control of the amount of this protein by translational regulation is important for oocyte development and early embryonic development.
Collapse
Affiliation(s)
- Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan. .,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
27
|
Bai DP, Chen Y, Hu YQ, He WF, Shi YZ, Fan QM, Luo RT, Li A. Transcriptome analysis of genes related to gonad differentiation and development in Muscovy ducks. BMC Genomics 2020; 21:438. [PMID: 32590948 PMCID: PMC7318502 DOI: 10.1186/s12864-020-06852-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/19/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sex-related genes play a crucial role in gonadal differentiation into testes or ovaries. However, the genetic control of gonadal differentiation in Muscovy ducks remains unknown. Therefore, the objective of our study was to screen new candidate genes associated with ovarian and testicular development. RESULTS In this study, 24 males before gonadal differentiation (MB), 24 females before gonadal differentiation (FB), 24 males after gonadal differentiation (MA) and 24 females after gonadal differentiation (FA) were selected from Putian Muscovy ducks, forming 4 groups. RNA-Seq revealed 101.76 Gb of clean reads and 2800 differentially expressed genes (DEGs), including 46 in MB vs FB, 609 in MA vs FA, 1027 in FA vs FB, and 1118 in MA vs MB. A total of 146 signalling pathways were enriched by KEGG analysis, among which 20, 108, 108 and 116 signalling pathways were obtained in MB vs FB, MA vs MB, MA vs FA and FA vs FB, respectively. In further GO and KEGG analyses, a total of 21 candidate genes related to gonad differentiation and development in Muscovy ducks were screened. Among these, 9 genes were involved in the differentiation and development of the testes, and 12 genes were involved in the differentiation and development of the ovaries. In addition, RNA-Seq data revealed 2744 novel genes. CONCLUSIONS RNA-Seq data revealed 21 genes related to gonadal differentiation and development in Muscovy ducks. We further identified 12 genes, namely, WNT5B, HTRA3, RSPO3, BMP3, HNRNPK, NIPBL, CREB3L4, DKK3, UBE2R2, UBPL3KCMF1, ANXA2, and OSR1, involved in the differentiation and development of ovaries. Moreover, 9 genes, namely, TTN, ATP5A1, DMRT1, DMRT3, AMH, MAP3K1, PIK3R1, AGT and ADAMTSL1, were related to the differentiation and development of testes. Moreover, after gonadal differentiation, DMRT3, AMH, PIK3R1, ADAMTSL1, AGT and TTN were specifically highly expressed in males. WNT5B, ANXA2 and OSR1 were specifically highly expressed in females. These results provide valuable information for studies on the sex control of Muscovy ducks and reveal novel candidate genes for the differentiation and development of testes and ovaries.
Collapse
Affiliation(s)
- Ding-Ping Bai
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Yue Chen
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Yu-Qiong Hu
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Wen-Feng He
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Yu-Zhu Shi
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Qin-Ming Fan
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Ru-Tang Luo
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| | - Ang Li
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
28
|
Li S, Fan Q, Xie Y, Lin H, Qiu Q, Liang Y, Zhang Q. VIP activates primordial follicles of rat through ERK-mTOR pathway in tissue culture. Reproduction 2020; 157:475-484. [PMID: 30817320 PMCID: PMC6433003 DOI: 10.1530/rep-18-0466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 02/26/2019] [Indexed: 12/23/2022]
Abstract
In vitro activation of primordial follicles is becoming more essential in assisted reproductive technologies. Vasoactive intestinal peptide (VIP) is one of the members of the neurotrophin family which has demonstrated to have an impact on follicle development in recent years. This study aims to investigate the effect of VIP on the activation of primordial follicles in neonatal rat in an in vitro culture system and to determine the relevant molecular mechanism of their activation. Ovaries of 4-day-old rats were examined for the expression of VIP receptors and were cultured in mediums containing VIP with or without inhibitors of the ERK–mTOR signalling pathway. They were then collected for histological analysis or measurement of the molecular expression of this pathway. The receptors of VIP were found in granular cells and oocytes of primordial and early-growing follicles in neonatal ovary. The ratio of growing follicle increased in the presence VIP at different concentrations, with the highest level of increase being observed in the 10−7 mol/L VIP-treated group. The ratio of PCNA-positive granular cells was also increased, while that of the apoptotic oocytes were decreased, and protein analysis showed increased phosphorylation of ERK1/2, mTOR and RPS6 in the VIP-treated group. However, the effect of VIP on the activation of primordial follicle became insignificant with the addition of MEK inhibitor (U0126) or mTORC1 inhibitor (rapamycin). This study indicated that VIP could activate neonatal rat primordial follicle through the ERK-mTOR signalling pathway, suggesting a strategy for in vitro primordial follicle recruitment.
Collapse
Affiliation(s)
- Song Li
- Department of Obstetrics and Gynaecology, IVF Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Fan
- Department of Obstetrics and Gynaecology, IVF Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanqiu Xie
- Department of Obstetrics and Gynaecology, IVF Centre, Guangdong General Hospital, Guangzhou, China
| | - Haiyan Lin
- Department of Obstetrics and Gynaecology, IVF Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Qiu
- Department of Obstetrics and Gynaecology, IVF Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yihua Liang
- Department of Obstetrics and Gynaecology, IVF Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingxue Zhang
- Department of Obstetrics and Gynaecology, IVF Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Investigating the role of BCAR4 in ovarian physiology and female fertility by genome editing in rabbit. Sci Rep 2020; 10:4992. [PMID: 32193429 PMCID: PMC7081282 DOI: 10.1038/s41598-020-61689-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/26/2020] [Indexed: 12/02/2022] Open
Abstract
Breast Cancer Anti-estrogen Resistance 4 (BCAR4) was previously characterised in bovine species as a gene preferentially expressed in oocytes, whose inhibition is detrimental to in vitro embryo development. But its role in oogenesis, folliculogenesis and globally fertility in vivo remains unknown. Because the gene is not conserved in mice, rabbits were chosen for investigation of BCAR4 expression and function in vivo. BCAR4 displayed preferential expression in the ovary compared to somatic organs, and within the ovarian follicle in the oocyte compared to somatic cells. The transcript was detected in follicles as early as the preantral stage. Abundance decreased throughout embryo development until the blastocyst stage. A lineage of genome-edited rabbits was produced; BCAR4 expression was abolished in follicles from homozygous animals. Females of wild-type, heterozygous and homozygous genotypes were examined for ovarian physiology and reproductive parameters. Follicle growth and the number of ovulations in response to hormonal stimulation were not significantly different between genotypes. Following insemination, homozygous females displayed a significantly lower delivery rate than their heterozygous counterparts (22 ± 7% vs 71 ± 11% (mean ± SEM)), while prolificacy was 1.8 ± 0.7 vs 6.0 ± 1.4 kittens per insemination. In conclusion, BCAR4 is not essential for follicular growth and ovulation but it contributes to optimal fertility in rabbits.
Collapse
|
30
|
Takeuchi A, Koga K, Satake E, Makabe T, Taguchi A, Miyashita M, Takamura M, Harada M, Hirata T, Hirota Y, Yoshino O, Wada-Hiraike O, Fujii T, Osuga Y. Endometriosis Triggers Excessive Activation of Primordial Follicles via PI3K-PTEN-Akt-Foxo3 Pathway. J Clin Endocrinol Metab 2019; 104:5547-5554. [PMID: 31219551 DOI: 10.1210/jc.2019-00281] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT The ovarian reserve is reduced in patients with endometriosis. We hypothesize that the phosphatidylinositol 3-kinase (PI3K)-phosphatase and tensin homolog deleted on chromosome 10 (PTEN) Akt-Forkhead box O (Foxo3) pathway is involved in reducing the ovarian reserve. OBJECTIVE To elucidate the signaling mechanism by which endometriosis decreases ovarian reserve. DESIGN Studies were conducted by using a mouse model for endometriosis and human ovaries. The endometriosis mouse model was established and ammonium trichloro (dioxoethylene-o,o') tellurate (AS101), an inhibitor of PI3K-PTEN-Akt pathway, was administered to experimental mice. Human ovaries were collected during surgery from patients with endometrioma or from patients with no ovarian pathology (control ovaries). The number of follicles and expression of Foxo3, PTEN, phosphorylated mammalian target of rapamycin and phosphorylated Akt by oocytes in primordial follicles in mouse and human ovaries were detected by immunohistochemical staining and evaluated. RESULTS In the endometriosis mouse model, the proportion of primordial follicles was diminished, and the proportion of primary, secondary, antral, and growing follicles was increased in comparison with controls. In both mouse and human ovaries, the PI3K-PTEN-Akt-Foxo3 pathway was activated in samples from endometriosis. Administration of AS101 restored the proportion of primordial follicles in endometriotic mice ovaries to control levels. CONCLUSIONS The current study describes the excessive activation of primordial follicles and the role of the PI3K-PTEN-Akt-Foxo3 pathway in the reduction of ovarian reserve associated with endometriosis. Our results suggest that a PI3K-PTEN-Akt inhibitor should be considered for further investigation as promising medicines for the prevention of the ovarian reserve reduction in patients with endometriosis.
Collapse
Affiliation(s)
- Arisa Takeuchi
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Kaori Koga
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Erina Satake
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Tomoko Makabe
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Ayumi Taguchi
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Mariko Miyashita
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Masashi Takamura
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Miyuki Harada
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Tetsuya Hirata
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Yasushi Hirota
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Osamu Yoshino
- Obstetrics and Gynecology, Kitasato University School of Medicine, Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, Japan
| | - Osamu Wada-Hiraike
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Tomoyuki Fujii
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| | - Yutaka Osuga
- Obstetrics and Gynecology, University of Tokyo, Hongo Bunkyo Tokyo, Japan
| |
Collapse
|
31
|
Yatsenko SA, Rajkovic A. Genetics of human female infertility†. Biol Reprod 2019; 101:549-566. [PMID: 31077289 PMCID: PMC8127036 DOI: 10.1093/biolre/ioz084] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
About 10% of women of reproductive age are unable to conceive or carry a pregnancy to term. Female factors alone account for at least 35% of all infertility cases and comprise a wide range of causes affecting ovarian development, maturation of oocytes, and fertilization competence, as well as the potential of a fertilized egg for preimplantation development, implantation, and fetal growth. Genetic abnormalities leading to infertility in females comprise large chromosome abnormalities, submicroscopic chromosome deletion and duplications, and DNA sequence variations in the genes that control numerous biological processes implicated in oogenesis, maintenance of ovarian reserve, hormonal signaling, and anatomical and functional development of female reproductive organs. Despite the great number of genes implicated in reproductive physiology by the study of animal models, only a subset of these genes is associated with human infertility. In this review, we mainly focus on genetic alterations identified in humans and summarize recent knowledge on the molecular pathways of oocyte development and maturation, the crucial role of maternal-effect factors during embryogenesis, and genetic conditions associated with ovarian dysgenesis, primary ovarian insufficiency, early embryonic lethality, and infertility.
Collapse
Affiliation(s)
- Svetlana A Yatsenko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA
| |
Collapse
|
32
|
Zhang X, Ji M, Tan X, Yu K, Xu L, Chen G, Yu Z. Role of epigenetic regulation of Igf2 and H19 in 2,3,7,8-Tetrachlorobenzo-p-dioxin (TCDD)-induced ovarian toxicity in offspring rats. Toxicol Lett 2019; 311:98-104. [DOI: 10.1016/j.toxlet.2019.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022]
|
33
|
Rossitto M, Ollivier M, Déjardin S, Pruvost A, Brun C, Marchive C, Nguyen AL, Ghettas A, Keime C, de Massy B, Poulat F, Philibert P, Boizet-Bonhoure B. In utero exposure to acetaminophen and ibuprofen leads to intergenerational accelerated reproductive aging in female mice. Commun Biol 2019; 2:310. [PMID: 31428698 PMCID: PMC6692356 DOI: 10.1038/s42003-019-0552-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesic drugs, such as acetaminophen (APAP), are frequently taken during pregnancy, even in combination. However, they can favour genital malformations in newborn boys and reproductive disorders in adults. Conversely, the consequences on postnatal ovarian development and female reproductive health after in utero exposure are unknown. Here, we found that in mice, in utero exposure to therapeutic doses of the APAP-ibuprofen combination during sex determination led to delayed meiosis entry and progression in female F1 embryonic germ cells. Consequently, follicular activation was reduced in postnatal ovaries through the AKT/FOXO3 pathway, leading in F2 animals to subfertility, accelerated ovarian aging with abnormal corpus luteum persistence, due to decreased apoptosis and increased AKT-mediated luteal cell survival. Our study suggests that administration of these drugs during the critical period of sex determination could lead in humans to adverse effects that might be passed to the offspring.
Collapse
Affiliation(s)
- Moïra Rossitto
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Margot Ollivier
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
- Service de Chirurgie et Urologie Pédiatrique, Hôpital Lapeyronie CHU Montpellier, Centre de Référence Maladies Rares Développement Génital, Montpellier, France
| | - Stéphanie Déjardin
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Alain Pruvost
- Service de Pharmacologie et d’Immunoanalyse (SPI), plateforme SMArt-MS, CEA, INRA, Université Paris-Saclay, Gif sur Yvette, France
| | - Christine Brun
- Meiosis and Recombination, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Candice Marchive
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Anvi Laetitia Nguyen
- Service de Pharmacologie et d’Immunoanalyse (SPI), plateforme SMArt-MS, CEA, INRA, Université Paris-Saclay, Gif sur Yvette, France
| | - Aurélie Ghettas
- Service de Pharmacologie et d’Immunoanalyse (SPI), plateforme SMArt-MS, CEA, INRA, Université Paris-Saclay, Gif sur Yvette, France
| | - Céline Keime
- IGBMC, Centre National de la Recherche Scientifique, Université de Strasbourg/INSERM, Illkirch, France
| | - Bernard de Massy
- Meiosis and Recombination, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Francis Poulat
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Pascal Philibert
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
- Département de Biochimie et Hormonologie, Hôpital Lapeyronie, CHU de Montpellier, Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
34
|
Fang DA, Yang XJ, Feng X, Zhou YF, Xu DP, Zhang MY, Liu K. FoxL2 combined with Cyp19a1a regulate the spawning upstream migration in Coilia nasus. Gene 2019; 710:307-315. [PMID: 31125733 DOI: 10.1016/j.gene.2019.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 01/15/2023]
Abstract
FoxL2 is a member of the forkhead/HNF-3-related family of transcription factors which provides tissue specific gene regulation. It is known to regulate ovarian aromatase, which plays a crucial role in ovarian development and mature. To understand the role of FoxL2/ovarian aromatase encoded gene Cyp19a1a during ovarian development and recrudescence, we identified cDNA characteristics of FoxL2 and Cyp19a1a, analyzed its temporal expression both at transcript and protein levels in the anadromous fish, Coilia nasus. Tissue distribution pattern revealed that FoxL2 mRNA expression level was highest in ovary, while Cyp19a1a mRNA was highest in brain. During the upstream migration cycle, in ovary, the FoxL2 mRNA temporal expression peaked at the multiplication stage (stage III in May), the Cyp19a1a mRNA expression peaked at the onset stage (stage I in March). It was found that their mRNA transcripts were maintained at high level during the migration stage (from stage I in March to stage VI in July). Additionally, the strongest immunolabeling positive signals of Cyp19a1a and FoxL2 proteins were mainly found in the cytoplasm of olfactory bulb cell, stratum granulare and neurogliocyte cells and development stage oocytes. Data indicated that FoxL2 and Cyp19a1a were inducible and functional in the C. nasus ovary development and migration process. Therefore, the present results can be regarded as evidence for indispensable roles of FoxL2 and Cyp19a1a in the ovary development and migratory behavior at gene expression patterns and encoded protein distribution level.
Collapse
Affiliation(s)
- Di-An Fang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, Wuxi 214081, China; College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| | - Xue-Jun Yang
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xiaoting Feng
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Yan-Feng Zhou
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, Wuxi 214081, China
| | - Dong-Po Xu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, Wuxi 214081, China; College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Min-Ying Zhang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, Wuxi 214081, China
| | - Kai Liu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, Wuxi 214081, China; College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| |
Collapse
|
35
|
Ge W, Li L, Dyce PW, De Felici M, Shen W. Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals. Cell Mol Life Sci 2019; 76:1729-1746. [PMID: 30810760 PMCID: PMC11105173 DOI: 10.1007/s00018-019-03028-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023]
Abstract
The reproductive life span in women starts at puberty and ends at menopause, following the exhaustion of the follicle stockpile termed the ovarian reserve. Increasing data from experimental animal models and epidemiological studies indicate that exposure to a number of ubiquitously distributed reproductively toxic environmental chemicals (RTECs) can contribute to earlier menopause and even premature ovarian failure. However, the causative relationship between environmental chemical exposure and earlier menopause in women remains poorly understood. The present work, is an attempt to review the current evidence regarding the effects of RTECs on the main ovarian activities in mammals, focusing on how such compounds can affect the ovarian reserve at any stages of ovarian development. We found that in rodents, strong evidence exists that in utero, neonatal, prepubescent and even adult exposure to RTECs leads to impaired functioning of the ovary and a shortening of the reproductive lifespan. Regarding human, data from cross-sectional surveys suggest that human exposure to certain environmental chemicals can compromise a woman's reproductive health and in some cases, correlate with earlier menopause. In conclusion, evidences exist that exposure to RTECs can compromise a woman's reproductive health. However, human exposures may date back to the developmental stage, while the adverse effects are usually diagnosed decades later, thus making it difficult to determine the association between RTECs exposure and human reproductive health. Therefore, epidemiological surveys and more experimental investigation on humans, or alternatively primates, are needed to determine the direct and indirect effects caused by RTECs exposure on the ovary function, and to characterize their action mechanisms.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
36
|
Yan H, Wen J, Zhang T, Zheng W, He M, Huang K, Guo Q, Chen Q, Yang Y, Deng G, Xu J, Wei Z, Zhang H, Xia G, Wang C. Oocyte-derived E-cadherin acts as a multiple functional factor maintaining the primordial follicle pool in mice. Cell Death Dis 2019; 10:160. [PMID: 30770786 PMCID: PMC6377673 DOI: 10.1038/s41419-018-1208-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023]
Abstract
In mammals, female fecundity is determined by the size of the primordial follicle (PF) pool, which is established during the perinatal period. As a non-renewable resource, the preservation of dormant PFs is crucial for sustaining female reproduction throughout life. Although studies have revealed that several oocyte-derived functional genes and pathways, such as newborn ovary homeobox (NOBOX) and 3-phosphoinositide-dependent protein kinase-1, participate in maintaining the PF pool, our understanding of the underlying molecular mechanisms is still incomplete. Here, we demonstrate that E-cadherin (E-cad) plays a crucial role in the maintenance of PFs in mice. E-cad is specifically localized to the cytomembrane of oocytes in PFs. Knockdown of E-cad in neonatal ovaries resulted in significant PF loss owing to oocyte apoptosis. In addition, the expression pattern of NOBOX is similar to that of E-cad. Knockdown of E-cad resulted in a decreased NOBOX level, whereas overexpression of Nobox partially rescued the follicle loss induced by silencing E-cad. Furthermore, E-cad governed NOBOX expression by regulating the shuttle protein, β-catenin, which acts as a transcriptional co-activator. Notably, E-cad, which is a transmembrane protein expressed in the oocytes, was also responsible for maintaining the PF structure by facilitating cell–cell adhesive contacts with surrounding pregranulosa cells. In conclusion, E-cad in oocytes of PFs plays an indispensable role in the maintenance of the PF pool by facilitating follicular structural stability and regulating NOBOX expression. These findings shed light on the physiology of sustaining female reproduction.
Collapse
Affiliation(s)
- Hao Yan
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China.,State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Jia Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Tuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Wenying Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Meina He
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Kun Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Qirui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Qian Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China
| | - Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China
| | - Zhiqing Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| | - Guoliang Xia
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China. .,State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
37
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
38
|
Genetische Ursachen der prämaturen Ovarialinsuffizienz. GYNAKOLOGISCHE ENDOKRINOLOGIE 2018. [DOI: 10.1007/s10304-018-0209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Qin M, Zhang Z, Song W, Wong QWL, Chen W, Shirgaonkar N, Ge W. Roles of Figla/figla in Juvenile Ovary Development and Follicle Formation During Zebrafish Gonadogenesis. Endocrinology 2018; 159:3699-3722. [PMID: 30184072 DOI: 10.1210/en.2018-00648] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Sex determination and differentiation are complex processes. As a juvenile hermaphrodite or undifferentiated gonochorist, zebrafish undergo a special juvenile ovarian phase during sex differentiation, making it an excellent model for studying early oogenesis and folliculogenesis. We provide lines of evidence at morphological, molecular, and genetic levels for roles of factor in the germline α (Figla), an oocyte-specific transcription factor, in early zebrafish gonadogenesis. As in mammals, Figla/figla was also expressed in the gonads and its expression in the ovary was also restricted to early oocytes. Disruption of figla gene by CRISPR/Cas9 led to an all-male phenotype in the mutant. Detailed analysis of early gonadal development showed that the germ cells in the mutant were clustered in cysts and underwent meiosis, forming oocytes at prefollicular chromatin nucleolar (CN) stage (stage IA). However, the subsequent transition from cystic CN oocytes to individual follicular perinucleolar oocytes (stage IB) was blocked, resulting in an all-male phenotype in the mutant. The phenotype of figla mutant could not be rescued by estrogen treatment, in contrast to cyp19a1a mutant, and introduction of tp53 mutation also had no effect, unlike in fancd1 and fancl mutants. Transcriptome analysis revealed that many biological processes and pathways related to germ cell development, especially oogenesis, were upregulated in the presence of Figla and that the regulation of figla expression may involve heat shock proteins. Our results strongly suggest important roles for Figla in juvenile ovary development, especially the formation of individual follicles from cystic oocytes.
Collapse
Affiliation(s)
- Mingming Qin
- Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhiwei Zhang
- Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Weiyi Song
- Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Queenie Wing-Lei Wong
- Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Weiting Chen
- Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Niranjan Shirgaonkar
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
40
|
Zhihan T, Xinyi M, Qingying L, Rufei G, Yan Z, Xuemei C, Yanqing G, Yingxiong W, Junlin H. Autophagy participates in cyst breakdown and primordial folliculogenesis by reducing reactive oxygen species levels in perinatal mouse ovaries. J Cell Physiol 2018; 234:6125-6135. [DOI: 10.1002/jcp.27367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Tu Zhihan
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Mu Xinyi
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
- Department of Histology and Embryology College of Basic Medicine, Chongqing Medical University Chongqing China
| | - Li Qingying
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Gao Rufei
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Zhang Yan
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Chen Xuemei
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Geng Yanqing
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Wang Yingxiong
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - He Junlin
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| |
Collapse
|
41
|
Huhtaniemi I, Hovatta O, La Marca A, Livera G, Monniaux D, Persani L, Heddar A, Jarzabek K, Laisk-Podar T, Salumets A, Tapanainen JS, Veitia RA, Visser JA, Wieacker P, Wolczynski S, Misrahi M. Advances in the Molecular Pathophysiology, Genetics, and Treatment of Primary Ovarian Insufficiency. Trends Endocrinol Metab 2018; 29:400-419. [PMID: 29706485 DOI: 10.1016/j.tem.2018.03.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
Primary ovarian insufficiency (POI) affects ∼1% of women before 40 years of age. The recent leap in genetic knowledge obtained by next generation sequencing (NGS) together with animal models has further elucidated its molecular pathogenesis, identifying novel genes/pathways. Mutations of >60 genes emphasize high genetic heterogeneity. Genome-wide association studies have revealed a shared genetic background between POI and reproductive aging. NGS will provide a genetic diagnosis leading to genetic/therapeutic counseling: first, defects in meiosis or DNA repair genes may predispose to tumors; and second, specific gene defects may predict the risk of rapid loss of a persistent ovarian reserve, an important determinant in fertility preservation. Indeed, a recent innovative treatment of POI by in vitro activation of dormant follicles proved to be successful.
Collapse
Affiliation(s)
- Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Outi Hovatta
- Karolinska Institute, Stockholm, Sweden, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Antonio La Marca
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Gabriel Livera
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation: UMR 967, INSERM; CEA/DRF/iRCM/SCSR; Univ. Paris Diderot, Sorbonne Paris Cité; Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux Roses, F-92265, France
| | - Danielle Monniaux
- UMR85 PRC, Physiology of Reproduction and Behavior, INRA, CNRS, IFCE, University of Tours, 37380 Nouzilly, France
| | - Luca Persani
- Department of Clinical Sciences & Community Health, University of Milan, Milan 20122, Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Milan 20149, Italy
| | - Abdelkader Heddar
- Medical Faculty, Univ. Paris Sud and Paris Saclay, Bicetre Hospital 94275, Le Kremlin Bicêtre, France
| | - Katarzyna Jarzabek
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Triin Laisk-Podar
- Women's Clinic, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu, Estonia; Competence Centre on Health Technologies, 50410, Estonia
| | - Andres Salumets
- Women's Clinic, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu, Estonia; Competence Centre on Health Technologies, 50410, Estonia
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University, Hospital, Helsinki 00029, Finland; Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Center Oulu and PEDEGO Research Unit, P.O BOX 23, FI-90029 OYS, Oulu, Finland
| | - Reiner A Veitia
- Molecular Oncology and Ovarian Pathologies Université Paris-Diderot/Paris 7, Institut Jacques Monod, 15 Rue Hélène Brion, Paris Cedex 13, France
| | - Jenny A Visser
- Dept. of Internal Medicine, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Peter Wieacker
- Institute of Human Genetics, University Hospital of Münster, Vesaliusweg 12-14 D48149 Münster, Germany
| | - Slawomir Wolczynski
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland
| | - Micheline Misrahi
- Medical Faculty, Univ. Paris Sud and Paris Saclay, Bicetre Hospital 94275, Le Kremlin Bicêtre, France.
| |
Collapse
|
42
|
Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr Rev 2018; 39:1-20. [PMID: 29028960 PMCID: PMC5807095 DOI: 10.1210/er.2017-00164] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
The major goal of this review is to summarize recent exciting findings that have been published within the past 10 years that, to our knowledge, have not been presented in detail in previous reviews and that may impact altered follicular development in polycystic ovarian syndrome (PCOS) and premature ovarian failure in women. Specifically, we will cover the following: (1) mouse models that have led to discovery of the derivation of two precursor populations of theca cells in the embryonic gonad; (2) the key roles of the oocyte-derived factor growth differentiation factor 9 on the hedgehog (HH) signaling pathway and theca cell functions; and (3) the impact of the HH pathway on both the specification of theca endocrine cells and theca fibroblast and smooth muscle cells in developing follicles. We will also discuss the following: (1) other signaling pathways that impact the differentiation of theca cells, not only luteinizing hormone but also insulinlike 3, bone morphogenic proteins, the circadian clock genes, androgens, and estrogens; and (2) theca-associated vascular, immune, and fibroblast cells, as well as the cytokines and matrix factors that play key roles in follicle growth. Lastly, we will integrate what is known about theca cells from mouse models, human-derived theca cell lines from patients who have PCOS and patients who do not have PCOS, and microarray analyses of human and bovine theca to understand what pathways and factors contribute to follicle growth as well as to the abnormal function of theca.
Collapse
Affiliation(s)
- JoAnne S. Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Yi A. Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Nicholes Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jaye E. Adams
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Medicine, Magee-Women’s Research Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
43
|
Svoboda P. Mammalian zygotic genome activation. Semin Cell Dev Biol 2017; 84:118-126. [PMID: 29233752 DOI: 10.1016/j.semcdb.2017.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/22/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
Zygotic genome activation (ZGA) denotes the initiation of gene expression after fertilization. It is part of the complex oocyte-to-embryo transition (OET) in which a highly specialized cell - the oocyte - is fertilized and transformed into a zygote that gives rise to an embryo that will develop into a newborn. From the perspective of gene expression, the OET reflects reprogramming of germ cell gene expression into the new developmental program of the zygote. This reprogramming occurs at transcriptional and post-transcriptional levels. This review will discuss selected aspects of mammalian ZGA, highlighting shared features and evolved differences observed in commonly investigated mammals and non-mammalian model animals.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
44
|
Tan S, Feng B, Yin M, Zhou HJ, Lou G, Ji W, Li Y, Min W. Stromal Senp1 promotes mouse early folliculogenesis by regulating BMP4 expression. Cell Biosci 2017; 7:36. [PMID: 28770041 PMCID: PMC5526272 DOI: 10.1186/s13578-017-0163-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mammalian folliculogenesis, maturation of the ovarian follicles, require both growth factors derived from oocyte and surrounding cells, including stromal cells. However, the mechanism by which stromal cells and derived factors regulate oocyte development remains unclear. RESULTS We observed that SENP1, a small ubiquitin-related modifier (SUMO)-specific isopeptidase, was expressed in sm22α-positive stromal cells of mouse ovary. The sm22α-positive stromal cells tightly associated with follicle maturation. By using the sm22α-specific Cre system, we show that mice with a stromal cell-specific deletion of SENP1 exhibit attenuated stroma-follicle association, delayed oocyte growth and follicle maturation with reduced follicle number and size at early oocyte development, leading to premature ovarian failure at late stages of ovulating life. Mechanistic studies suggest that stromal SENP1 deficiency induces down-regulation of BMP4 in stromal cells concomitant with decreased expression of BMP4 receptor BMPR1b and BMPR2 on oocytes. CONCLUSIONS Our data support that protein SUMOylation-regulating enzyme SENP1 plays a critical role in early ovarian follicle development by regulating gene expression of BMP4 in stroma and stroma-oocyte communication.
Collapse
Affiliation(s)
- Shu Tan
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06519 USA
| | - Boya Feng
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Mingzhu Yin
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06519 USA
| | - Huanjiao Jenny Zhou
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06519 USA
| | - Ge Lou
- Department of Gynecology Oncology, The Tumor Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yonghao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wang Min
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06519 USA.,Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
45
|
Kumar TR. The SO(H)L(H) "O" drivers of oocyte growth and survival but not meiosis I. J Clin Invest 2017; 127:2044-2047. [PMID: 28504648 DOI: 10.1172/jci94665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The spermatogenesis/oogenesis helix-loop-helix (SOHLH) proteins SOHLH1 and SOHLH2 play important roles in male and female reproduction. Although previous studies indicate that these transcriptional regulators are expressed in and have in vivo roles in postnatal ovaries, their expression and function in the embryonic ovary remain largely unknown. Because oocyte differentiation is tightly coupled with the onset of meiosis, it is of significant interest to determine how early oocyte transcription factors regulate these two processes. In this issue of the JCI, Shin and colleagues report that SOHLH1 and SOHLH2 demonstrate distinct expression patterns in the embryonic ovary and interact with each other and other oocyte-specific transcription factors to regulate oocyte differentiation. Interestingly, even though there is a rapid loss of oocytes postnatally in ovaries with combined loss of Sohlh1 and Sohlh2, meiosis is not affected and proceeds normally.
Collapse
|
46
|
Yin S, Jiang X, Jiang H, Gao Q, Wang F, Fan S, Khan T, Jabeen N, Khan M, Ali A, Xu P, Pandita TK, Fan HY, Zhang Y, Shi Q. Histone acetyltransferase KAT8 is essential for mouse oocyte development by regulating reactive oxygen species levels. Development 2017; 144:2165-2174. [PMID: 28506985 DOI: 10.1242/dev.149518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
Abstract
Proper oocyte development is crucial for female fertility and requires timely and accurate control of gene expression. K (lysine) acetyltransferase 8 (KAT8), an important component of the X chromosome dosage compensation system in Drosophila, regulates gene activity by acetylating histone H4 preferentially at lysine 16. To explore the function of KAT8 during mouse oocyte development, we crossed Kat8flox/flox mice with Gdf9-Cre mice to specifically delete Kat8 in oocytes. Oocyte Kat8 deletion resulted in female infertility, with follicle development failure in the secondary and preantral follicle stages. RNA-seq analysis revealed that Kat8 deficiency in oocytes results in significant downregulation of antioxidant genes, with a consequent increase in reactive oxygen species. Intraperitoneal injection of the antioxidant N-acetylcysteine rescued defective follicle and oocyte development resulting from Kat8 deficiency. Chromatin immunoprecipitation assays indicated that KAT8 regulates antioxidant gene expression by direct binding to promoter regions. Taken together, our findings demonstrate that KAT8 is essential for female fertility by regulating antioxidant gene expression and identify KAT8 as the first histone acetyltransferase with an essential function in oogenesis.
Collapse
Affiliation(s)
- Shi Yin
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Xiaohua Jiang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Hanwei Jiang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Qian Gao
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Fang Wang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Suixing Fan
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Teka Khan
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Nazish Jabeen
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Manan Khan
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Asim Ali
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Peng Xu
- USTC-Shenyang Jinghua Hospital Joint Center of Human Reproduction and Genetics, Shenyang, Liaoning 110000, China
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 75390, USA
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuanwei Zhang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Qinghua Shi
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| |
Collapse
|
47
|
Abstract
The ovary, the female gonad, serves as the source for the germ cells as well as the major supplier of steroid sex hormones. During embryonic development, the primordial germ cells (PGCs) are specified, migrate to the site of the future gonad, and proliferate, forming structures of germ cells nests, which will eventually break down to generate the primordial follicles (PMFs). Each PMF contains an oocyte arrested at the first prophase of meiosis, surrounded by a flattened layer of somatic pre-granulosa cells. Most of the PMFs are kept dormant and only a selected population is activated to join the growing pool of follicles in a process regulated by both intra- and extra-oocyte factors. The PMFs will further develop into secondary pre-antral follicles, a stage which depends on bidirectional communication between the oocyte and the surrounding somatic cells. Many of the signaling molecules involved in this dialog belong to the transforming growth factor β (TGF-β) superfamily. As the follicle continues to develop, a cavity called antrum is formed. The resulting antral follicles relay on the pituitary gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) for their development. Most of the follicles undergo atretic degeneration and only a subset of the antral follicles, known as the dominant follicles, will reach the preovulatory stage at each reproductive cycle, respond to LH, and subsequently ovulate, releasing a fertilizable oocyte. The remaining somatic cells in the raptured follicle will undergo terminal differentiation and form the corpus luteum, which secretes progesterone necessary to maintain pregnancy.
Collapse
|
48
|
Uslu B, Dioguardi CC, Haynes M, Miao DQ, Kurus M, Hoffman G, Johnson J. Quantifying growing versus non-growing ovarian follicles in the mouse. J Ovarian Res 2017; 10:3. [PMID: 28086947 PMCID: PMC5237173 DOI: 10.1186/s13048-016-0296-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/06/2016] [Indexed: 11/30/2022] Open
Abstract
Background A standard histomorphometric approach has been used for nearly 40 years that identifies atretic (e.g., dying) follicles by counting the number of pyknotic granulosa cells (GC) in the largest follicle cross-section. This method holds that if one pyknotic granulosa nucleus is seen in the largest cross section of a primary follicle, or three pyknotic cells are found in a larger follicle, it should be categorized as atretic. Many studies have used these criteria to estimate the fraction of atretic follicles that result from genetic manipulation or environmental insult. During an analysis of follicle development in a mouse model of Fragile X premutation, we asked whether these ‘historical’ criteria could correctly identify follicles that were not growing (and could thus confirmed to be dying). Methods Reasoning that the fraction of mitotic GC reveals whether the GC population was increasing at the time of sample fixation, we compared the number of pyknotic nuclei to the number of mitotic figures in follicles within a set of age-matched ovaries. Results We found that, by itself, pyknotic nuclei quantification resulted in high numbers of false positives (improperly categorized as atretic) and false negatives (improperly categorized intact). For preantral follicles, scoring mitotic and pyknotic GC nuclei allowed rapid, accurate identification of non-growing follicles with 98% accuracy. This method most often required the evaluation of one follicle section, and at most two serial follicle sections to correctly categorize follicle status. For antral follicles, we show that a rapid evaluation of follicle shape reveals which are intact and likely to survive to ovulation. Conclusions Combined, these improved, non-arbitrary methods will greatly improve our ability to estimate the fractions of growing/intact and non-growing/atretic follicles in mouse ovaries.
Collapse
Affiliation(s)
- Bahar Uslu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA
| | - Carola Conca Dioguardi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA
| | - Monique Haynes
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA
| | - De-Qiang Miao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA.,Current Address: Center for Reproductive Biology, Washington State University, PO Box 647521, Pullman, 99164, Washington, USA
| | - Meltem Kurus
- Department of Histology and Embryology, Izmir Katip Celebi University School of Medicine, Izmir, Turkey
| | - Gloria Hoffman
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, 21251, Maryland, USA
| | - Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado-Denver, Building RC2, Room P15 3103, Aurora, 80045, Colorado, USA.
| |
Collapse
|
49
|
Methods for the analysis of early oogenesis in Zebrafish. Dev Biol 2016; 430:310-324. [PMID: 27988227 DOI: 10.1016/j.ydbio.2016.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/03/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
Abstract
Oocyte differentiation is a highly dynamic and intricate developmental process whose mechanistic understanding advances female reproduction, fertility, and ovarian cancer biology. Despite the many attributes of the zebrafish model, it has yet to be fully exploited for the investigation of early oocyte differentiation and ovarian development. This is partly because the properties of the adult zebrafish ovary make it technically challenging to access early stage oocytes. As a result, characterization of these stages has been lacking and tools for their analysis have been insufficient. To overcome these technical hurdles, we took advantage of the juvenile zebrafish ovary, where early stage oocytes can readily be found in high numbers and progress in a predictable manner. We characterized the earliest stages of oocyte differentiation and ovarian development and defined accurate staging criteria. We further developed protocols for quantitative microscopy, live time-lapse imaging, ovarian culture, and isolation of stage-specific oocytes for biochemical analysis. These methods have recently provided us with an unprecedented view of early oogenesis, allowing us to study formation of the Balbiani body, a universal oocyte granule that is associated with oocyte survival in mice and required for oocyte and egg polarity in fish and frogs. Despite its tremendous developmental significance, the Bb has been little investigated and how it forms was unknown in any species for over two centuries. We were able to trace Balbiani body formation and oocyte symmetry breaking to the onset of meiosis. Through this investigation we revealed novel cytoskeletal structures in oocytes and the contribution of specialized cellular organization to differentiation. Overall, the juvenile zebrafish ovary arises as an exciting model for studies of cell and developmental biology. We review these and other recent advances in vertebrate oogenesis in an accompanying manuscript in this issue of Developmental Biology. Here, we describe the protocols for ovarian investigation that we developed in the zebrafish, including all experimental steps that will easily allow others to reproduce such analysis. This juvenile ovary toolbox also contributes to establishing the zebrafish as a model for post-larval developmental stages.
Collapse
|
50
|
Abstract
The somatic component of follicular structure is a mixture of different cell types, represented by Granulosa cells (GCs) that are the paracrine regulators of the oocyte growth. GCs finely support this process by a continuous bidirectional talk with oocyte, which ensure oocyte quality and competence. Specific pathways are involved in the cross-talk and in both GCs and oocyte development. This review summarizes data from GCs gene expression analysis concerning both their physiological role and their interaction with oocyte. We also explore the CGs transcriptome modifications induced by controlled ovarian stimulation (COS) or pathological conditions and their impact in reproduction. The transcriptome analysis of GCs could be a powerful tool to improve our knowledge about the pathways involved in oocyte development. This approach, associated with new technologies as RNA-seq could allow the identifications of new noninvasive biological markers of oocyte quality to increase the efficiency of clinical IVF. Moreover, GCs expression analysis could be useful to shed light on new therapeutic targets by providing new options for the treatment of infertility.
Collapse
Affiliation(s)
- Marco D'Aurora
- a Department of Psychological , Health and Territorial Sciences, School of Medicine, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
- b Center of excellence on Aging, CeSI-met, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
| | - Samantha Sperduti
- b Center of excellence on Aging, CeSI-met, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
- c Department of Medical , Oral and Biotechnological Sciences, School of Medicine, "G. d'Annunzio" University Chieti-Pescara , Italy
| | - Giovanna Di Emidio
- d Department of Health , Life and Environmental Sciences, University of L'Aquila , L'Aquila , Italy Coppito , and
| | - Liborio Stuppia
- a Department of Psychological , Health and Territorial Sciences, School of Medicine, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
- b Center of excellence on Aging, CeSI-met, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
| | - Paolo Giovanni Artini
- e Department of Experimental and Clinical Medicine , Division of Gynecology and Obstetrics, University of Pisa , Pisa , Italy
| | - Valentina Gatta
- a Department of Psychological , Health and Territorial Sciences, School of Medicine, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
- b Center of excellence on Aging, CeSI-met, "G. d'Annunzio" University Chieti-Pescara , Chieti , Italy
| |
Collapse
|