1
|
Vaca AM, Guido CB, Sosa LDV, Nicola JP, Mukdsi J, Petiti JP, Torres AI. The expansion of adult stem/progenitor cells and their marker expression fluctuations are linked with pituitary plastic adaptation during gestation and lactancy. Am J Physiol Endocrinol Metab 2016; 311:E367-79. [PMID: 27302752 DOI: 10.1152/ajpendo.00077.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
Extensive evidence has revealed variations in the number of hormone-producing cells in the pituitary gland, which occur under physiological conditions such as gestation and lactancy. It has been proposed that new hormone-producing cells differentiate from stem cells. However, exactly how and when this takes place is not clear. In this work, we used immunoelectron microscopy to identify adult pituitary stem/progenitor cells (SC/P) localized in the marginal zone (MZ), and additionally, we detected GFRa2-, Sox2-, and Sox9-positive cells in the adenoparenchyma (AP) by fluorescence microscopy. Then, we evaluated fluctuations of SC/P mRNA and protein level markers in MZ and AP during gestation and lactancy. An upregulation in stemness markers was shown at term of gestation (AT) in MZ, whereas there were more progenitor cell markers in the middle of gestation and active lactancy. Concerning committed cell markers, we detected a rise in AP at beginning of lactancy (d1L). We performed a BrdU uptake analysis in MZ and AP cells. The highest level of BrdU uptake was observed in MZ AT cells, whereas in AP this was detected in d1L, followed by a decrease in both the MZ and AP. Finally, we detected double immunostaining for BrdU-GFRa2 in MZ AT cells and BrdU-Sox9 in the AP d1L cells. Taken together, we hypothesize that the expansion of the SC/P niche took place mainly in MZ from pituitary rats in AT and d1L. These results suggest that the SC niche actively participates in pituitary plasticity during these reproductive states, contributing to the origin of hormone cell populations.
Collapse
Affiliation(s)
- Alicia Maldré Vaca
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Carolina Beatriz Guido
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Liliana Del Valle Sosa
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Centro de Investigaciones en Bioquímica Clínica e Inmunología-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Jorge Mukdsi
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Juan Pablo Petiti
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Alicia Ines Torres
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| |
Collapse
|
2
|
Han EH, Gorman AA, Singh P, Chi YI. Repression of HNF1α-mediated transcription by amino-terminal enhancer of split (AES). Biochem Biophys Res Commun 2015; 468:14-20. [PMID: 26549228 DOI: 10.1016/j.bbrc.2015.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022]
Abstract
HNF1α (Hepatocyte Nuclear Factor 1α) is one of the master regulators in pancreatic beta-cell development and function, and the mutations in Hnf1α are the most common monogenic causes of diabetes mellitus. As a member of the POU transcription factor family, HNF1α exerts its gene regulatory function through various molecular interactions; however, there is a paucity of knowledge in their functional complex formation. In this study, we identified the Groucho protein AES (Amino-terminal Enhancer of Split) as a HNF1α-specific physical binding partner and functional repressor of HNF1α-mediated transcription, which has a direct link to glucose-stimulated insulin secretion in beta-cells that is impaired in the HNF1α mutation-driven diabetes.
Collapse
Affiliation(s)
- Eun Hee Han
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Amanda A Gorman
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Puja Singh
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Young-In Chi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
3
|
Garcia-Lavandeira M, Diaz-Rodriguez E, Bahar D, Garcia-Rendueles AR, Rodrigues JS, Dieguez C, Alvarez CV. Pituitary Cell Turnover: From Adult Stem Cell Recruitment through Differentiation to Death. Neuroendocrinology 2015; 101:175-92. [PMID: 25662152 DOI: 10.1159/000375502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/23/2015] [Indexed: 11/19/2022]
Abstract
The recent demonstration using genetic tracing that in the adult pituitary stem cells are normally recruited from the niche in the marginal zone and differentiate into secretory cells in the adenopituitary has elegantly confirmed the proposal made when the pituitary stem cell niche was first discovered 5 years ago. Some of the early controversies have also been resolved. However, many questions remain, such as which are the markers that make a pituitary stem cell truly unique and the exact mechanisms that trigger recruitment from the niche. Little is known about the processes of commitment and differentiation once a stem cell has left the niche. Moreover, the acceptance that pituitary cells are renewed by stem cells implies the existence of regulated mechanisms of cell death in differentiated cells which must themselves be explained. The demonstration of an apoptotic pathway mediated by RET/caspase 3/Pit-1/Arf/p53 in normal somatotrophs is therefore an important step towards understanding how pituitary cell number is regulated. Further work will elucidate how the rates of the three processes of cell renewal, differentiation and apoptosis are balanced in tissue homeostasis after birth, but altered in pituitary hyperplasia in response to physiological stimuli such as puberty and lactation. Thus, we can aim to understand the mechanisms underlying human disease due to insufficient (hypopituitarism) or excess (pituitary tumor) cell numbers.
Collapse
Affiliation(s)
- Montserrat Garcia-Lavandeira
- Neoplasia and Endocrine Differentiation, Centre for Investigations in Medicine (CIMUS), Instituto de Investigaciones Sanitarias, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
4
|
da Costa JP, Oliveira-Silva R, Daniel-da-Silva AL, Vitorino R. Bionanoconjugation for Proteomics applications — An overview. Biotechnol Adv 2014; 32:952-70. [DOI: 10.1016/j.biotechadv.2014.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/15/2014] [Accepted: 04/26/2014] [Indexed: 12/29/2022]
|