1
|
Paschou SA, Athanasiadou KI, Hafford-Letchfield T, Hinchliff S, Mauskar M, Rees M, Simon JA, Armeni E, Erel CT, Fistonic I, Hillard T, Hirschberg AL, Meczekalski B, Mendoza N, Mueck AO, Simoncini T, Stute P, van Dijken D, Lambrinoudaki I. Sexual health and wellbeing and the menopause: An EMAS clinical guide. Maturitas 2024; 189:108055. [PMID: 39226624 DOI: 10.1016/j.maturitas.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Sexual health and wellbeing are significant aspects of quality of life. However, taking a sexual history is often avoided in medical practice, leaving a void in management and awareness. As the menopause can have a major impact on sexual health, it is imperative that healthcare providers are appropriately trained in sexual health and wellbeing and the aligned disciplines in order to achieve optimal care. AIM To provide an evidence-based clinical guide for the assessment and management of sexual problems at the menopause and beyond. MATERIALS AND METHODS Review of the literature and consensus of expert opinion. RESULTS AND CONCLUSION The assessment of sexual problems includes history taking, examination and laboratory investigation (if indicated), and occasionally the use of specific validated questionnaires. Management of sexual problems requires a multidimensional approach using biopsychosocial measures. Medical management and psychosexual counselling include pharmacological and non-pharmacological interventions, and sex therapy and psychoeducation. Furthermore, perimenopausal women should be advised about the need for contraception if they wish to avoid pregnancy. Also, sexually transmitted diseases can be acquired at any age. To conclude, taking a sexual history should be incorporated into medical practice and healthcare providers should be appropriately trained to assess and manage sexual problems at the menopause and beyond.
Collapse
Affiliation(s)
- Stavroula A Paschou
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece.
| | - Kleoniki I Athanasiadou
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece
| | | | - Sharron Hinchliff
- School of Allied Health Professions, Nursing and Midwifery, University of Sheffield, UK
| | - Melissa Mauskar
- Department of Dermatology and Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Margaret Rees
- Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - James A Simon
- Department of Obstetrics & Gynecology, George Washington University, IntimMedicine Specialists, Washington, DC, USA
| | - Eleni Armeni
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Greece; Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| | - C Tamer Erel
- Istanbul-Cerrahpaşa University, Cerrahpaşa School of Medicine, Department of Obstetrics and Gynecology, İstanbul, Turkey
| | - Ivan Fistonic
- Faculty for Health Studies, University of Rijeka, Rijeka, Croatia
| | - Timothy Hillard
- Department of Obstetrics and Gynaecology, University Hospitals Dorset, Poole, UK
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet and Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nicolás Mendoza
- Department of Obstetrics and Gynecology, University of Granada, Spain
| | - Alfred O Mueck
- Department of Women's Health, University Hospital Tuebingen, Germany
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Petra Stute
- Department of Obstetrics and Gynecology, University Clinic Inselspital, Bern, Switzerland
| | - Dorenda van Dijken
- Department of Obstetrics and Gynecology, OLVG Hospital, Amsterdam, the Netherlands
| | - Irene Lambrinoudaki
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
2
|
Dobson AJ, XU Z, Wilson LF, Chung HF, Sandin S, Van der Schouw YT, Demakakos P, Weiderpass E, Mishra GD. Menopause age and type and dementia risk: a pooled analysis of 233 802 women. Age Ageing 2024; 53:afae254. [PMID: 39562342 PMCID: PMC11576136 DOI: 10.1093/ageing/afae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVES It is not clear whether the association between younger age at menopause and increased risk of dementia is modified by type of menopause. We examined the association of age at menopause or hysterectomy with dementia risk in three groups of women: those with natural menopause, premenopausal bilateral oophorectomy (surgical menopause) or premenopausal hysterectomy (without bilateral oophorectomy). STUDY DESIGN Individual-level data from 233 802 women in five prospective cohort studies (from four countries) were harmonized and pooled. Cox proportional hazards models were used to assess the associations of age at natural menopause, surgical menopause or premenopausal hysterectomy, with age at dementia, death (where available) or end of follow-up, whichever came first. RESULTS The study followed women to the median age of 72 years (quartiles 67, 76 years). The median follow-up time was 13 years, with 3262 dementia cases during this period. Compared with women with menopause at 50-52 years, women with menopause <40 years had a higher risk of dementia (adjusted hazard ratio (aHR): 1.47, 95% confidence interval (CI): 1.39, 1.56). This level of risk was comparable to that of current smoking and stroke, which are well-established risk factors for dementia. Increased risk of dementia associated with surgical menopause or premenopausal hysterectomy (compared to natural menopause) was not apparent after adjustment for age at menopause (aHR 0.99, 95% CI: 0.93, 1.04 and aHR 0.97, 95% CI: 0.95, 1.00, respectively). CONCLUSION Women who experience menopause before the age of 40 years have a higher risk of dementia irrespective of type of menopause.
Collapse
Affiliation(s)
- Annette J Dobson
- The University of Queensland School of Public Health, NHMRC Centre for Research Excellence on Women and Non-communicable Diseases (CRE WaND), Brisbane, Australia
| | - Zhiwei XU
- The University of Queensland School of Public Health, NHMRC Centre for Research Excellence on Women and Non-communicable Diseases (CRE WaND), Brisbane, Australia
| | - Louise F Wilson
- The University of Queensland School of Public Health, NHMRC Centre for Research Excellence on Women and Non-communicable Diseases (CRE WaND), Brisbane, Australia
| | - Hsin-Fang Chung
- The University of Queensland School of Public Health, NHMRC Centre for Research Excellence on Women and Non-communicable Diseases (CRE WaND), Brisbane, Australia
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Yvonne T Van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organisation, Lyon, France
| | - Gita D Mishra
- The University of Queensland School of Public Health, NHMRC Centre for Research Excellence on Women and Non-communicable Diseases (CRE WaND), Brisbane, Australia
| |
Collapse
|
3
|
Sinder SB, Sharma SV, Shirvaikar IS, Pradhyumnan H, Patel SH, Cabeda Diaz I, Perez GG, Bramlett HM, Raval AP. Impact of menopause-associated frailty on traumatic brain injury. Neurochem Int 2024; 176:105741. [PMID: 38621511 DOI: 10.1016/j.neuint.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17β (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.
Collapse
Affiliation(s)
- Sophie B Sinder
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sabrina V Sharma
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Isha S Shirvaikar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indy Cabeda Diaz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
4
|
Ma Y, Sun W, Bai J, Gao F, Ma H, Liu H, Hu J, Xu C, Zhang X, Liu Z, Yuan T, Sun C, Huang Y, Wang R. Targeting blood brain barrier-Remote ischemic conditioning alleviates cognitive impairment in female APP/PS1 rats. CNS Neurosci Ther 2024; 30:e14613. [PMID: 38379185 PMCID: PMC10879645 DOI: 10.1111/cns.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 02/22/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a significant global health concern, and it is crucial that we find effective methods to prevent or slow down AD progression. Recent studies have highlighted the essential role of blood vessels in clearing Aβ, a protein that contributes to AD. Scientists are exploring blood biomarkers as a potential tool for future AD diagnosis. One promising method that may help prevent AD is remote ischemic conditioning (RIC). RIC involves using sub-lethal ischemic-reperfusion cycles on limbs. However, a comprehensive understanding of how RIC can prevent AD and its long-term effectiveness is still lacking. Further research is essential to fully comprehend the potential benefits of RIC in preventing AD. METHODS Female wild-type (WT) and APP/PS1 transgenic rats, aged 12 months, underwent ovariectomy and were subsequently assigned to WT, APP/PS1, and APP/PS1 + RIC groups. RIC was conducted five times a week for 4 weeks. The rats' depressive and cognitive behaviors were evaluated using force swimming, open-field tests, novel objective recognition, elevated plus maze, and Barnes maze tests. Evaluation of the neurovascular unit (NVU), synapses, vasculature, astrocytes, and microglia was conducted using immunofluorescence staining (IF), Western blot (WB), and transmission electron microscopy (TEM). Additionally, the cerebro-vasculature was examined using micro-CT, and cerebral blood flow (CBF) was measured using Speckle Doppler. Blood-brain barrier (BBB) permeability was determined by measuring the Evans blue leakage. Finally, Aβ levels in the rat frontal cortex were measured using WB, ELISA, or IF staining. RESULTS RIC enhanced memory-related protein expression and rescued depressive-like behavior and cognitive decline in APP/PS1 transgenic rats. Additionally, the intervention protected NVU in the rat frontal cortex, as evidenced by (1) increased expression of TJ (tight junction) proteins, pericyte marker PDGFRβ, and glucose transporter 1 (GLUT1), as well as decreased VCAM1; (2) mitigation of ultrastructure impairment in neuron, cerebral vascular, and astrocyte; (3) upregulation of A2 astrocyte phenotype markers and downregulation of A1 phenotype markers, indicating a shift toward a healthier phenotype. Correspondingly, RIC intervention alleviated neuroinflammation, as evidenced by the decreased Iba1 level, a microglia marker. Meanwhile, RIC intervention elevated CBF in frontal cortex of the rats. Notably, RIC intervention effectively suppressed Aβ toxicity, as demonstrated by the enhancement of α-secretase and attenuation of β-secretase (BACE1) and γ- secretase and Aβ1-42 and Aβ1-40 levels as well. CONCLUSION Chronic RIC intervention exerts vascular and neuroprotective roles, suggesting that RIC could be a promising therapeutic strategy targeting the BBB and NVU during AD development.
Collapse
Affiliation(s)
- Yuxuan Ma
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Wuxiang Sun
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Jing Bai
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Fujia Gao
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Haoran Ma
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Huiyu Liu
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Jiewei Hu
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Chao Xu
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Xin Zhang
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Zixuan Liu
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Tao Yuan
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Chenxu Sun
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yuanyuan Huang
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Ruimin Wang
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
5
|
Karamitrou EK, Anagnostis P, Vaitsi K, Athanasiadis L, Goulis DG. Early menopause and premature ovarian insufficiency are associated with increased risk of dementia: A systematic review and meta-analysis of observational studies. Maturitas 2023; 176:107792. [PMID: 37393661 DOI: 10.1016/j.maturitas.2023.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND/AIMS Among other risk factors, the decline in estrogen concentrations during menopause may compromise cognitive function. Whether early menopause (EM) is associated with an increased risk of dementia remains unclear. The purpose of this study was to systematically review and meta-analyze current evidence regarding the association between EM or premature ovarian insufficiency (POI) and the risk of dementia of any type. MATERIALS AND METHODS A comprehensive literature search was conducted through the PubMed, Scopus and CENTRAL databases up to August 2022. Study quality was assessed using the Newcastle-Ottawa scale. Associations were calculated as odds ratio (OR) with 95 % confidence interval (CI). The I2 index was employed for heterogeneity. RESULTS Eleven studies (nine assessed as of good and two as of fair quality) were included in the meta-analysis (n = 4,716,862). Women with EM demonstrated a greater risk of dementia of any type than women of normal age at menopause (OR 1.37, 95 % CI 1.22-1.54; I2 93%). However, after excluding a large retrospective cohort study, the results were altered (OR 1.07, 95 % CI 0.78-1.48; I2 94%). Increased risk of dementia was also found in women with POI (OR 1.18, 95 % CI 1.15-1.21; I2 0%). Subgroup analysis showed that this risk was mostly evident in cohort studies, and those which included women with natural menopause. CONCLUSIONS Women with EM or POI may be at increased risk of dementia compared with women of normal age at menopause, but further research investigating that hypothesis is warranted.
Collapse
Affiliation(s)
- Eleni K Karamitrou
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Anagnostis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Konstantina Vaitsi
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Loukas Athanasiadis
- First Department of Psychiatry, Medical School, Aristotle University of Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Anti-Inflammatory Actions of G-Protein-Coupled Estrogen Receptor 1 (GPER) and Brain-Derived Estrogen Following Cerebral Ischemia in Ovariectomized Rats. BIOLOGY 2023; 12:biology12010099. [PMID: 36671793 PMCID: PMC9855882 DOI: 10.3390/biology12010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Global cerebral ischemia can elicit rapid innate neuroprotective mechanisms that protect against delayed neuronal death. Brain-derived 17β-estradiol (BDE2), an endogenous neuroprotectant, is synthesized from testosterone by the enzyme aromatase (Aro) and is upregulated by brain ischemia and inflammation. Our recent study revealed that G1, a specific G-protein-coupled estrogen receptor 1 (GPER) agonist, exerts anti-inflammatory and anti-apoptotic roles after global cerebral ischemia (GCI). Herein, we aimed to elucidate whether G1 modulates the early inflammatory process and the potential underlying mechanisms in the ovariectomized rat hippocampal CA1 region. G1 was found to markedly reduce pro-inflammatory (iNOS, MHCII, and CD68) and to enhance anti-inflammatory (CD206, Arginase 1, IL1RA, PPARγ, and BDNF) markers after 1 and 3 days of reperfusion after GCI. Intriguingly, the neuroprotection of G1 was blocked by the Aro inhibitor, letrozole. Conversely, the GPER antagonist, G36, inhibited Aro-BDE2 signaling and exacerbated neuronal damage. As a whole, this work demonstrates a novel anti-inflammatory role of GPER, involving a synergistic mediation with BDE2 during the early stage of GCI.
Collapse
|
7
|
Verri Hernandes V, Dordevic N, Hantikainen EM, Sigurdsson BB, Smárason SV, Garcia-Larsen V, Gögele M, Caprioli G, Bozzolan I, Pramstaller PP, Rainer J. Age, Sex, Body Mass Index, Diet and Menopause Related Metabolites in a Large Homogeneous Alpine Cohort. Metabolites 2022; 12:metabo12030205. [PMID: 35323648 PMCID: PMC8955763 DOI: 10.3390/metabo12030205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Metabolomics in human serum samples provide a snapshot of the current metabolic state of an individuum. Metabolite concentrations are influenced by both genetic and environmental factors. Concentrations of certain metabolites can further depend on age, sex, menopause, and diet of study participants. A better understanding of these relationships is pivotal for the planning of metabolomics studies involving human subjects and interpretation of their results. We generated one of the largest single-site targeted metabolomics data sets consisting of 175 quantified metabolites in 6872 study participants. We identified metabolites significantly associated with age, sex, body mass index, diet, and menopausal status. While most of our results agree with previous large-scale studies, we also found novel associations including serotonin as a sex and BMI-related metabolite and sarcosine and C2 carnitine showing significantly higher concentrations in post-menopausal women. Finally, we observed strong associations between higher consumption of food items and certain metabolites, mostly phosphatidylcholines and lysophosphatidylcholines. Most, and the strongest, relationships were found for habitual meat intake while no significant relationships were found for most fruits, vegetables, and grain products. Summarizing, our results reconfirm findings from previous population-based studies on an independent cohort. Together, these findings will ultimately enable the consolidation of sets of metabolites which are related to age, sex, BMI, and menopause as well as to participants’ diet.
Collapse
Affiliation(s)
- Vinicius Verri Hernandes
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, 39100 Bozen, Italy; (V.V.H.); (N.D.); (E.M.H.); (B.B.S.); (S.V.S.); (M.G.); (G.C.); (I.B.); (P.P.P.)
| | - Nikola Dordevic
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, 39100 Bozen, Italy; (V.V.H.); (N.D.); (E.M.H.); (B.B.S.); (S.V.S.); (M.G.); (G.C.); (I.B.); (P.P.P.)
| | - Essi Marjatta Hantikainen
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, 39100 Bozen, Italy; (V.V.H.); (N.D.); (E.M.H.); (B.B.S.); (S.V.S.); (M.G.); (G.C.); (I.B.); (P.P.P.)
| | - Baldur Bragi Sigurdsson
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, 39100 Bozen, Italy; (V.V.H.); (N.D.); (E.M.H.); (B.B.S.); (S.V.S.); (M.G.); (G.C.); (I.B.); (P.P.P.)
- Department of Clinical Biochemistry, Landspitali—University Hospital, 108 Reykjavik, Iceland
| | - Sigurður Vidir Smárason
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, 39100 Bozen, Italy; (V.V.H.); (N.D.); (E.M.H.); (B.B.S.); (S.V.S.); (M.G.); (G.C.); (I.B.); (P.P.P.)
- BASF SE, 67063 Ludwigshafen, Germany
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Martin Gögele
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, 39100 Bozen, Italy; (V.V.H.); (N.D.); (E.M.H.); (B.B.S.); (S.V.S.); (M.G.); (G.C.); (I.B.); (P.P.P.)
| | - Giulia Caprioli
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, 39100 Bozen, Italy; (V.V.H.); (N.D.); (E.M.H.); (B.B.S.); (S.V.S.); (M.G.); (G.C.); (I.B.); (P.P.P.)
| | - Ilaria Bozzolan
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, 39100 Bozen, Italy; (V.V.H.); (N.D.); (E.M.H.); (B.B.S.); (S.V.S.); (M.G.); (G.C.); (I.B.); (P.P.P.)
| | - Peter P. Pramstaller
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, 39100 Bozen, Italy; (V.V.H.); (N.D.); (E.M.H.); (B.B.S.); (S.V.S.); (M.G.); (G.C.); (I.B.); (P.P.P.)
| | - Johannes Rainer
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, 39100 Bozen, Italy; (V.V.H.); (N.D.); (E.M.H.); (B.B.S.); (S.V.S.); (M.G.); (G.C.); (I.B.); (P.P.P.)
- Correspondence:
| |
Collapse
|
8
|
Knowledge of iatrogenic premature ovarian insufficiency among Chinese obstetricians and gynaecologists: a national questionnaire survey. J Ovarian Res 2020; 13:134. [PMID: 33208171 PMCID: PMC7677772 DOI: 10.1186/s13048-020-00739-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/12/2020] [Indexed: 11/10/2022] Open
Abstract
Background With increasing cases of iatrogenic premature ovarian insufficiency (POI), more clinicians are required to counsel patients regarding the gonadotoxic effects of iatrogenic treatments. This survey aimed to explore obstetricians and gynaecologists’ knowledge regarding iatrogenic POI. A national online questionnaire survey was conducted across China. Respondents were asked to select the iatrogenic condition(s) that can cause POI based on their experience and knowledge. Results Of the 5523 returned questionnaires, 4995 were analysed. Among tumour therapies causing POI, most respondents agreed that radiotherapy (73.5% of respondents) and chemotherapy (64.1%) are risk factors for POI. While only 6.5 and 7.8% of the gynaecological oncologists believed that tumour immunotherapy and tumour-targeting therapy, respectively, may cause ovarian impairment, 31.8 and 22.2% of the non-gynaecologic oncologists believed that these therapies could affect ovarian health. Most respondents believed that ovarian cystectomy (54.4%) was a risk factor for POI. In contrast, only a few respondents believed that hysterectomy with bilateral salpingectomy (39.6%) and uterine artery embolisation (33.5%) could cause ovarian impairment. Only 30.5% of respondents believed that immunosuppressants (ISs) increased the risk of POI. Views differed with experience and hospital setting. Conclusions The knowledge of gonadal toxicity due to traditional tumour treatments is generally high among Chinese obstetricians and gynaecologists. A misunderstanding may exist in primary care hospitals and general gynaecologists regarding a link between novel tumour treatments and POI, owing to the lack of convincing evidence. Knowledge of POI caused by hysterectomy and ISs should be improved. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-020-00739-z.
Collapse
|
9
|
Yang Y, Zhao L, Li N, Dai C, Yin N, Chu Z, Duan X, Niu X, Yan P, Lv P. Estrogen Exerts Neuroprotective Effects in Vascular Dementia Rats by Suppressing Autophagy and Activating the Wnt/β-Catenin Signaling Pathway. Neurochem Res 2020; 45:2100-2112. [PMID: 32719979 DOI: 10.1007/s11064-020-03072-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023]
Abstract
Vascular dementia (VD) is a clinical syndrome of acquired cognitive dysfunction caused by various cerebrovascular factors. Estrogen is a steroid hormone involved in promoting neuronal survival and in regulating many signaling pathways. However, the mechanism by which it confers neuroprotective effects in VD remains unclear. Here, we aimed to investigate the effect of estrogen on neuronal injury and cognitive impairment in VD rats. Adult female rats were randomly divided into four groups (sham, model, estrogen early and estrogen later treatment) and received sham surgery or bilateral ovariectomy and permanent occlusion of bilateral common carotid arteries (BCCAO). The early treatment group received daily intraperitoneal injections of 17β-estradiol (100 µg/kg/day) for 8 weeks starting the day after BCCAO. The later treatment group was administered the same starting 1 week after BCCAO. Learning and memory functions were assessed using the Morris water maze. Morphological changes within the hippocampal CA1 region were observed by hematoxylin/eosin staining and electron microscopy. Expression of proteins associated with autophagy and signaling were detected by immunohistochemical staining and Western blot. We found that estrogen significantly alleviated cognitive damage and neuronal injury and reduced the expression of Beclin1 and LC3B, indicating a suppression of autophagy. Moreover, estrogen enhanced expression of β-catenin and Cyclin D1, while reducing glycogen synthase kinase 3β, suggesting activation of Wnt/β-catenin signaling. These results indicate that estrogen ameliorates learning and memory deficiencies in VD rats, and that this neuroprotective effect may be explained by the suppression of autophagy and activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Neurology, Hebei Medical University, Shijiazhuang, 050017, China.,Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Lei Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Na Li
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Congwei Dai
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Nan Yin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Zhaoping Chu
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Xiaoyan Duan
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Xiaoli Niu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Ping Yan
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China.
| |
Collapse
|
10
|
Jakimovski D, Zivadinov R, Bergsland N, Ramasamy DP, Hagemeier J, Weinstock-Guttman B, Kolb C, Hojnacki D, Dwyer MG. Sex-Specific Differences in Life Span Brain Volumes in Multiple Sclerosis. J Neuroimaging 2020; 30:342-350. [PMID: 32392376 DOI: 10.1111/jon.12709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Numerous sex-specific differences in multiple sclerosis (MS) susceptibility, disease manifestation, disability progression, inflammation, and neurodegeneration have been previously reported. Previous magnetic resonance imaging (MRI) studies have shown structural differences between female and male MS brain volumes. To determine sex-specific global and tissue-specific brain volume throughout the MS life span in a real-world large MRI database. METHODS A total of 2,199 MS patients (female/male ratio of 1,651/548) underwent structural MRI imaging on either a 1.5-T or 3-T scanner. Global and tissue-specific volumes of whole brain (WBV), white matter, and gray matter (GMV) were determined by utilizing Structural Image Evaluation using Normalisation of Atrophy Cross-sectional (SIENAX). Lateral ventricular volume (LVV) was determined with the Neurological Software Tool for REliable Atrophy Measurement (NeuroSTREAM). General linear models investigated sex and age interactions, and post hoc comparative sex analyses were performed. RESULTS Despite being age-matched with female MS patents, a greater proportion of male MS patients were diagnosed with progressive MS and had lower normalized WBV (P < .001), GMV (P < .001), and greater LVV (P < .001). In addition to significant stand-alone main effects, an interaction between sex and age had an additional effect on the LVV (F-statistics = 4.53, P = .033) and GMV (F-statistics = 4.59, P = .032). The sex and age interaction was retained in both models of LVV (F-statistics = 3.31, P = .069) and GMV (F-statistics = 6.1, P = .003) when disease subtype and disease-modifying treatment (DMT) were also included. Although male MS patients presented with significantly greater LVV and lower GMV during the early and midlife period when compared to their female counterparts (P < .001 for LVV and P < .019 for GMV), these differences were nullified in 60+ years old patients. Similar findings were seen within a subanalysis of MS patients that were not on any DMT at the time of enrollment. CONCLUSION There are sex-specific differences in the LVV and GMV over the MS life span.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY.,Translational Imaging Center at Clinical Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Deepa P Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Bianca Weinstock-Guttman
- Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY
| | - Channa Kolb
- Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY
| | - David Hojnacki
- Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| |
Collapse
|
11
|
Wyse AT, Siebert C, Bobermin LD, Dos Santos TM, Quincozes-Santos A. Changes in Inflammatory Response, Redox Status and Na +, K +-ATPase Activity in Primary Astrocyte Cultures from Female Wistar Rats Subject to Ovariectomy. Neurotox Res 2019; 37:445-454. [PMID: 31773642 DOI: 10.1007/s12640-019-00128-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/25/2022]
Abstract
Astrocytes are dynamic glial cells that maintain brain homeostasis, particularly metabolic functions, inflammatory response, and antioxidant defense. Since menopause may be associated with brain dysfunction, in the present study, we evaluated anti- and proinflammatory cytokine release in cortical and hippocampal astrocyte cultures obtained from adult female Wistar rats subjected to ovariectomy, a known experimental model of menopause. We also tested some parameters of metabolic functionality (Na+, K+-ATPase activity) and cellular redox status, such as antioxidant enzyme defenses (superoxide dismutase and catalase) and the intracellular production of reactive oxygen species in this experimental model. Female adult Wistar rats (180 days-age) were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries) and ovariectomy (submitted to surgery to removal of the ovaries). Thirty days after ovariectomy or sham surgery, we prepared astrocyte cultures from control and ovariectomy surgery animals. Ovariectomized rats presented an increase in pro-inflammatory cytokines (tumor necrosis factor α, interleukins 1β, 6, and 18) and a decrease in interleukin 10 release, an anti-inflammatory cytokine, in cortical and hippocampal astrocytes, when compared to those obtained from sham group (control). In addition, Na+,K+-ATPase activity decreased in hippocampal astrocytes, but not in cortical astrocyte cultures. In contrast, antioxidant enzymes did not alter in cortical astrocyte cultures, but increased in hippocampal astrocytes. In summary, our findings suggest that ovariectomy is able to induce an inflammatory response in vivo, which could be detected in in vitro astrocytes after approximately 4 weeks.
Collapse
Affiliation(s)
- Angela Ts Wyse
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Cassiana Siebert
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Larissa D Bobermin
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neurotoxicidade e Glioproteção, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago M Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neurotoxicidade e Glioproteção, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Gargus E, Deans R, Anazodo A, Woodruff TK. Management of Primary Ovarian Insufficiency Symptoms in Survivors of Childhood and Adolescent Cancer. J Natl Compr Canc Netw 2019; 16:1137-1149. [PMID: 30181423 DOI: 10.6004/jnccn.2018.7023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/12/2018] [Indexed: 12/18/2022]
Abstract
Cancer treatments can damage the ovaries, causing primary ovarian insufficiency (POI), a condition associated with numerous sequelae that impact long-term quality of life. This article systematically reviews the literature on the prevalence, surveillance, and treatment of POI in survivors of pediatric and adolescent and young adult (AYA) cancers. A systematic review of the literature was conducted in January 2018 through a search of Medline, Embase, Web of Science, and SCOPUS, alongside the screening of relevant reference lists. An initial search identified 746 potentially relevant studies. A total of 36 studies were included in the final review. Studies were categorized into one of the following categories: incidence/prevalence of POI, measurement of ovarian reserve, and other. Depending on patient characteristics, cancer diagnosis, and treatment, the prevalence of POI ranged from 2.1% to 82.2%. Risk factors for POI included exposure to alkylating agents and abdominal/pelvic radiation. POI may be associated with a number of complications, including low bone mineral density and poor cardiovascular health. Radiotherapy and chemotherapy are known to cause gonadal damage in female survivors of pediatric and AYA cancers. Acute or chronic effects depend on the dose of treatment, age of the individual, radiotherapy field, and ovarian reserve of the individual. Some women experience short-term loss of reproductive function and then may resume menstrual cycles, months or even years later. Although protecting fertility through banking of mature eggs, embryos, and tissue samples has become standard of care, additional steps need to be taken to ensure that patients have adequate hormone levels to maintain whole-body health, including life expectancy, bone health, cardiovascular health, quality of life, sexual and genitourinary function, and neurologic function. Surveillance and management of each of these comorbidities is critically important to survivor health.
Collapse
|
13
|
Maleki N, Androulakis XM. Is There Any MRI Pattern That Discriminates Female From Male Migraine Patients? Front Neurol 2019; 10:961. [PMID: 31551917 PMCID: PMC6747047 DOI: 10.3389/fneur.2019.00961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
There has been accumulating evidence on sex disparity in incidence, prevalence, symptomology, and burden of migraine. Several neuroimaging studies on migraine patients attempted to unravel the mechanisms of the disease, yet very few of them examined the sex-related differences. Here, we will first discuss some of the reported neuroimaging patterns that discriminate females from males in migraine. We will then re-examine the salient neuroimaging findings in migraine and discuss them in relation to sex-related influences. Finally, we will discuss some of the intriguing recent data suggesting the presence of sex-specific traits in migraineurs. These findings may have potential implications for future neuroimaging studies to identify underlying correlating patterns in the brain to (1) explain the neural basis for higher prevalence of migraine in women, and (2) better understand migraine-specific changes during different stages of life in both men and women.
Collapse
Affiliation(s)
- Nasim Maleki
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiao Michelle Androulakis
- Columbia VA Health Care System, Columbia, SC, United States.,Department of Neurology, School of Public Health, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
14
|
Zakeri M, Fatemi I, Kaeidi A, Zakeri MA, Hakimizadeh E, Hassanipour M, Rahmani M, Hassanshahi J, Ayoobi F, Allahtavakoli M. Pro-neurocognitive and anti-sarcopenic benefits of one-year metformin therapy in ovariectomized aged mice. Clin Exp Pharmacol Physiol 2019; 46:1133-1140. [PMID: 31357227 DOI: 10.1111/1440-1681.13149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 01/14/2023]
Abstract
Health promotion and healthy nutrition significantly increased life expectancy around the world. Aging is associated with an increase in age-related diseases. The use of metformin (Met) as an anti-aging drug has recently been proposed based on its widespread use in clinical practice. Reports have shown that Met acts as an anti-aging agent. In this study, the effects of long-term, 1 year, Met administration on aging-related behaviors and longevity in ovariectomized mice was studied. Met (1 and 10 mg/kg, daily) was administered orally in ovariectomized mice. The anxiety-like behavior, working memory, and physical strength were measured through elevated plus maze, Y-maze, vertical grid holding, and the obligatory swimming capacity tests. Brains were harvested to measure brain-derived neurotrophic factor (BDNF) level. Also, the Kaplan-Meier survival curves were used to show differences and similarities in survival patterns. Met (10 mg/kg) decreased anxiety-like behaviors as well as increased muscle strength and working memory in the ovariectomized mice. Moreover, Met increased the physical strength and longevity as well as the level of BDNF in the ovariectomized mice. Our results indicate that Met administration can be an effective strategy for having a healthy aging in the absence of female gonadal hormones and reverses deleterious effects of ovariectomy-induced aging possibly through BDNF.
Collapse
Affiliation(s)
- Maryam Zakeri
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Fatemi
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Ali Zakeri
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahsa Hassanipour
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammadreza Rahmani
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Jalal Hassanshahi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Ayoobi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
15
|
Oveisgharan S, Arvanitakis Z, Yu L, Farfel J, Schneider JA, Bennett DA. Sex differences in Alzheimer's disease and common neuropathologies of aging. Acta Neuropathol 2018; 136:887-900. [PMID: 30334074 DOI: 10.1007/s00401-018-1920-1] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022]
Abstract
Alzheimer's dementia is significantly more common in women than in men. However, few pathological studies have addressed sex difference in Alzheimer's disease (AD) and other brain pathologies. We leveraged postmortem data from 1453 persons who participated in one of two longitudinal community-based studies of older adults, the Religious Orders Study and the Rush Memory and Aging Project. Postmortem examination identified AD pathologies, neocortical Lewy bodies, DNA-binding protein 43 (TDP-43), hippocampal sclerosis, gross and micro infarcts, atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy. Linear and logistic regressions examined the association of sex with each of the pathologic measures. Two-thirds of subjects were women (n = 971; 67%), with a mean age at death of 89.8 (SD = 6.6) years in women and 87.3 (SD = 6.6) in men. Adjusted for age and education, women had higher levels on a global measure of AD pathology (estimate = 0.102, SE = 0.022, p < 0.001), and tau tangle density in particular (estimate = 0.334, SE = 0.074, p < 0.001), and there was a borderline difference between women and men in amyloid-β load (estimate = 0.124, SE = 0.065, p = 0.056). In addition, compared to men, women were more likely to have more severe arteriolosclerosis (OR = 1.28, 95% CI:1.04-1.58, p = 0.018), and less likely to have gross infarcts (OR = 0.78, 95% CI:0.61-0.98, p = 0.037), although the association with gross infarct was attenuated after controlling for vascular risk factors. These data help elucidate the neuropathologic footprint of sex difference in AD and other common brain pathologies of aging.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jose Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
- Department of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
16
|
Thakkar R, Wang R, Wang J, Vadlamudi RK, Brann DW. 17 β-Estradiol Regulates Microglia Activation and Polarization in the Hippocampus Following Global Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4248526. [PMID: 29849895 PMCID: PMC5932444 DOI: 10.1155/2018/4248526] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective hormone, but its role in regulation of neuroinflammation is less understood. Recently, our lab demonstrated that E2 could regulate the NLRP3 (NOD-like receptor protein 3) inflammasome pathway in the hippocampus following global cerebral ischemia (GCI). Here, we examined the ability of E2 to regulate activation and polarization of microglia phenotype in the hippocampus after global cerebral ischemia (GCI). Our in vivo study in young adult ovariectomized rats showed that exogenous low-dose E2 profoundly suppressed microglia activation and quantitatively shifted microglia from their "activated," amoeboid morphology to a "resting," ramified morphology after GCI. Further studies using M1 "proinflammatory" and M2 "anti-inflammatory" phenotype markers showed that E2 robustly suppressed the "proinflammatory" M1 phenotype, while enhancing the "anti-inflammatory" M2 microglia phenotype in the hippocampus after GCI. These effects of E2 may be mediated directly upon microglia, as E2 suppressed the M1 while enhancing the M2 microglia phenotype in LPS- (lipopolysaccharide-) activated BV2 microglia cells in vitro. E2 also correspondingly suppressed proinflammatory while enhancing anti-inflammatory cytokine gene expression in the LPS-treated BV2 microglia cells. Finally, E2 treatment abolished the LPS-induced neurotoxic effects of BV2 microglia cells upon hippocampal HT-22 neurons. Collectively, our study findings suggest a novel E2-mediated neuroprotective effect via regulation of microglia activation and promotion of the M2 "anti-inflammatory" phenotype in the brain.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, USA
| | - Darrell W. Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
17
|
Vitamin D 3 Reverses the Hippocampal Cytoskeleton Imbalance But Not Memory Deficits Caused by Ovariectomy in Adult Wistar Rats. Neuromolecular Med 2017; 19:345-356. [PMID: 28689355 DOI: 10.1007/s12017-017-8449-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/01/2017] [Indexed: 01/06/2023]
Abstract
The objective of study was to investigate changes caused by ovariectomy (OVX) on aversive and non-aversive memories, as well as on cytoskeleton phosphorylating system and on vitamin D receptor (VDR) immunocontent in hippocampus. The neuroprotective role of vitamin D was also investigated. Ninety-day-old female Wistar rats were divided into four groups: SHAM, OVX, VITAMIN D and OVX + VITAMIN D; 30 days after the OVX, vitamin D supplementation (500 IU/kg), by gavage, for 30 days was started. Results showed that OVX impaired short-term and long-term recognition, and long-term aversive memories. OVX altered hippocampal cytoskeleton phosphorylating system, evidenced by the hyperphosphorylation of glial fibrillary acidic protein (GFAP), low molecular weight neurofilament subunit (NFL), medium molecular weight neurofilament subunit (NFM) and high molecular weight neurofilament subunit (NFH), and increased the immunocontent of c-Jun N-terminal protein kinases (JNK), Ca2+/calmodulin-dependent protein kinase II (PKCaMII) and of the sites phosphorylated lysine-serine-proline (KSP) repeats, Ser55 and Ser57. Vitamin D reversed the effects caused by OVX on cytoskeleton in hippocampus, but it was not able to reverse the effects on memory.
Collapse
|
18
|
Ovarian Conservation and Overall Survival in Young Women With Early-Stage Cervical Cancer. Obstet Gynecol 2017; 129:139-151. [PMID: 27926642 DOI: 10.1097/aog.0000000000001754] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify predictors of ovarian conservation at hysterectomy and to examine the association of ovarian conservation and survival of young women with early-stage cervical cancer. METHODS This is a retrospective cohort study using the Surveillance, Epidemiology, and End Results Program to identify hysterectomy-based surgically treated patients with stage I cervical cancer diagnosed between 1983 and 2012 (N=16,511). Multivariable models were used to identify independent factors associated with ovarian conservation. Among the subgroup of 9,419 women younger than 50 years of age with stage I disease, survival outcomes and causes of death were examined for 3,908 (41.5%) women who underwent ovarian conservation at hysterectomy without radiotherapy. RESULTS On multivariable analysis, age younger than 50 years, stage IA disease, and squamous histology were independent factors associated with ovarian conservation (all, P<.001). Among 5,526 women younger than 50 years of age with stage IA disease who underwent hysterectomy without radiotherapy, overall survival was significantly higher in patients undergoing ovarian conservation than in those undergoing oophorectomy (20-year rate, 93.5% compared with 86.8%, P<.001); cervical cancer-specific survival was similar between the patients who underwent ovarian conservation and those who underwent oophorectomy (98.8% compared with 97.8%, P=.12). On multivariable analysis, ovarian conservation remained an independent prognostic factor for improved overall survival (adjusted hazard ratio 0.63, 95% confidence interval [CI] 0.49-0.82, P=.001) and was independently associated with lower cumulative risks of death resulting from cardiovascular disease (20-year cumulative rate, 1.2% compared with 3.3%, adjusted hazard ratio 0.47, 95% CI 0.26-0.86, P=.014) and other chronic disease (0.5% compared with 1.4%, adjusted hazard ratio 0.24, 95% CI 0.09-0.65, P=.005) compared with oophorectomy. Both cervical cancer-specific survival (20-year rate, 93.1% compared with 92.0%, P=.37) and overall survival (86.7% compared with 84.6%, P=.12) were similar between ovarian conservation and oophorectomy among 3,893 women younger than 50 years of age with stage IB disease who underwent hysterectomy without radiotherapy. CONCLUSION Among young women with stage IA cervical cancer, ovarian conservation at hysterectomy is associated with decreased all-cause mortality including death resulting from cardiovascular disease and other chronic diseases.
Collapse
|
19
|
Labandeira-Garcia JL, Rodriguez-Perez AI, Valenzuela R, Costa-Besada MA, Guerra MJ. Menopause and Parkinson's disease. Interaction between estrogens and brain renin-angiotensin system in dopaminergic degeneration. Front Neuroendocrinol 2016; 43:44-59. [PMID: 27693730 DOI: 10.1016/j.yfrne.2016.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
The neuroprotective effects of menopausal hormonal therapy in Parkinson's disease (PD) have not yet been clarified, and it is controversial whether there is a critical period for neuroprotection. Studies in animal models and clinical and epidemiological studies indicate that estrogens induce dopaminergic neuroprotection. Recent studies suggest that inhibition of the brain renin-angiotensin system (RAS) mediates the effects of estrogens in PD models. In the substantia nigra, ovariectomy induces a decrease in levels of estrogen receptor-α (ER-α) and increases angiotensin activity, NADPH-oxidase activity and expression of neuroinflammatory markers, which are regulated by estrogen replacement therapy. There is a critical period for the neuroprotective effect of estrogen replacement therapy, and local ER-α and RAS play a major role. Astrocytes play a major role in ER-α-induced regulation of local RAS, but neurons and microglia are also involved. Interestingly, treatment with angiotensin receptor antagonists after the critical period induced neuroprotection.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
20
|
Women's experiences of menopause in an online MS cohort: A case series. Mult Scler Relat Disord 2016; 9:56-9. [PMID: 27645345 DOI: 10.1016/j.msard.2016.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 11/25/2015] [Accepted: 06/29/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Many women with multiple sclerosis (MS) are postmenopausal. Previously reported findings from an online MS cohort suggested that earlier, surgical menopause may be associated with higher patient-reported MS severity scores. OBJECTIVE To explore experiences of menopause in a series of MS women responding to a reproductive survey from an online research platform, PatientsLikeMe (PLM). METHODS The free-text responses from a detailed reproductive history survey deployed to PLM members were analyzed using grounded theory approach. RESULTS Of the 208 free text responses, 127 responses related to menopause. Five themes emerged: (1) perimenopausal onset of MS symptoms, (2) overlap of MS and menopausal symptoms, (3) MS exacerbations and pseudo-exacerbations triggered by hot flashes, (4) escalation of disease course after menopause, including increasing fatigue, cognitive disturbance, and other symptoms; and (5) effect of HRT on MS symptoms. Some women reported no effects of menopause or HRT. CONCLUSION Given an aging population and a median age of individuals currently living with MS very close to menopausal age in many cohorts, there is a pressing need to understand the impact of menopause on MS course. Qualitative responses in this study illustrated several specific themes that require quantitative testing in clinic-based cohorts.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Despite an incidence of 1% among women under the age of 40, primary ovarian insufficiency (POI) is still poorly understood. As the variable cause and presentation of POI complicate its management, a standard regimen for treatment remains to be established. However, emerging research has provided new insight on current mainstays of treatment as well as novel management approaches and therapeutic interventions. RECENT FINDINGS Recent clinical trials in women with POI indicate that the widely used regimen of transdermal estradiol and medroxyprogesterone acetate restores bone mineral density to a level equal to women with normal ovarian function. Further research verifies that compounded bioidentical hormones and androgen supplementation are inadequate in treating POI and lowering risk for long-term sequelae. Additionally, assessing changes in bone turnover markers may be useful for monitoring bone mineral density. Alternative therapies such as acupuncture, dehydroepiandrosterone, and bupropion may be effective in treating the effects of estrogen deficiency at some level, but require further investigation. SUMMARY Recent updates show promise in improving management methods and reducing risk of long-term sequelae. Additional research that expands upon the most current literature is critical to achieve an evidence-based standard of best practice.
Collapse
Affiliation(s)
- Meghan Hewlett
- Department of Obstetrics and Gynecology, Boston Medical Center and Boston University, Boston, MA
| | - Shruthi Mahalingaiah
- Department of Obstetrics and Gynecology, Boston Medical Center and Boston University, Boston, MA
| |
Collapse
|
22
|
Granulin levels in patients with idiopathic premature ovarian failure. Eur J Obstet Gynecol Reprod Biol 2015; 193:108-10. [DOI: 10.1016/j.ejogrb.2015.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/21/2015] [Accepted: 07/27/2015] [Indexed: 12/31/2022]
|
23
|
Tarín JJ, García-Pérez MA, Hamatani T, Cano A. Infertility etiologies are genetically and clinically linked with other diseases in single meta-diseases. Reprod Biol Endocrinol 2015; 13:31. [PMID: 25880215 PMCID: PMC4404574 DOI: 10.1186/s12958-015-0029-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
The present review aims to ascertain whether different infertility etiologies share particular genes and/or molecular pathways with other pathologies and are associated with distinct and particular risks of later-life morbidity and mortality. In order to reach this aim, we use two different sources of information: (1) a public web server named DiseaseConnect ( http://disease-connect.org ) focused on the analysis of common genes and molecular mechanisms shared by diseases by integrating comprehensive omics and literature data; and (2) a literature search directed to find clinical comorbid relationships of infertility etiologies with only those diseases appearing after infertility is manifested. This literature search is performed because DiseaseConnect web server does not discriminate between pathologies emerging before, concomitantly or after infertility is manifested. Data show that different infertility etiologies not only share particular genes and/or molecular pathways with other pathologies but they have distinct clinical relationships with other diseases appearing after infertility is manifested. In particular, (1) testicular and high-grade prostate cancer in male infertility; (2) non-fatal stroke and endometrial cancer, and likely non-fatal coronary heart disease and ovarian cancer in polycystic ovary syndrome; (3) osteoporosis, psychosexual dysfunction, mood disorders and dementia in premature ovarian failure; (4) breast and ovarian cancer in carriers of BRCA1/2 mutations in diminished ovarian reserve; (5) clear cell and endometrioid histologic subtypes of invasive ovarian cancer, and likely low-grade serous invasive ovarian cancer, melanoma and non-Hodgkin lymphoma in endometriosis; and (6) endometrial and ovarian cancer in idiopathic infertility. The present data endorse the principle that the occurrence of a disease (in our case infertility) is non-random in the population and suggest that different infertility etiologies are genetically and clinically linked with other diseases in single meta-diseases. This finding opens new insights for clinicians and reproductive biologists to treat infertility problems using a phenomic approach instead of considering infertility as an isolated and exclusive disease of the reproductive system/hypothalamic-pituitary-gonadal axis. In agreement with a previous validation analysis of the utility of DiseaseConnect web server, the present study does not show a univocal correspondence between common gene expression and clinical comorbid relationship. Further work is needed to untangle the potential genetic, epigenetic and phenotypic relationships that may be present among different infertility etiologies, morbid conditions and physical/cognitive traits.
Collapse
Affiliation(s)
- Juan J Tarín
- Department of Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Burjassot, Valencia, 46100, Spain.
| | - Miguel A García-Pérez
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Burjassot, Valencia, 46100, Spain.
- Research Unit-INCLIVA, Hospital Clínico de Valencia, Valencia, 46010, Spain.
| | - Toshio Hamatani
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Antonio Cano
- Department of Pediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, 46010, Spain.
- Service of Obstetrics and Gynecology, University Clinic Hospital, Valencia, 46010, Spain.
| |
Collapse
|
24
|
Rodriguez-Perez AI, Borrajo A, Valenzuela R, Lanciego JL, Labandeira-Garcia JL. Critical period for dopaminergic neuroprotection by hormonal replacement in menopausal rats. Neurobiol Aging 2014; 36:1194-208. [PMID: 25432430 DOI: 10.1016/j.neurobiolaging.2014.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
The neuroprotective effects of menopausal hormonal therapy in Parkinson's disease have not yet been clarified, and it is not known whether there is a critical period. Estrogen induced significant protection against 6-hydroxydopamine-induced dopaminergic degeneration when administered immediately or 6 weeks, but not 20 weeks after ovariectomy. In the substantia nigra, ovariectomy induced a decrease in levels of estrogen receptor-α and increased angiotensin activity, NADPH-oxidase activity, and expression of neuroinflammatory markers, which were regulated by estrogen administered immediately or 6 weeks but not 20 weeks after ovariectomy. Interestingly, treatment with angiotensin receptor antagonists after the critical period induced a significant level of neuroprotection. In cultures, treatment with 1-methyl-4-phenylpyridinium induced an increase in astrocyte-derived angiotensinogen and dopaminergic neuron death, which were inhibited by estrogen receptor α agonists. In microglial cells, estrogen receptor β agonists inhibited the angiotensin-induced increase in inflammatory markers. The results suggest that there is a critical period for the neuroprotective effect of estrogen against dopaminergic cell death, and local estrogen receptor α and renin-angiotensin system play a major role.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Lanciego
- Neurosciences Division, CIMA, University of Navarra, Pamplona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
25
|
Ma X, Chen Y, Zhao X, Chen J, Shen C, Yang S. Association study of TGFBR2 and miR-518 gene polymorphisms with age at natural menopause, premature ovarian failure, and early menopause among Chinese Han women. Medicine (Baltimore) 2014; 93:e93. [PMID: 25365407 PMCID: PMC4616299 DOI: 10.1097/md.0000000000000093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Age at natural menopause (ANM), a highly heritable phenotype, has been identified to be closely associated with major hormone-related diseases, including breast cancer and gynecological cancers. We previously identified an important role for the transforming growth factor, β receptor II (TGFBR2) gene polymorphisms in breast cancer susceptibility among Asian women. Considering the important role of ANM in breast carcinogenesis, we hypothesized that TGFBR2 signals were involved in the formation of natural menopause.In a population-based study of 1844 Chinese women, we evaluated the effect of the genetic polymorphisms of TGFBR2 and miR-518 to determine if they are associated with ANM, premature ovarian failure (POF), and early menopause (EM) risk.No significant differences in the distribution of body mass index, education levels, smoking, drinking, and hypertension were detected between POF and EM cases and controls except for POF cases that were older (P = 0.015) than controls and more likely to have dyslipidemia (P = 0.002). The results showed that miR-518 rs7256241 was significantly associated with ANM. The carriers of minor allele G of rs7256241 have significantly higher ANM than those of the major allele homozygotes TT (β = 0.385, P = 0.035). TGFBR2 rs3773661 was significantly associated with POF, with odds ratio (OR) (95% confidence intervals [CIs]) of 0.66 (0.47-0.94) associated with per minor allele C (P = 0.023). The quartiles of genetic risk score were significantly associated with POF (OR, 1.27; 95% CI, 1.02-1.58; Ptrend = 0.034). Sensitivity analyses confirmed the robustness of these findings and no significant interactions were detected.This study provides evidence to implicate TGFBR2 and miR-518 gene polymorphisms as novel susceptibility factors for ANM, POF, and EM in Asians. Further research on these genetic regions will enhance our understanding of the genetic basis of natural menopause.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Epidemiology (XM), College of Preventive Medicine, Third Military Medical University, Chongqing; Department of Cardiology (YC, XZ, JC, SY), Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing; and Department of Epidemiology and Biostatistics (CS), School of Public Health, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|