1
|
Wang H, Canasto-Chibuque C, Kim JH, Hohl M, Leslie C, Reis-Filho JS, Petrini JHJ. Chronic interferon-stimulated gene transcription promotes oncogene-induced breast cancer. Genes Dev 2024; 38:979-997. [PMID: 39455282 DOI: 10.1101/gad.351455.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
The MRE11 complex (comprising MRE11, RAD50, and NBS1) is integral to the maintenance of genome stability. We previously showed that a hypomorphic Mre11 mutant mouse strain (Mre11 ATLD1/ATLD1 ) was highly susceptible to oncogene-induced breast cancer. Here we used a mammary organoid system to examine which MRE11-dependent responses are tumor-suppressive. We found that Mre11 ATLD1/ATLD1 organoids exhibited an elevated interferon-stimulated gene (ISG) signature and sustained changes in chromatin accessibility. This Mre11 ATLD1/ATLD1 phenotype depended on DNA binding of a nuclear innate immune sensor, IFI205. Ablation of Ifi205 in Mre11 ATLD1/ATLD1 organoids restored baseline and oncogene-induced chromatin accessibility patterns to those observed in WT. Implantation of Mre11 ATLD1/ATLD1 organoids and activation of the oncogene led to aggressive metastatic breast cancer. This outcome was reversed in implanted Ifi205 -/- Mre11 ATLD1/ATLD1 organoids. These data reveal a connection between innate immune signaling and tumor development in the mammary epithelium. Given the abundance of aberrant DNA structures that arise in the context of genome instability syndromes, the data further suggest that cancer predisposition in those contexts may be partially attributable to chronic innate immune transcriptional programs.
Collapse
Affiliation(s)
- Hexiao Wang
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
- Biochemistry, Structural Biology, Cell Biology, Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, New York 10065, USA
| | - Claudia Canasto-Chibuque
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Marcel Hohl
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Christina Leslie
- Computational and Systems Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA;
| |
Collapse
|
2
|
Mun AY, Akiyama K, Wang Z, Zhang J, Kitagawa W, Kohno T, Tagashira R, Ishibashi K, Matsunaga N, Zou T, Ono M, Kuboki T. Macrophages modulate mesenchymal stem cell function via tumor necrosis factor alpha in tooth extraction model. JBMR Plus 2024; 8:ziae085. [PMID: 39086598 PMCID: PMC11289833 DOI: 10.1093/jbmrpl/ziae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Mesenchymal stem cells (MSCs) and macrophages collaboratively contribute to bone regeneration after injury. However, detailed mechanisms underlying the interaction between MSCs and inflammatory macrophages (M1) remain unclear. A macrophage-depleted tooth extraction model was generated in 5-wk-old female C57BL/6J mice using clodronate liposome (12.5 mg/kg/mouse, intraperitoneally) or saline injection (control) before maxillary first molar extraction. Mice were sacrificed on days 1, 3, 5, 7, and 10 after tooth extraction (n = 4). Regenerated bone volume evaluation of tooth extraction socket (TES) and histochemical analysis of CD80+M1, CD206+M2 (anti-inflammatory macrophages), PDGFRα+MSC, and TNF-α+ cells were performed. In vitro, isolated MSCs with or without TNF-α stimulation (10 ng/mL, 24 h, n = 3) were bulk RNA-sequenced (RNA-Seq) to identify TNF-α stimulation-specific MSC transcriptomes. Day 7 micro-CT and HE staining revealed significantly lower mean bone volume (clodronate vs control: 0.01 mm3 vs 0.02 mm3, p<.0001) and mean percentage of regenerated bone area per total TES in clodronate group (41.97% vs 54.03%, p<.0001). Clodronate group showed significant reduction in mean number of CD80+, TNF-α+, PDGFRα+, and CD80+TNF-α+ cells on day 5 (306.5 vs 558.8, p<.0001; 280.5 vs 543.8, p<.0001; 365.0 vs 633.0, p<.0001, 29.0 vs 42.5, p<.0001), while these cells recovered significantly on day 7 (493.3 vs 396.0, p=.0004; 479.3 vs 384.5, p=.0008; 593.0 vs 473.0, p=.0010, 41.0 vs 32.5, p=.0003). RNA-Seq analysis showed that 15 genes (|log2FC| > 5.0, log2TPM > 5) after TNF-α stimulation were candidates for regulating MSC's immunomodulatory capacity. In vivo, Clec4e and Gbp6 are involved in inflammation and bone formation. Clec4e, Gbp6, and Cxcl10 knockdown increased osteogenic differentiation of MSCs in vitro. Temporal reduction followed by apparent recovery of TNF-α-producing M1 macrophages and MSCs after temporal macrophage depletion suggests that TNF-α activated MSCs during TES healing. In vitro mimicking the effect of TNF-α on MSCs indicated that there are 15 candidate MSC genes for regulation of immunomodulatory capacity.
Collapse
Affiliation(s)
- Aung Ye Mun
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Kentaro Akiyama
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Jiewen Zhang
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Wakana Kitagawa
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Teisaku Kohno
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Ryuji Tagashira
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Kei Ishibashi
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Naoya Matsunaga
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Tingling Zou
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| |
Collapse
|
3
|
Moran EA, Salas-Briceno K, Zhao W, Enya T, Aguilera AN, Acosta I, Alonzo F, Kiani D, Behnsen J, Alvarez C, Keane TM, Adams DJ, Lilue J, Ross SR. IFI207, a young and fast-evolving protein, controls retroviral replication via the STING pathway. mBio 2024; 15:e0120924. [PMID: 38860764 PMCID: PMC11253629 DOI: 10.1128/mbio.01209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Mammalian AIM-2-like receptor (ALR) proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. In mice, the Alr locus is highly polymorphic at the sequence and copy number level, and we show here that it is one of the most dynamic regions of the genome. One rapidly evolving gene within this region, Ifi207, was introduced to the Mus genome by gene conversion or an unequal recombination event a few million years ago. Ifi207 has a large, distinctive repeat region that differs in sequence and length among Mus species and even closely related inbred Mus musculus strains. We show that IFI207 controls murine leukemia virus (MLV) infection in vivo and that it plays a role in the STING-mediated response to cGAMP, dsDNA, DMXXA, and MLV. IFI207 binds to STING, and inclusion of its repeat region appears to stabilize STING protein. The Alr locus and Ifi207 provide a clear example of the evolutionary innovation of gene function, possibly as a result of host-pathogen co-evolution.IMPORTANCEThe Red Queen hypothesis predicts that the arms race between pathogens and the host may accelerate evolution of both sides, and therefore causes higher diversity in virulence factors and immune-related proteins, respectively . The Alr gene family in mice has undergone rapid evolution in the last few million years and includes the creation of two novel members, MndaL and Ifi207. Ifi207, in particular, became highly divergent, with significant genetic changes between highly related inbred mice. IFI207 protein acts in the STING pathway and contributes to anti-retroviral resistance via a novel mechanism. The data show that under the pressure of host-pathogen coevolution in a dynamic locus, gene conversion and recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.
Collapse
Affiliation(s)
- Eileen A. Moran
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Karen Salas-Briceno
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Wenming Zhao
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Takuji Enya
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Alexya N. Aguilera
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Ivan Acosta
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Dara Kiani
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | | | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jingtao Lilue
- Gulbenkian Institute of Science, Oeiras, Portugal
- Oujiang Laboratory, Wenzhou, Zhejiang, China
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Wang H, Canasto-Chibuque C, Kim JH, Hohl M, Leslie C, Reis-Filho JS, Petrini JH. Chronic Interferon Stimulated Gene Transcription Promotes Oncogene Induced Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562529. [PMID: 37905095 PMCID: PMC10614814 DOI: 10.1101/2023.10.16.562529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The Mre11 complex (comprising Mre11, Rad50, Nbs1) is integral to the maintenance of genome stability. We previously showed that a hypomorphic Mre11 mutant mouse strain ( Mre11 ATLD1/ATLD1 ) was highly susceptible to oncogene induced breast cancer. Here we used a mammary organoid system to examine which Mre11 dependent responses are tumor suppressive. We found that Mre11 ATLD1/ATLD1 organoids exhibited an elevated interferon stimulated gene (ISG) signature and sustained changes in chromatin accessibility. This Mre11 ATLD1/ATLD1 phenotype depended on DNA binding of a nuclear innate immune sensor, IFI205. Ablation of Ifi205 in Mre11 ATLD1/ATLD1 organoids restored baseline and oncogene-induced chromatin accessibility patterns to those observed in WT . Implantation of Mre11 ATLD1/ATLD1 organoids and activation of oncogene led to aggressive metastatic breast cancer. This outcome was reversed in implanted Ifi205 -/- Mre11 ATLD1/ATLD1 organoids. These data reveal a connection between innate immune signaling and tumor suppression in mammary epithelium. Given the abundance of aberrant DNA structures that arise in the context of genome instability syndromes, the data further suggest that cancer predisposition in those contexts may be partially attributable to tonic innate immune transcriptional programs.
Collapse
|
5
|
Cartland SP, Lin RCY, Genner S, Patil MS, Martínez GJ, Barraclough JY, Gloss B, Misra A, Patel S, Kavurma MM. Vascular transcriptome landscape of Trail -/- mice: Implications and therapeutic strategies for diabetic vascular disease. FASEB J 2020; 34:9547-9562. [PMID: 32501591 DOI: 10.1096/fj.201902785r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
Abstract
Circulating plasma TRAIL levels are suppressed in patients with cardiovascular and diabetic diseases. To identify novel targets in vascular metabolic diseases, genome-wide transcriptome of aortic tissue from Trail-/- versus Trail+/+ mice were interrogated. We found 861 genes differentially expressed with TRAIL deletion. Gene enrichment analyses showed many of these genes were related to inflammation, cell-to-cell cytoskeletal interactions, and transcriptional modulation. We identified vascular protective and pathological gene clusters, with Ifi205 as the most significantly reduced vascular protective gene, whereas Glut1, the most significantly increased pathological gene with TRAIL deletion. We hypothesized that therapeutic targets could be devised from such integrated analysis and validated our findings from vascular tissues of diabetic mice. From the differentially expressed gene targets, enriched transcription factor (TF) and microRNA binding motifs were identified. The top two TFs were Elk1 and Sp1, with enrichment to eight gene targets common to both. miR-520d-3p and miR-377-3p were the top enriched microRNAs with TRAIL deletion; with four overlapping genes enriched for both microRNAs. Our findings offer an alternate in silico approach for therapeutic target identification and present a deeper understanding of gene signatures and pathways altered with TRAIL suppression in the vasculature.
Collapse
Affiliation(s)
- Siân P Cartland
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ruby C Y Lin
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Scott Genner
- Heart Research Institute, Sydney, NSW, Australia
| | - Manisha S Patil
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gonzalo J Martínez
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Sydney, NSW, Australia.,División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
| | - Jennifer Y Barraclough
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Brian Gloss
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Mary M Kavurma
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Ghosh S, Wallerath C, Covarrubias S, Hornung V, Carpenter S, Fitzgerald KA. The PYHIN Protein p205 Regulates the Inflammasome by Controlling Asc Expression. THE JOURNAL OF IMMUNOLOGY 2017; 199:3249-3260. [PMID: 28931603 DOI: 10.4049/jimmunol.1700823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022]
Abstract
Members of the IFN-inducible PYHIN protein family, such as absent in melanoma-2 and IFN-γ-inducible protein (IFI)16, bind dsDNA and form caspase-1-activating inflammasomes that are important in immunity to cytosolic bacteria, DNA viruses, or HIV. IFI16 has also been shown to regulate transcription of type I IFNs during HSV infection. The role of other members of the PYHIN protein family in the regulation of immune responses is much less clear. In this study, we identified an immune-regulatory function for a member of the murine PYHIN protein family, p205 (also called Ifi205). Examination of immune responses induced by dsDNA and other microbial ligands in bone marrow-derived macrophages lacking p205 revealed that inflammasome activation by dsDNA, as well as ligands that engage the NLRP3 inflammasome, was severely compromised in these cells. Further analysis revealed that p205-knockdown cells showed reduced expression of apoptosis-associated speck-like molecule containing CARD domain (Asc) at the protein and RNA levels. p205 knockdown resulted in reduced binding of actively transcribing RNA polymerase II to the endogenous Asc gene, resulting in decreased transcription and processing of Asc pre-mRNA. Deletion of p205 in B16 melanoma cells using CRISPR/Cas9 showed a similar loss of Asc expression. Ectopic expression of p205 induced expression of an Asc promoter-luciferase reporter gene. Together, these findings suggest that p205 controls expression of Asc mRNA to regulate inflammasome responses. These findings expand on our understanding of immune-regulatory roles for the PYHIN protein family.
Collapse
Affiliation(s)
- Sreya Ghosh
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Christina Wallerath
- Gene Center, Ludwig Maximilian University of Munich, Munich 81377, Germany.,Department of Biochemistry, Ludwig Maximilian University of Munich, Munich 81377, Germany; and
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Veit Hornung
- Gene Center, Ludwig Maximilian University of Munich, Munich 81377, Germany.,Department of Biochemistry, Ludwig Maximilian University of Munich, Munich 81377, Germany; and
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
7
|
AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA. mBio 2017; 8:mBio.00944-17. [PMID: 28679751 PMCID: PMC5573678 DOI: 10.1128/mbio.00944-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytosolic DNAs derived from retrotransposons serve as pathogen-associated molecular patterns for pattern recognition receptors (PRRs) that stimulate the induction of interferons (IFNs) and other cytokines, leading to autoimmune disease. Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating type I IFN responses through the stimulator of IFN genes (STING). Absent in melanoma 2 (AIM2)-like receptors (ALRs) have also been implicated in these pathways. Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA independently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN induction activity by sequestering it from STING. We also found that the complement of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are different and unique, which has implications for interpretation of the sensing of pathogens in different mouse strains. Our data suggest that members of the ALR family are critical to the host IFN response to endogenous DNA.IMPORTANCE Autoimmune diseases like Aicardi-Goutières syndrome and lupus erythematosus arise when cells of the immune system become activated and attack host cells and tissues. We found that DNA generated by endogenous retroviruses and retroelements in inbred mice and mouse cells is recognized by several host proteins found in macrophages that are members of the ALR family and that these proteins both suppress and activate the pathways leading to the generation of cytokines and IFNs. We also show that there is great genetic diversity between different inbred mouse strains in the ALR genes, which might contribute to differential susceptibility to autoimmunity. Understanding how immune cells become activated is important to the control of disease.
Collapse
|
8
|
Li H, Jiao Y, Zhang L, Wang C, Zhang X, Guo H, Xu H. The interferon-inducible protein p205 acts as an activator in osteoblast differentiation of mouse BMSCs. Differentiation 2016; 92:318-325. [DOI: 10.1016/j.diff.2016.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/08/2016] [Accepted: 02/26/2016] [Indexed: 01/03/2023]
|