1
|
Liu L, Feng Y, Xiang X, Xu M, Tang G. Biological effect of ETV4 and the underlying mechanism of its regulatory effect on epithelial‑mesenchymal transition in intrahepatic cholangiocarcinoma cells. Oncol Lett 2024; 28:346. [PMID: 38872859 PMCID: PMC11170264 DOI: 10.3892/ol.2024.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly invasive malignant tumor. The prognosis of patients with ICC after radical surgical resection remains poor, due to local infiltration, distant metastasis, a high recurrence rate and lack of effective treatment strategies. E26 transformation-specific sequence variant 4 (ETV4) is a pro-carcinogenic factor that is upregulated in several tumors; however, the role of ETV4 in ICC is relatively unknown. The present study aimed to determine the role of ETV4 in the Hccc9810 ICC cell line and to assess how it contributes to epithelial-mesenchymal transition (EMT) in ICC. Hccc9810 cells were infected with lentiviruses to construct stable ETV4-overexpressing cells, stable ETV4 knockdown cells and corresponding control groups. The Cell Counting Kit-8 and Transwell assays were used to quantify cell proliferation, invasion and migration, and the effects on cell cycle progression and apoptosis were detected by flow cytometry. ETV4 was identified as a driver of cell growth, invasion, migration and cell cycle progression, while restraining apoptosis in Hccc9810 cells. Reverse transcription-quantitative PCR and western blotting revealed that increased ETV4 levels may drive EMT by triggering the TGF-β1/Smad signaling pathway. This cascade, in turn, may foster tumor cell proliferation, migration, invasion and cell cycle advancement, and hinder apoptosis.
Collapse
Affiliation(s)
- Li Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong Feng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xuelian Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Mengtao Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guodu Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
2
|
Abdelmaksoud NM, Al-Noshokaty TM, Abdelhamid R, Abdellatif N, Mansour A, Mohamed R, Mohamed AH, Khalil NAE, Abdelhamid SS, Mohsen A, Abdelaal H, Tawfik A, Elshaer SS. Deciphering the role of MicroRNAs in diabetic nephropathy: Regulatory mechanisms and molecular insights. Pathol Res Pract 2024; 256:155237. [PMID: 38492358 DOI: 10.1016/j.prp.2024.155237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
A serious consequence of diabetes mellitus, diabetic nephropathy (DN) which causes gradual damage to the kidneys. Dietary changes, blood pressure control, glucose control, and hyperlipidemia are all important components of DN management. New research, however, points to microRNAs (miRNAs) as having a pivotal role in DN pathogenesis. Miniature non-coding RNA molecules such as miRNAs control gene expression and impact several biological processes. The canonical and non-canonical routes of miRNA biogenesis are discussed in this article. In addition, several important signaling pathways are examined in the study of miRNA regulation in DN. A deeper knowledge of these regulatory mechanisms would allow for a better understanding of the molecular basis of DN and the development of innovative therapeutic strategies. Finally, miRNAs show tremendous potential as DN diagnostic biomarkers and treatment targets, opening up promising avenues for further study and potential clinical use.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Asmaa Hamouda Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nada Abd Elatif Khalil
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Sara Sobhy Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Alaa Mohsen
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba Abdelaal
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Tawfik
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11754, Egypt.
| |
Collapse
|
3
|
Gu YY, Liu XS, Lan HY. Therapeutic potential for renal fibrosis by targeting Smad3-dependent noncoding RNAs. Mol Ther 2024; 32:313-324. [PMID: 38093516 PMCID: PMC10861968 DOI: 10.1016/j.ymthe.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Renal fibrosis is a characteristic hallmark of chronic kidney disease (CKD) that ultimately results in renal failure, leaving patients with few therapeutic options. TGF-β is a master regulator of renal fibrosis and mediates progressive renal fibrosis via both canonical and noncanonical signaling pathways. In the canonical Smad signaling, Smad3 is a key mediator in tissue fibrosis and mediates renal fibrosis via a number of noncoding RNAs (ncRNAs). In this regard, targeting Smad3-dependent ncRNAs may offer a specific therapy for renal fibrosis. This review highlights the significance and innovation of TGF-β/Smad3-associated ncRNAs as biomarkers and therapeutic targets in renal fibrogenesis. In addition, the underlying mechanisms of these ncRNAs and their future perspectives in the treatment of renal fibrosis are discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xu-Sheng Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hui-Yao Lan
- Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Trivedi A, Bose D, Saha P, Roy S, More M, Skupsky J, Klimas NG, Chatterjee S. Prolonged Antibiotic Use in a Preclinical Model of Gulf War Chronic Multisymptom-Illness Causes Renal Fibrosis-like Pathology via Increased micro-RNA 21-Induced PTEN Inhibition That Is Correlated with Low Host Lachnospiraceae Abundance. Cells 2023; 13:56. [PMID: 38201260 PMCID: PMC10777912 DOI: 10.3390/cells13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Gulf War (GW) veterans show gastrointestinal disturbances and gut dysbiosis. Prolonged antibiotic treatments commonly employed in veterans, especially the use of fluoroquinolones and aminoglycosides, have also been associated with dysbiosis. This study investigates the effect of prolonged antibiotic exposure on risks of adverse renal pathology and its association with gut bacterial species abundance in underlying GWI and aims to uncover the molecular mechanisms leading to possible renal dysfunction with aging. Using a GWI mouse model, administration of a prolonged antibiotic regimen involving neomycin and enrofloxacin treatment for 5 months showed an exacerbated renal inflammation with increased NF-κB activation and pro-inflammatory cytokines levels. Involvement of the high mobility group 1 (HMGB1)-mediated receptor for advanced glycation end products (RAGE) activation triggered an inflammatory phenotype and increased transforming growth factor-β (TGF-β) production. Mechanistically, TGF-β- induced microRNA-21 upregulation in the renal tissue leads to decreased phosphatase and tensin homolog (PTEN) expression. The above event led to the activation of protein kinase-B (AKT) signaling, resulting in increased fibronectin production and fibrosis-like pathology. Importantly, the increased miR-21 was associated with low levels of Lachnospiraceae in the host gut which is also a key to heightened HMGB1-mediated inflammation. Overall, though correlative, the study highlights the complex interplay between GWI, host gut dysbiosis, prolonged antibiotics usage, and renal pathology via miR-21/PTEN/AKT signaling.
Collapse
Affiliation(s)
- Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | | | - Nancy G. Klimas
- Institute for Neuro-Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
- Long Beach VA Medical Center, Long Beach, CA 90822, USA;
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Liu L, Guo J, Pang XL, Shang WJ, Wang ZG, Wang JX, Yang XL, Feng GW. Exploration of the mechanism of NORAD activation of TGF-β1/Smad3 through miR-136-5p and promotion of tacrolimus-induced renal fibrosis. Ren Fail 2023; 45:2147083. [PMID: 36748746 PMCID: PMC9930837 DOI: 10.1080/0886022x.2022.2147083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tacrolimus is a potent immunosuppressant, but has various side effects, with nephrotoxicity being the most common. Renal fibrosis is an important process of tacrolimus nephrotoxicity. Therefore, it is important to identify the factors that contribute to renal fibrosis after tacrolimus nephrotoxicity, and control its development. METHODS The present study aims to determine whether tacrolimus may speed up the course of renal fibrosis by upregulating noncoding RNA activated by DNA damage (NORAD) to compete with miR-136-5p, and activating the TGF-β1/Smad3 pathway. Furthermore, in vivo rat models and in vitro cell models were established. Then, the expression levels of NORAD and miR-136-5p were determined by RT-qPCR, while the expression of the TGF-β1/Smad3 pathway was determined by western blot and RT-qPCR. In order to investigate the interaction between NORAD and miR-136-5p, as well as miR-136-5p and SYK, two luciferase reporters were employed. The renal fibrosis of mice was observed using Masson and PAS staining. The expression of inflammatory factors IL-1, IL-6, MCP-1 and TNF-α was detected by ELISA. RESULTS In the in vitro experiments, NORAD was upregulated, while miR-136-5p was downregulated after tacrolimus induction. The expression of the TGF-β1/Smad3 pathway correspondingly changed after the induction by tacrolimus. In the in vivo experiments, the expression of NORAD and miR-136-5p, and the trend for renal fibrosis were consistent with the results in the in vitro experiments. Furthermore, the inflammatory factors correspondingly changed with the severity of renal fibrosis. Moreover, the expression trend of the TGF-β1/Smad3 pathway in tacrolimus-induced rats was consistent with that in the in vitro experiments. CONCLUSION Through in vitro and in vivo experiments, the present study was able to successfully prove that tacrolimus upregulates NORAD to compete with miR-136-5p, resulting in a decrease in miR-136-5p expression, which in turn activates the TGF-β1/smad3 pathway, and finally induces the aggravation of renal fibrosis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-lu Pang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-jun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-gang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-xiang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Gui-wen Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,CONTACT Guiwen Feng Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
6
|
Sun P, Wang J, Ilyasova T, Shumadalova A, Agaverdiev M, Wang C. The function of miRNAs in the process of kidney development. Noncoding RNA Res 2023; 8:593-601. [PMID: 37680850 PMCID: PMC10480480 DOI: 10.1016/j.ncrna.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) that typically consist of 19-25 nucleotides in length. These molecules function as essential regulators of gene expression by selectively binding to complementary target sequences within messenger RNA (mRNA) molecules, consequently exerting a negative impact on gene expression at the post-transcriptional level. By modulating the stability and translation efficiency of target mRNAs, miRNAs play pivotal roles in diverse biological processes, including the intricate orchestration of organ development. Among these processes, the development of the kidney has emerged as a key area of interest regarding miRNA function. Intriguingly, recent investigations have uncovered a subset of miRNAs that exhibit remarkably high expression levels in the kidney, signifying their close association with kidney development and diseases affecting this vital organ. This growing body of evidence strongly suggests that miRNAs serve as crucial regulators, actively shaping both the physiological processes governing kidney function and the pathological events leading to renal disorders. This comprehensive review aims to provide an up-to-date overview of the latest research progress regarding miRNAs and their involvement in kidney development. By examining the intricate interplay between miRNAs and the molecular pathways driving kidney development, this review seeks to elucidate the underlying mechanisms through which miRNAs exert their regulatory functions. Furthermore, an in-depth exploration of the role played by miRNAs in the occurrence and progression of renal dysplasia will be presented. Renal dysplasia represents a significant developmental anomaly characterized by abnormal kidney tissue formation, and miRNAs have emerged as key players in this pathological process. By shedding light on the intricate network of miRNA-mediated regulatory mechanisms involved in kidney dysplasia, this review aims to provide valuable insights for the diagnosis and research of diseases associated with aberrant kidney development.
Collapse
Affiliation(s)
- Pengfei Sun
- Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, China
| | - Jiaqi Wang
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, 3 Lenin Street, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Murad Agaverdiev
- Department of Urology, Bashkir State Medical University, 450008, Ufa, Russian Federation
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
7
|
Al-Tantawy SM, Eraky SM, Eissa LA. Promising renoprotective effect of gold nanoparticles and dapagliflozin in diabetic nephropathy via targeting miR-192 and miR-21. J Biochem Mol Toxicol 2023; 37:e23430. [PMID: 37352119 DOI: 10.1002/jbt.23430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/04/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Diabetic nephropathy (DN) is a worldwide issue that eventually leads to end-stage renal failure, with limited therapeutic options. Prior research has revealed that gold nanoparticles (AuNPs) have a substantial antidiabetic impact. In addition, sodium-glucose cotransporter2 (SGLT2) inhibitors, including dapagliflozin (DAPA), had renoprotective impact on DN. Therefore, this research attempted to determine the potential AuNPs and DAPA impacts in ameliorating experimentally DN induction and the underlying mechanisms focusing on miR-192 and miR-21, correlating them with autophagy, apoptosis, fibrosis, and oxidative stress. Diabetes induction was through a single intraperitoneal streptozotocin (55 mg/kg) injection, and rats with diabetes received AuNPs (2.5 mg/kg/day) as well as DAPA (2 mg/kg/day) for 7 weeks as a treatment. AuNPs and DAPA treatment for 7 weeks substantially alleviated DN. AuNPs and DAPA significantly increased catalase (CAT) activity as well as serum total antioxidant capacity (TAC), along with a substantial decline in malondialdehyde (MDA). AuNPs and DAPA treatment alleviated renal fibrosis as they decreased transforming growth factorß1(TGF-ß1) as well as matrix metalloproteinase-2 (MMP-2) renal expression, decreased apoptosis through alleviating the proapoptotic gene (caspase-3) renal expression and increased the antiapoptotic gene (Bcl-2) renal expression, and increased autophagy as they increased LC-3 as well as Beclin-1 renal expression. Autophagy activation, inhibition of apoptosis, and renal fibrosis could be due to their inhibitory impact on miR-192 and miR-21 renal expression. AuNPs and DAPA have a protective effect on DN in rats by targeting miR-192 and miR-21 and their downstream pathways, including fibrosis, apoptosis, autophagy, and oxidative stress.
Collapse
Affiliation(s)
- Samar M Al-Tantawy
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Salma M Eraky
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Laila A Eissa
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Dhas Y, Arshad N, Biswas N, Jones LD, Ashili S. MicroRNA-21 Silencing in Diabetic Nephropathy: Insights on Therapeutic Strategies. Biomedicines 2023; 11:2583. [PMID: 37761024 PMCID: PMC10527294 DOI: 10.3390/biomedicines11092583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
In diabetes, possibly the most significant site of microvascular damage is the kidney. Due to diabetes and/or other co-morbidities, such as hypertension and age-related nephron loss, a significant number of people with diabetes suffer from kidney diseases. Improved diabetic care can reduce the prevalence of diabetic nephropathy (DN); however, innovative treatment approaches are still required. MicroRNA-21 (miR-21) is one of the most studied multipotent microRNAs (miRNAs), and it has been linked to renal fibrosis and exhibits significantly altered expression in DN. Targeting miR-21 offers an advantage in DN. Currently, miR-21 is being pharmacologically silenced through various methods, all of which are in early development. In this review, we summarize the role of miR-21 in the molecular pathogenesis of DN and several therapeutic strategies to use miR-21 as a therapeutic target in DN. The existing experimental interventions offer a way to rectify the lower miRNA levels as well as to reduce the higher levels. Synthetic miRNAs also referred to as miR-mimics, can compensate for abnormally low miRNA levels. Furthermore, strategies like oligonucleotides can be used to alter the miRNA levels. It is reasonable to target miR-21 for improved results because it directly contributes to the pathological processes of kidney diseases, including DN.
Collapse
Affiliation(s)
- Yogita Dhas
- Rhenix Lifesciences, Hyderabad 500038, India
| | | | | | | | | |
Collapse
|
9
|
Liu L, Liu L, Liu R, Liu J, Cheng Q. Exosomal miR-21-5p derived from multiple myeloma cells promote renal epithelial-mesenchymal transition through targeting TGF-β/SMAD7 signalling pathway. Clin Exp Pharmacol Physiol 2023; 50:711-718. [PMID: 36905209 DOI: 10.1111/1440-1681.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
The prognosis of multiple myeloma (MM) patients combined with renal insufficiency is poor. Renal fibrosis is an important pathological cause for MM patients combined with renal insufficiency. It is reported that epithelial-mesenchymal transition (EMT) of renal proximal tubular epithelial cells is an important mechanism in renal fibrosis. We speculated that EMT might play an important role in the renal insufficiency of MM with unclear mechanism. MM cells derived exosomes could affect the function of targeted cells by delivering microRNAs (miRNAs). Literature has shown that the expression of miR-21 is closely related to EMT. In this research, we found that co-culture of HK-2 cells (human renal proximal tubular epithelial cells) and exosomes derived from MM cells promoted the EMT of HK-2 cells, resulting in the down-regulation of epithelial-related marker (E-cadherin), and up-regulation of stroma-related marker (Vimentin). Meanwhile, the expression of SMAD7, one of the downstream targets in the TGF-β signalling pathway, was suppressed and the expression of TGF-β was increased. After transfecting the inhibitor of miR-21 in MM cells, the expression of miR-21 in exosomes secreted by MM cells was significantly decreased, and the co-culture of these treated exosomes and HK-2 cells inhibited the EMT of HK-2 cells. In conclusion, these findings showed that exosomal miR-21 derived from MM cells could promote renal EMT through targeting TGF-β/SMAD7 signalling pathway.
Collapse
Affiliation(s)
- Liping Liu
- Department of General Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Langni Liu
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| | - Rui Liu
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Liu
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Qian Cheng
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Barreiro K, Dwivedi OP, Rannikko A, Holthöfer H, Tuomi T, Groop PH, Puhka M. Capturing the Kidney Transcriptome by Urinary Extracellular Vesicles-From Pre-Analytical Obstacles to Biomarker Research. Genes (Basel) 2023; 14:1415. [PMID: 37510317 PMCID: PMC10379145 DOI: 10.3390/genes14071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary extracellular vesicles (uEV) hold non-invasive RNA biomarkers for genitourinary tract diseases. However, missing knowledge about reference genes and effects of preanalytical choices hinder biomarker studies. We aimed to assess how preanalytical variables (urine storage temperature, isolation workflow) affect diabetic kidney disease (DKD)-linked miRNAs or kidney-linked miRNAs and mRNAs (kidney-RNAs) in uEV isolates and to discover stable reference mRNAs across diverse uEV datasets. We studied nine raw and normalized sequencing datasets including healthy controls and individuals with prostate cancer or type 1 diabetes with or without albuminuria. We focused on kidney-RNAs reviewing literature for DKD-linked miRNAs from kidney tissue, cell culture and uEV/urine experiments. RNAs were analyzed by expression heatmaps, hierarchical clustering and selecting stable mRNAs with normalized counts (>200) and minimal coefficient of variation. Kidney-RNAs were decreased after urine storage at -20 °C vs. -80 °C. Isolation workflows captured kidney-RNAs with different efficiencies. Ultracentrifugation captured DKD -linked miRNAs that separated healthy and diabetic macroalbuminuria groups. Eleven mRNAs were stably expressed across the datasets. Hence, pre-analytical choices had variable effects on kidney-RNAs-analyzing kidney-RNAs complemented global correlation, which could fade differences in some relevant RNAs. Replicating prior DKD-marker results and discovery of candidate reference mRNAs encourages further uEV biomarker studies.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPREP Core, University of Helsinki, 00290 Helsinki, Finland
| | - Om Prakash Dwivedi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Urology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Harry Holthöfer
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Endocrinology, Abdominal Centre, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Nephrology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPREP Core, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
11
|
Liang Y, Liang Z, Huang J, Jia M, Liu D, Zhang P, Fang Z, Hu X, Li H. Identification and validation of aging-related gene signatures and their immune landscape in diabetic nephropathy. Front Med (Lausanne) 2023; 10:1158166. [PMID: 37404805 PMCID: PMC10316791 DOI: 10.3389/fmed.2023.1158166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Background Aging and immune infiltration have essential role in the physiopathological mechanisms of diabetic nephropathy (DN), but their relationship has not been systematically elucidated. We identified aging-related characteristic genes in DN and explored their immune landscape. Methods Four datasets from the Gene Expression Omnibus (GEO) database were screened for exploration and validation. Functional and pathway analysis was performed using Gene Set Enrichment Analysis (GSEA). Characteristic genes were obtained using a combination of Random Forest (RF) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithm. We evaluated and validated the diagnostic performance of the characteristic genes using receiver operating characteristic (ROC) curve, and the expression pattern of the characteristic genes was evaluated and validated. Single-Sample Gene Set Enrichment Analysis (ssGSEA) was adopted to assess immune cell infiltration in samples. Based on the TarBase database and the JASPAR repository, potential microRNAs and transcription factors were predicted to further elucidate the molecular regulatory mechanisms of the characteristic genes. Results A total of 14 differentially expressed genes related to aging were obtained, of which 10 were up-regulated and 4 were down-regulated. Models were constructed by the RF and SVM-RFE algorithms, contracted to three signature genes: EGF-containing fibulin-like extracellular matrix (EFEMP1), Growth hormone receptor (GHR), and Vascular endothelial growth factor A (VEGFA). The three genes showed good efficacy in three tested cohorts and consistent expression patterns in the glomerular test cohorts. Most immune cells were more infiltrated in the DN samples compared to the controls, and there was a negative correlation between the characteristic genes and most immune cell infiltration. 24 microRNAs were involved in the transcriptional regulation of multiple genes simultaneously, and Endothelial transcription factor GATA-2 (GATA2) had a potential regulatory effect on both GHR and VEGFA. Conclusion We identified a novel aging-related signature allowing assessment of diagnosis for DN patients, and further can be used to predict immune infiltration sensitivity.
Collapse
Affiliation(s)
- Yingchao Liang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhiyi Liang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Foshan, China
| | - Jinxian Huang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjie Jia
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Deliang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Pengxiang Zhang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zebin Fang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinyu Hu
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Huilin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
12
|
Orozco-García E, van Meurs DJ, Calderón JC, Narvaez-Sanchez R, Harmsen MC. Endothelial plasticity across PTEN and Hippo pathways: A complex hormetic rheostat modulated by extracellular vesicles. Transl Oncol 2023; 31:101633. [PMID: 36905871 PMCID: PMC10020115 DOI: 10.1016/j.tranon.2023.101633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 03/11/2023] Open
Abstract
Vascularization is a multifactorial and spatiotemporally regulated process, essential for cell and tissue survival. Vascular alterations have repercussions on the development and progression of diseases such as cancer, cardiovascular diseases, and diabetes, which are the leading causes of death worldwide. Additionally, vascularization continues to be a challenge for tissue engineering and regenerative medicine. Hence, vascularization is the center of interest for physiology, pathophysiology, and therapeutic processes. Within vascularization, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Hippo signaling have pivotal roles in the development and homeostasis of the vascular system. Their suppression is related to several pathologies, including developmental defects and cancer. Non-coding RNAs (ncRNAs) are among the regulators of PTEN and/or Hippo pathways during development and disease. The purpose of this paper is to review and discuss the mechanisms by which exosome-derived ncRNAs modulate endothelial cell plasticity during physiological and pathological angiogenesis, through the regulation of PTEN and Hippo pathways, aiming to establish new perspectives on cellular communication during tumoral and regenerative vascularization.
Collapse
Affiliation(s)
- Elizabeth Orozco-García
- Physiology and biochemistry research group - PHYSIS, Faculty of Medicine, University of Antioquia, Colombia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
| | - D J van Meurs
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
| | - J C Calderón
- Physiology and biochemistry research group - PHYSIS, Faculty of Medicine, University of Antioquia, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and biochemistry research group - PHYSIS, Faculty of Medicine, University of Antioquia, Colombia
| | - M C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands.
| |
Collapse
|
13
|
Urinary microRNA in Diabetic Kidney Disease: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020354. [PMID: 36837555 PMCID: PMC9962090 DOI: 10.3390/medicina59020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Diabetic kidney disease is the most common primary disease of end-stage kidney disease globally; however, a sensitive and accurate biomarker to predict this disease remains awaited. microRNAs are endogenous single-stranded noncoding RNAs that have intervened in different post-transcriptional regulations of various cellular biological functions. Previous literatures have reported its potential role in the pathophysiology of diabetic kidney disease, including regulation of Transforming Growth Factor-β1-mediated fibrosis, extracellular matrix and cell adhesion proteins, cellular hypertrophy, growth factor, cytokine production, and redox system activation. Urinary microRNAs have emerged as a novel, non-invasive liquid biopsy for disease diagnosis. In this review, we describe the available experimental and clinical evidence of urinary microRNA in the context of diabetic kidney disease and discuss the future application of microRNA in routine practice.
Collapse
|
14
|
Sun Y, Qu H, Song Q, Shen Y, Wang L, Niu X. High-glucose induced toxicity in HK-2 cells can be alleviated by inhibition of miRNA-320c. Ren Fail 2022; 44:1388-1398. [PMID: 35969018 PMCID: PMC9389931 DOI: 10.1080/0886022x.2022.2106874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Diabetic nephropathy (DN) is a major healthcare challenge worldwide. MiRNAs exert a regulatory effect on the progress of DN. Our study proposed to investigate the miR-320c expression and its function on the pathogenesis of DN in vitro. The level of miR-320c in HK-2 cells was quantified by RT-qPCR. Cell morphology, invasion, and migration were observed by optical microscope, Transwell invasion assay, and scratch wound assay. Then, the levels of PTEN, α-SMA, vimentin, E-cadherin, p-PI3K, PI3K, AKT, and p-AKT were analyzed through western blotting. A Dual-luciferase reporter assay was conducted to explore the target relationship between miR-320c and PTEN. It was discovered that miR-320c was over-expressed in high glucose (HG)-treated HK-2 cells. Furthermore, inhibition of miR-320c could alleviate the epithelial-mesenchymal transition (EMT) of HG-induced HK-2 cells and retain the normal morphology of HK-2 cells. Additionally, the miR-320c inhibitor decreased the invasiveness and migration of HG-treated HK-2 cells. Next, the target gene of miR-320c, PTEN, was identified, and the function of miR-320c was reversed by down-regulation of PTEN. Finally, we found inhibition of miR-320c restrained the PI3K/AKT pathway. Therefore, inhibition of miR-320c could alleviate toxicity of HK-2 cells induced by HG via targeting PTEN and restraining the PI3K/AKT pathway, illustrating that miR-320c may act as a new biomarker in the diagnosis of DN.
Collapse
Affiliation(s)
- Yan Sun
- Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Hai Qu
- Department of General Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Qi Song
- Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yifan Shen
- Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Lijuan Wang
- Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiaohong Niu
- Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
15
|
Larrue R, Fellah S, Van der Hauwaert C, Hennino MF, Perrais M, Lionet A, Glowacki F, Pottier N, Cauffiez C. The Versatile Role of miR-21 in Renal Homeostasis and Diseases. Cells 2022; 11:cells11213525. [PMID: 36359921 PMCID: PMC9657972 DOI: 10.3390/cells11213525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA species that control gene expression and confer robustness to biological processes. Over the last two decades, their important roles during kidney development, homeostasis and the treatment of diseases have been established, in particular during the onset and progression of various forms of acute and chronic renal disorders. In recent years, miR-21, one of the best-characterized miRNAs to date, has received much attention in renal physiology in particular given its high degree of conservation and expression in kidneys, as well as its potent pathogenic role in various debilitating renal diseases. This review summarizes the current knowledge on miR-21’s involvement in both renal homeostasis and diseases, in particular its double-edged-sword role in acute versus chronic kidney injuries. Finally, we also discuss the potential of miR-21 as a biomarker and therapeutic target in renal diseases.
Collapse
Affiliation(s)
- Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- CHU Lille, Département de la Recherche en Santé, F-59000 Lille, France
| | | | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Arnaud Lionet
- CHU Lille, Service de Néphrologie, F-59000 Lille, France
| | - François Glowacki
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- CHU Lille, Service de Néphrologie, F-59000 Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
16
|
Mladenov M, Bogdanov J, Bogdanov B, Hadzi-Petrushev N, Kamkin A, Stojchevski R, Avtanski D. Efficacy of the monocarbonyl curcumin analog C66 in the reduction of diabetes-associated cardiovascular and kidney complications. Mol Med 2022; 28:129. [PMID: 36316651 PMCID: PMC9620630 DOI: 10.1186/s10020-022-00559-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a polyphenolic compound derived from turmeric that has potential beneficial properties for cardiovascular and renal diseases and is relatively safe and inexpensive. However, the application of curcumin is rather problematic due to its chemical instability and low bioavailability. The experimental results showed improved chemical stability and potent pharmacokinetics of one of its analogs – (2E,6E)-2,6-bis[(2-trifluoromethyl)benzylidene]cyclohexanone (C66). There are several advantages of C66, like its synthetic accessibility, structural simplicity, improved chemical stability (in vitro and in vivo), presence of two reactive electrophilic centers, and good electron-accepting capacity. Considering these characteristics, we reviewed the literature on the application of C66 in resolving diabetes-associated cardiovascular and renal complications in animal models. We also summarized the mechanisms by which C66 is preventing the release of pro-oxidative and pro-inflammatory molecules in the priming and in activation stage of cardiomyopathy, renal fibrosis, and diabetic nephropathy. The cardiovascular protective effect of C66 against diabetes-induced oxidative damage is Nrf2 mediated but mainly dependent on JNK2. In general, C66 causes inhibition of JNK2, which reduces cardiac inflammation, fibrosis, oxidative stress, and apoptosis in the settings of diabetic cardiomyopathy. C66 exerts a powerful antifibrotic effect by reducing inflammation-related factors (MCP-1, NF-κB, TNF-α, IL-1β, COX-2, and CAV-1) and inducing the expression of anti-inflammatory factors (HO-1 and NEDD4), as well as targeting TGF-β/SMADs, MAPK/ERK, and PPAR-γ pathways in animal models of diabetic nephropathy. Based on the available evidence, C66 is becoming a promising drug candidate for improving cardiovascular and renal health.
Collapse
Affiliation(s)
- Mitko Mladenov
- grid.7858.20000 0001 0708 5391Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia ,grid.78028.350000 0000 9559 0613Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, Moscow, Russia
| | - Jane Bogdanov
- grid.7858.20000 0001 0708 5391Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Bogdan Bogdanov
- grid.7858.20000 0001 0708 5391Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Nikola Hadzi-Petrushev
- grid.7858.20000 0001 0708 5391Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Andre Kamkin
- grid.78028.350000 0000 9559 0613Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, Moscow, Russia
| | - Radoslav Stojchevski
- grid.7858.20000 0001 0708 5391Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia ,grid.416477.70000 0001 2168 3646Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, 110 E 59th Street, Suite 8B, Room 837, 10022 New York, NY USA
| | - Dimiter Avtanski
- grid.416477.70000 0001 2168 3646Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, 110 E 59th Street, Suite 8B, Room 837, 10022 New York, NY USA ,grid.250903.d0000 0000 9566 0634Feinstein Institutes for Medical Research, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| |
Collapse
|
17
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
18
|
Earle A, Bessonny M, Benito J, Huang K, Parker H, Tyler E, Crawford B, Khan N, Armstrong B, Stamatikos A, Garimella S, Clay-Gilmour A. Urinary Exosomal MicroRNAs as Biomarkers for Obesity-Associated Chronic Kidney Disease. J Clin Med 2022; 11:jcm11185271. [PMID: 36142918 PMCID: PMC9502686 DOI: 10.3390/jcm11185271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The early detection of chronic kidney disease (CKD) is key to reducing the burden of disease and rising costs of care. This need has spurred interest in finding new biomarkers for CKD. Ideal bi-omarkers for CKD should be: easy to measure; stable; reliably detected, even when interfering substances are present; site-specific based on the type of injury (tubules vs. glomeruli); and its changes in concentration should correlate with disease risk or outcome. Currently, no single can-didate biomarker fulfills these criteria effectively, and the mechanisms underlying kidney fibrosis are not fully understood; however, there is growing evidence in support of microRNA-mediated pro-cesses. Specifically, urinary exosomal microRNAs may serve as biomarkers for kidney fibrosis. In-creasing incidences of obesity and the recognition of obesity-associated CKD have increased interest in the interplay of obesity and CKD. In this review, we provide: (1) an overview of the current scope of CKD biomarkers within obese individuals to elucidate the genetic pathways unique to obesi-ty-related CKD; (2) a review of microRNA expression in obese individuals with kidney fibrosis in the presence of comorbidities, such as diabetes mellitus and hypertension; (3) a review of thera-peutic processes, such as diet and exercise, that may influence miR-expression in obesity-associated CKD; (4) a review of the technical aspects of urinary exosome isolation; and (5) future areas of research.
Collapse
Affiliation(s)
- Angel Earle
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Madison Bessonny
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Josh Benito
- Prisma Health, Pediatric Nephrology, Greenville, SC 29615, USA
| | - Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, College of Agriculture, Forestry & Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hannah Parker
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Emily Tyler
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Brittany Crawford
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Nabeeha Khan
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Bridget Armstrong
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, College of Agriculture, Forestry & Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Sudha Garimella
- Prisma Health, Pediatric Nephrology, Greenville, SC 29615, USA
| | - Alyssa Clay-Gilmour
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
- Correspondence:
| |
Collapse
|
19
|
Varzideh F, Kansakar U, Donkor K, Wilson S, Jankauskas SS, Mone P, Wang X, Lombardi A, Santulli G. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Front Cardiovasc Med 2022; 9:863238. [PMID: 35498051 PMCID: PMC9043126 DOI: 10.3389/fcvm.2022.863238] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 01/12/2023] Open
Abstract
After an ischemic injury, the heart undergoes a complex process of structural and functional remodeling that involves several steps, including inflammatory and fibrotic responses. In this review, we are focusing on the contribution of microRNAs in the regulation of inflammation and fibrosis after myocardial infarction. We summarize the most updated studies exploring the interactions between microRNAs and key regulators of inflammation and fibroblast activation and we discuss the recent discoveries, including clinical applications, in these rapidly advancing fields.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Urna Kansakar
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Kwame Donkor
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Scott Wilson
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Stanislovas S. Jankauskas
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Pasquale Mone
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Xujun Wang
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Angela Lombardi
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Gaetano Santulli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
- *Correspondence: Gaetano Santulli,
| |
Collapse
|
20
|
Su CT, See DHW, Huang JW. Lipid-Based Nanocarriers in Renal RNA Therapy. Biomedicines 2022; 10:283. [PMID: 35203492 PMCID: PMC8869454 DOI: 10.3390/biomedicines10020283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Kidney disease is a multifactorial problem, with a growing prevalence and an increasing global burden. With the latest worldwide data suggesting that chronic kidney disease (CKD) is the 12th leading cause of death, it is no surprise that CKD remains a public health problem that requires urgent attention. Multiple factors contribute to kidney disease, each with its own pathophysiology and pathogenesis. Furthermore, microRNAs (miRNAs) have been linked to several types of kidney diseases. As dysregulation of miRNAs is often seen in some diseases, there is potential in the exploitation of this for therapeutic applications. In addition, uptake of interference RNA has been shown to be rapid in kidneys making them a good candidate for RNA therapy. The latest advancements in RNA therapy and lipid-based nanocarriers have enhanced the effectiveness and efficiency of RNA-related drugs, thereby making RNA therapy a viable treatment option for renal disease. This is especially useful for renal diseases, for which a suitable treatment is not yet available. Moreover, the high adaptability of RNA therapy combined with the low risk of lipid-based nanocarriers make for an attractive treatment choice. Currently, there are only a small number of RNA-based drugs related to renal parenchymal disease, most of which are in different stages of clinical trials. We propose the use of miRNAs or short interfering RNAs coupled with a lipid-based nanocarrier as a delivery vehicle for managing renal disease.
Collapse
Affiliation(s)
- Chi-Ting Su
- Department of Medicine, National Taiwan University Cancer Centre, Taipei 10672, Taiwan; (C.-T.S.); (D.H.W.S.)
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Douliu 640, Taiwan
| | - Daniel H. W. See
- Department of Medicine, National Taiwan University Cancer Centre, Taipei 10672, Taiwan; (C.-T.S.); (D.H.W.S.)
| | - Jenq-Wen Huang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Douliu 640, Taiwan
| |
Collapse
|
21
|
Alterations in plasma miR-21, miR-590, miR-192 and miR-215 in idiopathic pulmonary fibrosis and their clinical importance. Mol Biol Rep 2022; 49:2237-2244. [PMID: 35066768 DOI: 10.1007/s11033-021-07045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Many studies have revealed that microRNA (miRNA) molecules may take part in idiopathic pulmonary fibrosis (IPF). But, the role of miRNAs in the development of IPF is not yet clear. METHODS We investigated the plasma levels of miR-21, miR-590, miR-192, and miR-215 in IPF (n = 88) and healthy control (n = 20) groups in this study. We compared the expression levels of target miRNAs in patients with IPF and healthy participants. We grouped the patients with IPF according to age, forced vital capacity, carbon monoxide diffusing capacity (DLCO), gender-Age-pulmonary physiology (GAP) score, the presence of honeycombing and compared the expression levels of target miRNAs in these clinical subgroups. RESULTS 82 (93.18%) of the patients with IPF were male and the mean age was 66.6 ± 8.6 years. There was no significant difference between the gender and age distributions of IPF and the control group. The mean plasma miR-21 and miR-590 levels in IPF group were significantly higher than in the control group (p < 0.0001, p < 0.0001, respectively). There was no significant difference between the miR-192 and miR-215 expression levels of the IPF and control group. Both miR-21 and miR-590 correlated positively with age (p = 0.041, p = 0.007, respectively) while miR-192 and miR-215 displayed a negative correlation with age (p = 0.0002, p < 0.0001, respectively). The levels of miR-192 and miR-215 increased as the GAP score decreased. The levels of miR-192 in patients with honeycombing were significantly lower than in those without honeycombing (p = 0.003). CONCLUSIONS Our study showed that both miR-21 and miR-590 were overexpressed in IPF. The miR-21 and miR-590 were associated with DLCO, while miR-192 and miR-215 were associated with the GAP score and honeycombing.
Collapse
|
22
|
Liu S, Wu W, Liao J, Tang F, Gao G, Peng J, Fu X, Zhan Y, Chen Z, Xu W, Zhao S. MicroRNA-21: A Critical Pathogenic Factor of Diabetic Nephropathy. Front Endocrinol (Lausanne) 2022; 13:895010. [PMID: 35865316 PMCID: PMC9294636 DOI: 10.3389/fendo.2022.895010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 01/08/2023] Open
Abstract
Diabetic nephropathy (DN), one of the most common and intractable microvascular complications of diabetes, is the main cause of terminal renal disease globally. MicroRNA-21 (miR-21) is a kind of miRNA early identified in human circulation and tissues. Mounting studies have demonstrated that miR-21 plays an important role in the development and progression of DN. This collaborative review aimed to present a first attempt to capture the current evidence on the relationship between miR-21 and DN. After a systematic search, 29 relevant studies were included for comprehensively and thoroughly reviewing. All these eligible studies reported that miR-21 was up-regulated in DN, whether in serum or renal tissues of human or animal models. MiR-21 exhibited its pathogenic roles in DN by forming a complex network with targeted genes (e.g. MMP-9, Smad7, TIMP3, Cdk6, FOXO1, IMP3, and MMP2) and the signaling cascades (e.g. Akt/TORC1 signaling axis, TGF-β/NF-κB signaling pathways, TGF-β/SMAD pathway, CADM1/STAT3 signaling, and AGE-RAGE regulatory cascade), which resulted in epithelial-to-mesenchymal transition, extracellular matrix deposition, cytoskeletal remodeling, inflammation, and fibrosis. This review highlights that miR-21 is a pivotal pathogenic factor in the development of DN. It may serve as an attractive potential diagnostic, prognostic, and predictive biomarker for DN in clinical practice after further confirmation of the clinicopathological features and molecular mechanisms of miR-21-mediated DN.
Collapse
Affiliation(s)
- Shuijiao Liu
- Department of Endocrinology & Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weizhou Wu
- Department of Urology, Maoming People’s Hospital, Maoming, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Fuqin Tang
- Nursing Department, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Ge Gao
- Department of Clinical Medical School, Taizhou University, Taizhou, China
| | - Jing Peng
- Department of Clinical Medical School, Taizhou University, Taizhou, China
| | - Xiujing Fu
- Department of Clinical Medical School, Taizhou University, Taizhou, China
| | - Yuqin Zhan
- Department of Clinical Medical School, Taizhou University, Taizhou, China
| | - Zhihui Chen
- Department of Clinical Medical School, Taizhou University, Taizhou, China
| | - Weifang Xu
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
- *Correspondence: Weifang Xu, ; Shankun Zhao,
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
- *Correspondence: Weifang Xu, ; Shankun Zhao,
| |
Collapse
|
23
|
Bi L, Huang Y, Li J, Yang X, Hou G, Zhai P, Zhang Q, Alhaji AA, Yang Y, Liu B. Pirfenidone Attenuates Renal Tubulointerstitial Fibrosis through Inhibiting miR-21. Nephron Clin Pract 2021; 146:110-120. [PMID: 34724669 DOI: 10.1159/000519495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our previous studies had shown pirfenidone (PFD) not only improved tubulointerstitial fibrosis (TIF) but also inhibited the expression of microRNA-21 (miR-21) in the renal tissue of unilateral urethral obstruction (UUO) rats. This study aims to investigate whether PFD can attenuate TIF through inhibiting miR-21 in UUO rats. METHODS Sprague Dawley rats were divided randomly into sham-operated group, UUO group, and PFD and olmesartan (Olm) treatment groups. Samples were collected on day 14. Expression of miR-21, TGF-β1, Smad3, and Smad7 mRNA in the renal tissue was detected using real-time quantitative PCR. Immunohistochemistry was performed to assess the protein expressions of collagen III, E-cadherin, and α-SMA. Automated capillary Western blotting was used to detect the quantitative expression of TGF-β1, Smad3, p-Smad3, Smad7, collagen III, E-cadherin, and α-SMA in renal tissues. The expression of miR-21 and Smad7 mRNA and the protein levels of collagen III and α-SMA were examined in the miR-21-overexpressing cell line, NRK-52E. RESULTS Compared with the UUO group, both PFD and Olm inhibited renal tubular dilation, diffused epithelial cell degeneration and necrosis, and reduced renal interstitial edema, inflammatory cell infiltration, and collagen fiber deposition, while no significant difference between PFD group and Olm group. Informatics-based approaches identified Smad7 as a likely candidate for regulation by miR-21. Compared with the sham group, miR-21 expression was upregulated in the UUO group resulting in the downregulation of Smad7 expression due to degradation. The overexpression of miR-21 in the in vitro model downregulated Smad7 and promoted EMT and ECM accumulation. Protein levels of TGF-β1, Smad3, p-Smad3, collagen III, and α-SMA were upregulated, while E-cadherin protein was downregulated in the UUO group than in the sham group. PFD rather than Olm decreased the expression of miR-21 and increased the expression level of Smad7 mRNA and then inhibited the TGF-β1/Smad3 signaling pathway. Olm only downregulated the TGF-β1/Smad3 signaling pathway. CONCLUSIONS PFD improves TIF by downregulating the expression of miR-21, then elevating Smad7, and finally inhibiting the activation of the TGF-β1/Smad3 signaling pathway in UUO rats.
Collapse
Affiliation(s)
- Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanjie Huang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.,Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Li
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, China
| | - Panpan Zhai
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qiushuang Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | | | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bo Liu
- Veterans Affairs Palo Alto Health Care System, CA and School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
24
|
Thipsawat S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab Vasc Dis Res 2021; 18:14791641211058856. [PMID: 34791910 PMCID: PMC8606936 DOI: 10.1177/14791641211058856] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type 2 diabetes mellitus is a pathology of heterogeneous etiology characterized by hyperglycemia resulting from lack of insulin action, insulin secretion, or both, and the population with diabetes mellitus is predicted to be about 439 million worldwide by 2030. Prolong diabetes has been related with microvascular complications especially diabetic nephropathy. DN is the most common complication of type 2 diabetes mellitus, and it is the leading cause of end-stage renal disease worldwide. It is crucial to diagnose patients who are more sensible to develop DN for better control of the process of disease. Several factors and mechanisms contribute to the development and outcome of diabetic nephropathy. Microalbuminuria is an early marker of DN and use it as a routine for screening, but the renal damages may be happening even without microalbuminuria. There are several significant kidney damage and disease biomarkers which helps in early detection of DN. An early biomarker may allow earlier diagnosis, treatment reduces DN prevalence and slows DN progression. Therefore, this review focuses on laboratory biomarkers that are earlier, more validation of an early and specific biomarker could potentially make it possible for early diagnosis, treatment, and retardation of progression of diabetic nephropathy.
Collapse
|
25
|
Abstract
Epigenetics examines heritable changes in DNA and its associated proteins except mutations in gene sequence. Epigenetic regulation plays fundamental roles in kidney cell biology through the action of DNA methylation, chromatin modification via epigenetic regulators and non-coding RNA species. Kidney diseases, including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis are multistep processes associated with numerous molecular alterations even in individual kidney cells. Epigenetic alterations, including anomalous DNA methylation, aberrant histone alterations and changes of microRNA expression all contribute to kidney pathogenesis. These changes alter the genome-wide epigenetic signatures and disrupt essential pathways that protect renal cells from uncontrolled growth, apoptosis and development of other renal associated syndromes. Molecular changes impact cellular function within kidney cells and its microenvironment to drive and maintain disease phenotype. In this chapter, we briefly summarize epigenetic mechanisms in four kidney diseases including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis. We primarily focus on current knowledge about the genome-wide profiling of DNA methylation and histone modification, and epigenetic regulation on specific gene(s) in the pathophysiology of these diseases and the translational potential of identifying new biomarkers and treatment for prevention and therapy. Incorporating epigenomic testing into clinical research is essential to elucidate novel epigenetic biomarkers and develop precision medicine using emerging therapies.
Collapse
|
26
|
Wang Q, Dai X, Xiang X, Xu Z, Su S, Wei D, Zheng T, Shang EX, Qian D, Duan JA. A natural product of acteoside ameliorate kidney injury in diabetes db/db mice and HK-2 cells via regulating NADPH/oxidase-TGF-β/Smad signaling pathway. Phytother Res 2021; 35:5227-5240. [PMID: 34236110 DOI: 10.1002/ptr.7196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 11/06/2022]
Abstract
This study was designed to investigate the protective effects and mechanisms of acteoside on DKD in diabetes male db/db mice and high glucose-induced HK-2 cells. The diabetes db/db mice were divided randomly into model group, metformin group, irbesartan group, and acteoside group. We observed the natural product of acteoside exhibiting a significant effect in renal protection through analyzing of biochemical indicators and endogenous metabolites, histopathological observations, and western blotting. HK-2 cells subjected to high glucose were used in invitro experiments. The molecular mechanisms of them were investigated by RT-PCR and western blot. Acteoside prevents high glucose-induced HK-2 cells and diabetes db/db mice by inhibiting NADPH/oxidase-TGF-β/Smad signaling pathway. Acteoside regulated the disturbed metabolic pathway of lipid metabolism, glyoxylate and dicarboxylate metabolism, and arachidonic acid metabolism. We discovered the natural product of acteoside exhibiting a significant effect in renal protection. This study paved the way for further exploration of pathogenesis, early diagnosis, and development of a new therapeutic agent for DKD.
Collapse
Affiliation(s)
- Qinwen Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinxin Dai
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Xiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhuo Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dandan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyao Zheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
27
|
Cheng HC, Chang TK, Su WC, Tsai HL, Wang JY. Narrative review of the influence of diabetes mellitus and hyperglycemia on colorectal cancer risk and oncological outcomes. Transl Oncol 2021; 14:101089. [PMID: 33838541 PMCID: PMC8058559 DOI: 10.1016/j.tranon.2021.101089] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus and hyperglycemia significantly affect the incidence and prognosis of colorectal cancer. Evidence of the effects of metformin remain controversial in cancer prognosis. Potential molecular mechanisms by which DM and hyperglycemia affects cancer risk. Potential roles of glucose modulation in CRC therapy.
Diabetes mellitus (DM) and hyperglycemia have been shown to have significant effects on the incidence, chemoresistance, and prognosis of colorectal cancer (CRC), as well as the outcomes of localized and metastatic CRC. Inflammation and endocrine effects may act as central mechanisms of DM and cancer and stimulate the insulin‐like growth factor 1–phosphoinositide 3-kinase–Akt–mammalian target of rapamycin (IGF-1–PI3K–AKT–mTOR) pathway. Dysregulation of the AMP-activated protein kinase (AMPK) pathway leads to metabolic imbalance and indicates cancer risk. The use of metformin for chemoprevention has been shown to reduce CRC and adenoma incidence through the upregulation of AMPK, which causes cell cycle arrest in the Gap 1–S (G1–S) phase and inhibits the mTOR pathway, even potentially reversing the epithelial–mesenchymal transition. However, evidence of the effects of metformin remain controversial in cancer prognosis. Several genes, such as transcription factor 7-like 2(TCF7L2), tumor protein P53 inducible nuclear protein 1(TP53INP1), gremlin 1 (GREM1), and potassium voltage-gated channel subfamily Q member 1(KCNQ1), are pleiotropically related to DM as well as cancer risk and prognosis. Epigenetic modification of members of the Let-7 family such as miR-497, miR-486, and miR-223 is strongly associated with impaired glucose tolerance and CRC risk. Herein we review the pathophysiological and epidemiological evidence as well as potential underlying molecular mechanisms by which DM and hyperglycemia affect CRC risk. We also suggest potential roles of glucose modulation in CRC therapy and propose an agenda for future research and clinical practice.
Collapse
Affiliation(s)
- Hsiu-Chung Cheng
- School of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, Kaohsiung City 807, Kaohsiung, Taiwan
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, Kaohsiung City 807, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, Kaohsiung City 807, Kaohsiung, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, Kaohsiung City 807, Kaohsiung, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Liquid Biopsy and Cohort Research, Taiwan.
| |
Collapse
|
28
|
Luo W, Chen X, Ye L, Chen X, Jia W, Zhao Y, Samorodov AV, Zhang Y, Hu X, Zhuang F, Qian J, Zheng C, Liang G, Wang Y. Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113553. [PMID: 33152432 DOI: 10.1016/j.jep.2020.113553] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kaempferia rhizome is a famous traditional herbal medical in tropical and subtropical areas. Kaempferol (KPF) is one of the main bioactive compounds in Kaempferia rhizome, with anti-oxidant/anti-inflammatory effects demonstrated in various disease models, including cancers, obesity and diabetes. AIM OF THE STUDY Inflammation plays an important role in the pathogenesis of diabetic nephropathy (DN). TRAF6 functions as a signal transducer in toll-like receptor 4 and NF-κB pro-inflammatory signaling pathway. We aimed at investigate whether KPF is able to mitigate inflammatory responses by regulating TRAF6 in DN. MATERIAL AND METHODS C57BL/6 mice were injected with streptozotocin to induce type 1 DN. NRK-52E, a tubular epithelial cell line, was used for in vitro analysis. TRAF6 was knockdown using siRNA in vitro and AAV2/2-shRNA in vivo. The anti-DN and inflammatory effects of KPF or knockdown of TRAF6 were evaluated by investigating renal filtration index, pathological changes of kidney tissue. Proinflammatory cytokine levels were detected using ELISA. NF-κB pathway and protein levels of related pathways were detected through Western blot. RESULTS KPF significantly reduced renal inflammation, fibrosis, and kidney dysfunction in diabetic mice. These effects were associated with a downregulation of TRAF6 in diabetic mouse kidneys, indicating the potential role of TRAF6. Knockdown of TRAF6 in mice through AAV2-shTRAF6 confirmed the importance of TRAF6 in DN. In vitro, treatment of KPF in NRK-52E cells attenuated high glucose (HG)-induced inflammatory and fibrogenic responses, associated with downregulated TRAF6 expression. The conclusion was further confirmed in NRK-52E cells by knocking down the expression and by overexpression of TRAF6. CONCLUSION Our findings provide direct evidence that TRAF6 mediates diabetes-induced inflammation leading to renal dysfunction. We also show that KPF is a potential therapeutic agent to reduce inflammatory responses in DN. Also, TRAF6 may represent an interesting target to combat DN.
Collapse
Affiliation(s)
- Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xiaojun Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Laboratory of Pharmaceutical Analysis, Department of Pharmaceutics, Wenzhou Nursing School, Wenzhou, Zhejiang, 325000, China.
| | - Lin Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xuemei Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wenjing Jia
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yanni Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City, 450005, Russia.
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xueting Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Fei Zhuang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 323000, China.
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Zhuji Biomedicine Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, Zhejiang, 311800, China.
| | - Chao Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 323000, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Zhuji Biomedicine Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, Zhejiang, 311800, China.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Zhuji Biomedicine Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, Zhejiang, 311800, China.
| |
Collapse
|
29
|
Abstract
Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of diabetes. In addition to the characteristic clinical manifestations of proteinuria, it also has a complex pathological process that results from the combined effects of multiple factors involving the whole renal structure such as glomeruli, renal tubules, and blood vessels. Non-coding RNAs (ncRNA) are transcripts with no or low coding potential, among which micro RNA (miRNA) has been widely studied as a functional miRNA involved in regulation and a potential biomarker for disease prediction. The abundance of long coding RNA (lncRNA) in vivo is highly expressed with a certain degree of research progress, but the structural similarity makes the research still challenging. The research of circular RNA (circRNA) is still in its early stages. It is more relevant to the study to provide a more relevant link between diseases in the kidney and other tissues or organs. This classification review mainly summarized the biogenesis characteristics, the pathological mechanism of ncRNA-regulating diseases, the ways of ncRNA in the clinical prediction as a potential biomarker, and the interaction networks of ncRNA.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiuyue Wang
- Department of Endocrinology, the First Hospital Affiliated of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Liu D, Liu F, Li Z, Pan S, Xie J, Zhao Z, Liu Z, Zhang J, Liu Z. HNRNPA1-mediated exosomal sorting of miR-483-5p out of renal tubular epithelial cells promotes the progression of diabetic nephropathy-induced renal interstitial fibrosis. Cell Death Dis 2021; 12:255. [PMID: 33692334 PMCID: PMC7946926 DOI: 10.1038/s41419-021-03460-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is a serious complication in type 1 and type 2 diabetes, and renal interstitial fibrosis plays a key role in DN progression. Here, we aimed to probe into the role and potential mechanism of miR-483-5p in DN-induced renal interstitial fibrosis. In this study, we corroborated that miR-483-5p expression was lessened in type 1 and type 2 diabetic mice kidney tissues and high glucose (HG)-stimulated tubular epithelial cells (TECs), and raised in the exosomes derived from renal tissues in type 1 and type 2 diabetic mice. miR-483-5p restrained the expressions of fibrosis-related genes in vitro and renal interstitial fibrosis in vivo. Mechanistically, miR-483-5p bound both TIMP2 and MAPK1, and TIMP2 and MAPK1 were bound up with the regulation of miR-483-5p on renal TECs under HG conditions. Importantly, HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine. Our results expounded that HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine, thus lessening the restraint of cellular miR-483-5p on MAPK1 and TIMP2 mRNAs, and ultimately boosting extracellular matrix deposition and the progression of DN-induced renal interstitial fibrosis.
Collapse
Affiliation(s)
- DongWei Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - FengXun Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhengYong Li
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ShaoKang Pan
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - JunWei Xie
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZiHao Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhenJie Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - JiaHui Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhangSuo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China.
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China.
| |
Collapse
|
31
|
Gu YY, Lu FH, Huang XR, Zhang L, Mao W, Yu XQ, Liu XS, Lan HY. Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front Pharmacol 2021; 11:583528. [PMID: 33574750 PMCID: PMC7870688 DOI: 10.3389/fphar.2020.583528] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common diabetic complication and is a leading cause of end-stage kidney disease. Increasing evidence shows that DKD is regulated not only by many classical signaling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation, and non-coding RNA (ncRNAs). In this review, we focus on our current understanding of the role and mechanisms of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the pathogenesis of DKD. Of them, the regulatory role of TGF-β/Smad3-dependent miRNAs and lncRNAs in DKD is highlighted. Importantly, miRNAs and lncRNAs as biomarkers and therapeutic targets for DKD are also described, and the perspective of ncRNAs as a novel therapeutic approach for combating diabetic nephropathy is also discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fu-Hua Lu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Zhang
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Chen A, Wang H, Su Y, Zhang C, Qiu Y, Zhou Y, Wan Y, Hu B, Li Y. Exosomes: Biomarkers and Therapeutic Targets of Diabetic Vascular Complications. Front Endocrinol (Lausanne) 2021; 12:720466. [PMID: 34456875 PMCID: PMC8387814 DOI: 10.3389/fendo.2021.720466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic vascular complications (DVC) including macrovascular and microvascular lesions, have a significant impact on public health, and lead to increased patient mortality. Disordered intercellular cascades play a vital role in diabetic systemic vasculopathy. Exosomes participate in the abnormal signal transduction of local vascular cells and mediate the transmission of metabolic disorder signal molecules in distant organs and cells through the blood circulation. They can store different signaling molecules in the membrane structure and release them into the blood, urine, and tears. In recent years, the carrier value and therapeutic effect of exosomes derived from stem cells have garnered attention. Exosomes are not only a promising biomarker but also a potential target and tool for the treatment of DVC. This review explored changes in the production process of exosomes in the diabetic microenvironment and exosomes' early warning role in DVC from different systems and their pathological processes. On the basis of these findings, we discussed the future direction of exosomes in the treatment of DVC, and the current limitations of exosomes in DVC research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Hu
- *Correspondence: Yanan Li, ; Bo Hu,
| | - Yanan Li
- *Correspondence: Yanan Li, ; Bo Hu,
| |
Collapse
|
33
|
Roy D, Modi A, Khokhar M, Sankanagoudar S, Yadav D, Sharma S, Purohit P, Sharma P. MicroRNA 21 Emerging Role in Diabetic Complications: A Critical Update. Curr Diabetes Rev 2021; 17:122-135. [PMID: 32359340 DOI: 10.2174/1573399816666200503035035] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes Mellitus is a multifactorial disease encompassing various pathogenic pathways. To avoid morbidity and mortality related to diabetic complications, early detection of disease complications as well as targeted therapeutic strategies are essential. INTRODUCTION MicroRNAs (miRs) are short non-coding RNA molecules that regulate eukaryotic posttranscriptional gene expression. MicroRNA-21 has diverse gene regulatory functions and plays a significant role in various complications of Type 2 diabetes mellitus (T2DM). METHODS The study included electronic database searches on Pubmed, Embase, and Web of Science with the search items MicroRNA21 and each of the diabetic complications. The search was carried out up to November, 2019. RESULTS MicroRNA-21 modulates diabetic cardiomyopathy by affecting vascular smooth muscle cell proliferation and apoptosis, cardiac cell growth and death, and cardiac fibroblast functions. At the renal tubules, miR-21 can regulate the mesangial expansion, interstitial fibrosis, macrophage infiltration, podocyte loss, albuminuria and fibrotic and inflammatory gene expression related to diabetic nephropathy. Overexpression of miR-21 has been seen to play a pivotal role in the pathogenesis of diabetic retinopathy by contributing to diabetes-induced endothelial dysfunction as well as low-grade inflammation. CONCLUSION Considering the raised levels of miR-21 in various diabetic complications, it may prove to be a candidate biomarker for diabetic complications. Further, miR-21 antagonists have shown great potential in the treatment of diabetic cardiomyopathy, diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy related complications in the future. The current review is the first of its kind encompassing the roles miR-21 plays in various diabetic complications, with a critical discussion of its future potential role as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
34
|
Zhang X, Zhang X, Huang W, Ge X. The role of heat shock proteins in the regulation of fibrotic diseases. Biomed Pharmacother 2020; 135:111067. [PMID: 33383375 DOI: 10.1016/j.biopha.2020.111067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
Heat shock proteins (HSPs) are key players to restore cell homeostasis and act as chaperones by assisting the folding and assembly of newly synthesized proteins and preventing protein aggregation. Recently, evidence has been accumulating that HSPs have been proven to have other functions except for the classical molecular chaperoning in that they play an important role in a wider range of fibrotic diseases via modulating cytokine induction and inflammation response, including lung fibrosis, liver fibrosis, and idiopathic pulmonary fibrosis. The recruitment of inflammatory cells, a large number of secretion of pro-fibrotic cytokines such as transforming growth factor-β1 (TGF-β1) and increased apoptosis, oxidative stress, and proteasomal system degradation are all events occurring during fibrogenesis, which might be associated with HSPs. However, their role on fibrotic process is not yet fully understood. In this review, we discuss new discoveries regarding the involvement of HSPs in the regulation of organ and tissue fibrosis, and note recent findings suggesting that HSPs may be a promising therapeutic target for improving the current frustrating outcome of fibrotic disorders.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226019, PR China.
| | - Xiaoyan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Wenmin Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Xiaoqun Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
35
|
Luan J, Fu J, Wang D, Jiao C, Cui X, Chen C, Liu D, Zhang Y, Wang Y, Yuen PS, Kopp JB, Pi J, Zhou H. miR-150-Based RNA Interference Attenuates Tubulointerstitial Fibrosis through the SOCS1/JAK/STAT Pathway In Vivo and In Vitro. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:871-884. [PMID: 33230482 PMCID: PMC7658580 DOI: 10.1016/j.omtn.2020.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022]
Abstract
We investigated whether microRNA-150 (miR-150)-based RNA interference (RNAi) ameliorates tubular injury and tubulointerstitial fibrosis. Mice injected with folic acid developed tubulointerstitial fibrosis at day 30. miR-150 levels were increased at day 7 and peaked at day 30. At day 30, protein levels of α-smooth muscle actin, fibronectin (FN), and collagen 1 (COL-1) were increased, while suppressor of cytokine signal 1 (SOCS1) was decreased. Kidneys manifested increased macrophage numbers and increased expression of potential mediators: interferon-γ, interleukin-6, and tumor necrosis factor-α. Locked nucleic acid-anti-miR-150, started prior to or after tubular injury and administered twice weekly for 4 weeks, reversed renal inflammation and fibrosis. In HK-2 cells, co-culture with macrophages increased miR-150 expression and decreased SOCS1. Janus kinase (JAK) and signal transducer and activators of transcription (STAT) pathway-related proteins p-JAK1, p-JAK2, p-STAT1, p-STAT3, and pro-fibrotic genes encoding α-smooth muscle actin, FN, and COL-1 were all upregulated. The miR-150 antagonist reversed these transcriptional changes. Lastly, in renal biopsies from patients with chronic interstitial fibrosis, renal miR-150, and pro-fibrotic gene expression and macrophage numbers were increased, while SOCS1 expression was decreased. In conclusion, miR-150-based RNAi is as a potential novel therapeutic agent for tubulointerstitial fibrosis, suppressing the SOCS1/JAK/STAT pathway and reducing macrophage influx.
Collapse
Affiliation(s)
- Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Dongdong Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Congcong Jiao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangfei Cui
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Dan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peter S.T. Yuen
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, MD, USA
| | | | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Wang Z, Chen Z, Li B, Zhang B, Du Y, Liu Y, He Y, Chen X. Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways. PHARMACEUTICAL BIOLOGY 2020; 58:828-837. [PMID: 32866059 PMCID: PMC7470153 DOI: 10.1080/13880209.2020.1809462] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Renal interstitial fibrosis (RIF) is characterized by the accumulation of inflammatory cytokines and epithelial-mesenchymal transition (EMT). Curcumin exerts antifibrogenic, anti-inflammatory and antiproliferative effects. OBJECTIVE To explore the mechanisms underlying the effects of curcumin on RIF. MATERIALS AND METHODS Eight-week-old male C57BL/6 mice were intragastrically administered curcumin (50 mg/kg/day) for 14 days after undergoing unilateral ureteral obstruction (UUO) operations. Renal function (blood urea nitrogen [BUN] and serum creatinine [Scr]) and inflammatory cytokine levels were tested using colorimetric assays and ELISA, respectively. EMT markers were evaluated through immunohistochemistry, western blotting and qPCR. Transforming growth factor beta 1 (TGF-β1; 10 ng/mL) and lipopolysaccharides (LPS; 100 ng/mL) were used to stimulate EMT and an inflammatory response in human renal proximal tubular epithelial (HK-2) cells, respectively, for further investigation. RESULTS In vivo, curcumin significantly improved the levels of BUN and Scr by 28.7% and 21.3%, respectively. Moreover, curcumin reduced the levels of IL-6, IL-1β and TNF-α by 22.5%, 30.3% and 26.7%, respectively, and suppressed vimentin expression in UUO mice. In vitro, curcumin reduced the expression of vimentin and α-smooth muscle actin in TGF-β1-induced HK-2 cells. In LPS-induced HK-2 cells, curcumin decreased the release of IL-6, IL-1β and TNF-α by 43.4%, 38.1% and 28.3%, respectively. In addition, curcumin reduced the expression of TLR4, p-PI3K, p-AKT, p-NF- κB and p-IκBα in both LPS- and TGF-β1-induced HK-2 cells. DISCUSSION AND CONCLUSIONS Curcumin repressed EMT and the inflammatory response by inhibiting the TLR4/NF-κB and PI3K/AKT pathways, demonstrating its potential utility in RIF treatment.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yongchao Du
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yuhang Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
- CONTACT Yao He
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
- Xiang Chen Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
37
|
He Z, Long J, Yang C, Gong B, Cheng M, Wang Q, Tang J. LncRNA DGCR5 plays a tumor-suppressive role in glioma via the miR-21/Smad7 and miR-23a/PTEN axes. Aging (Albany NY) 2020; 12:20285-20307. [PMID: 33085646 PMCID: PMC7655220 DOI: 10.18632/aging.103800] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/07/2020] [Indexed: 04/12/2023]
Abstract
Glioma is one of the most commonly diagnosed brain malignancies with a high cancer-related death rate in humans. The prognosis of glioma patients is still unsatisfactory. In the present study, we attempted to identify lncRNAs and miRNAs that might be related to NF-κB-mediated epithelial-mesenchymal transition in glioma cells based on online microarray expression profiles, and investigate the specific effects of lncRNA-miRNA-mRNA axes on glioma cell phenotypes. Herein, we identified lncRNA DGCR5 as a downregulated lncRNA in glioma that was negatively regulated by NF-κB1 in an NF-κB1 RE-dependent manner. LncRNA DGCR5 overexpression significantly inhibited the capacity of glioma cells to proliferate, migrate, and invade, whereas promoted the apoptosis of glioma cells. Moreover, lncRNA DGCR5 overexpression upregulated the epithelial marker E-cadherin while downregulating the mesenchymal marker VIM, as well as Snai2 and TWIST. Regarding the underlying molecular mechanisms, lncRNA DGCR5 could inhibit miR-21 and miR-23a expression, and miR-21 or miR-23a overexpression significantly reversed the tumor-suppressive effects of lncRNA DGCR5 overexpression. LncRNA DGCR5 exerted its tumor-suppressive effects through the DGCR5/miR-21/Smad7 and DGCR5/miR-23a/PTEN axes. In conclusion, lncRNA DGCR5 suppresses the capacity of glioma cells to migrate and invade via miR-21/Smad7, whereas it inhibits the proliferation and enhances the apoptosis of glioma cells through miR-23a/PTEN.
Collapse
Affiliation(s)
- Zongze He
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu 610072, Sichuan, China
| | - Juan Long
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Chen Yang
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Bo Gong
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Meixiong Cheng
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Qi Wang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Jian Tang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| |
Collapse
|
38
|
Shang Z, Ou T, Xu J, Yan H, Cui B, Wang Q, Wu J, Jia C, Cui X, Li J. MicroRNA expression profile in the spinal cord injured rat neurogenic bladder by next-generation sequencing. Transl Androl Urol 2020; 9:1585-1602. [PMID: 32944521 PMCID: PMC7475673 DOI: 10.21037/tau-20-415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background An increasing amount of evidence has indicated that microRNAs (miRs) are involved in most biological conditions, including the neurogenic bladder (NB). However, to our knowledge, no studies have investigated these miR expressions in spinal cord-injured (SCI) rat NB. The goal of the study was to explore the miR expression profile in the SCI rat NB by next-generation sequencing (NGS). Methods Female Wistar rats underwent spinal cord transection at T9–10 and were randomly divided into the SCI-1, SCI-2 and SCI-3 groups (n=5 for each group) whose bladder tissues were collected 1, 2, and 4 weeks after transection, respectively. The normal rats were used as the normal control (NC) group. MiRs microarray assays were used to detect the differentially expressed miRs between the groups by NGS, which was then verified by quantitative real-time polymerase chain reaction (qRT-PCR). Those significantly differently expressed miRs were analyzed with Gene Ontology categories and Kyoto Encyclopedia of Genes and Genomes bioinformatical analyses. Results Compared with the NC group, 96, 28 and 51 miRs were downregulated in the rats’ bladder in the SCI-1, SCI-2, and SCI-3 groups, respectively, and 133, 49, and 76 miRs were upregulated respectively. Specifically, miR-21-5p was the most significantly upregulated miR in all SCI groups. Also, 121 miRs (SCI-1 vs. SCI-2), 98 miRs (SCI-1 vs. SCI-3), and 26 miRs (SCI-2 vs. SCI-3) were of significantly different expression. Furthermore, a large set of genes implicated in essential signaling pathways were targeted by these miRs, including PI3K-Akt, MAPK, Rap1, and cGMP-PKG signaling pathways, along with the tight junction and metabolic pathways. Conclusions This is the first demonstration of differentially expressed miRs, which may potentially serve as new molecular targets in the SCI rat NB.
Collapse
Affiliation(s)
- Zhenhua Shang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jianjun Xu
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Bo Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jiangtao Wu
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Chunsong Jia
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xin Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jin Li
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Sessa F, Salerno M, Bertozzi G, Cipolloni L, Messina G, Aromatario M, Polo L, Turillazzi E, Pomara C. miRNAs as Novel Biomarkers of Chronic Kidney Injury in Anabolic-Androgenic Steroid Users: An Experimental Study. Front Pharmacol 2020; 11:563756. [PMID: 33041804 PMCID: PMC7525215 DOI: 10.3389/fphar.2020.563756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
miRNAs are a family of 20–22 non-coding nucleotides that control gene expression by inhibiting the translation of their target messenger RNAs (mRNAs). Two models have been proposed to elucidate the mechanism of action: they act either hindering mRNA translation or enhancing mRNA degradation. Anabolic-Androgenic Steroids (AASs) represent a class of drugs used to treat several diseases. In the last few years, AASs have frequently been used for aesthetic purposes, indeed, they form part of the larger group called image- and performance-enhancing drugs (IPEDs). Long-term AAS use can lead to serious health consequences. In this regard, the present study aimed to analyze the role of several microRNAs (miRNAs) in renal damage after AAS use, to better understand the underlying mechanisms. For this purpose, two miRNAs (miR-21 and miR-205) were tested in two groups: AAS group (seven males, mean age 33.28 ± 4.68 years; mean body mass index (BMI) 27.04 ± 1.07), and chronic kidney disease (CKD) group (seven males, mean age 66.2 ± 5.4 years; mean BMI 24.75 ± 1.35). Finally, the same miRNAs were tested in the “Control” group (seven males, mean age 44.85 ± 5.75 years; mean BMI 26.5 ± 1.88). Kolmogorov-Smirnov Test was used to determine the normality of data distribution. All variables were normally distributed. Student’s t-test was used for comparisons between two groups. Analyzing the results of the present study, the two tested miRNAs (miR-21 and miR-205) were significantly higher in the CKD group compared to the AAS group, with mir-21 being much more expressed than miR-205. This study represents a pilot study to define if these expression patterns could be studied in other biological samples (plasma, urine) in subjects with different kidney injury linked to chronic kidney diseases and AAS use, to identify reliable biomarkers that could be applied in clinical and forensic diagnostics, as well as a target for toxicological investigations or therapeutic treatments.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mariarosaria Aromatario
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Polo
- Brain srl, Services and Consultancy in Health, Pavia, Italy
| | - Emanuela Turillazzi
- Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
40
|
Peters LJF, Floege J, Biessen EAL, Jankowski J, van der Vorst EPC. MicroRNAs in Chronic Kidney Disease: Four Candidates for Clinical Application. Int J Mol Sci 2020; 21:E6547. [PMID: 32906849 PMCID: PMC7555601 DOI: 10.3390/ijms21186547] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
There are still major challenges regarding the early diagnosis and treatment of chronic kidney disease (CKD), which is in part due to the fact that its pathophysiology is very complex and not clarified in detail. The diagnosis of CKD commonly is made after kidney damage has occurred. This highlights the need for better mechanistic insight into CKD as well as improved clinical tools for both diagnosis and treatment. In the last decade, many studies have focused on microRNAs (miRs) as novel diagnostic tools or clinical targets. MiRs are small non-coding RNA molecules that are involved in post-transcriptional gene regulation and many have been studied in CKD. A wide array of pre-clinical and clinical studies have highlighted the potential role for miRs in the pathogenesis of hypertensive nephropathy, diabetic nephropathy, glomerulonephritis, kidney tubulointerstitial fibrosis, and some of the associated cardiovascular complications. In this review, we will provide an overview of the miRs studied in CKD, especially highlighting miR-103a-3p, miR-192-5p, the miR-29 family and miR-21-5p as these have the greatest potential to result in novel therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
41
|
Hincapie V, Gallego-Gómez JC. TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v26n1.79358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La Transición Epitelio-Mesénquima (EMT) es un proceso de dediferenciación altamente conservado en vertebrados. Este ocurre en células epiteliales con la activación progresiva de la pérdida de la polaridad, la adquisición de motilidad individual y la capacidad invasiva a otros tejidos. La EMT es un proceso normal durante el desarrollo; no obstante, en condiciones patológicas está relacionada con la inducción de metástasis, lo cual representa una vía alterna al desarrollo de procesos oncogénicos tempranos. Aunque la EMT es activada principalmente por factores de crecimiento, también se puede desencadenar por infecciones de patógenos intracelulares mediante la activación de rutas moleculares inductoras de este proceso. Por lo tanto, una infección bacteriana o viral pueda generar predisposición al desarrollo de tumores. Nuestro interés está enfocado principalmente encaracterizar la relación virus-hospedero, y en el caso de los virus, varios ya se han descrito como inductores de la EMT. En este artículo de revisión se describenelfenómeno de la plasticidad celular y la ocurrencia detallada del proceso de EMT, los patógenos virales reportados como inductores, los mecanismos moleculares usados para ello y las vías de regulación mediante miRNAs. Por último, se discute cómo esta relación virus-hospedero puede explicar la patogénesis de la enfermedad causada por Dengue virus, favoreciendo la identificación de blancos moleculares para terapia, estrategia conocida como Antivirales dirigidos a blancos celulares o HTA (Host-targeting antivirals).
Collapse
|
42
|
Chu NJ, Anders RA, Fertig EJ, Cao M, Hopkins AC, Keenan BP, Popovic A, Armstrong TD, Jaffee EM, Zimmerman JW. Inhibition of miR-21 Regulates Mutant KRAS Effector Pathways and Intercepts Pancreatic Ductal Adenocarcinoma Development. Cancer Prev Res (Phila) 2020; 13:569-582. [PMID: 32409593 PMCID: PMC7372516 DOI: 10.1158/1940-6207.capr-20-0053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
Almost all pancreatic ductal adenocarcinomas (PDA) develop following KRAS activation, which triggers epithelial transformation and recruitment of desmoplastic stroma through additional transcriptional and epigenetic regulation, but only a few of these regulatory mechanisms have been described. We profiled dysregulated miRNAs starting with the earliest premalignant pancreatic intraepithelial neoplasias (PanIN) in genetically engineered mutated KRAS and P53 (KPC) mice programmed to recapitulate human PDA tumorigenesis. We identified miR-21 and miR-224 as cell-specific and compartment-specific regulators in PanINs and PDA. miR-21 is overexpressed in tumor epithelial cells of premalignant ducts, while miR-224 is overexpressed in cancer-associated fibroblasts in PDA stroma. Inhibition of miR-21 reverted protumorigenic functionalities to baseline levels. Overexpression of miR-224 induced activated phenotypes in normal fibroblasts. In vivo miR-21 inhibition improved survival in established PDA. Importantly, early systemic miR-21 inhibition completely intercepted premalignant progression. Finally, an evaluation of miR-21 expression in the PDA cohort of The Cancer Genome Atlas identified a correlation between tumor epithelial cell content and miR-21 expression in human tumors providing further rationale for conducting human studies. Thus, miR-21 may be useful for early PanIN detection, and for intercepting developing premalignant pancreatic lesions and other KRAS-driven premalignancies.
Collapse
Affiliation(s)
- Nina J Chu
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Elana J Fertig
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Minwei Cao
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander C Hopkins
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bridget P Keenan
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Aleksandra Popovic
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd D Armstrong
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jacquelyn W Zimmerman
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
43
|
Cai S, Liu J, Ma Q, Bao Y, Chen J, Li Y. Coptis inhibited epithelial-mesenchymal transition and fibrogenesis of diabetic nephropathy through lncRNA CLYBL-AS2-miR-204-5p-SNAI1 axis. J Drug Target 2020; 28:939-948. [PMID: 32310009 DOI: 10.1080/1061186x.2020.1759077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diabetic nephropathy (DN) is one of the severe complications of diabetes. Nowadays, effective treatment for end-stage renal disease (ESRD) patients is still limited. HK-2 cells were stimulated with serum from phosphate-buffered saline (PBS) or Jiawei Shuilu Erxiandan (JSE)-treated DN mice, then long non-coding RNA (lncRNA) CLYBL-AS2 was discovered by RNA sequence, following the comparison of the serum from normal patients with DN patients to confirm the role of lncCLYBL-AS2. Next, we performed in vitro studies to explore the effect of lncCLYBL-AS2 in DN and its molecular mechanism. Coptis, as one of the components of JSE, could decrease the expression of lncCLYBL-AS2, which is increased in DN and correlated with the severity of DN. Knockdown/overexpression of lncCLYBL-AS2 inhibited/promoted the invasion and fibrogenesis of HK-2 cells. Furthermore, lncCLYBL-AS2 was negatively correlated with miR-204-4p with a positive correlation with SNAI1; eventually, CLYBL-AS2 regulated SNAI1 by binding to miR-204-5p, which accounted for the inhibition of epithelial-mesenchymal transition (EMT) and fibrogenesis. LncCLYBL-AS2 inhibited by Coptis improved EMT and fibrogenesis in HK-2 cells through miR-204-5p-SNAI1 axis, therefore, lncCLYBL-AS2 could serve as a potential diagnosis and therapeutic target for DN.
Collapse
Affiliation(s)
- Shengyu Cai
- The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, PR China.,Integrated Chinese and Western Medicine, Postdoctoral Research Station, Jinan University, Guangzhou, PR China
| | - Juan Liu
- Department of Hematology & Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, PR China
| | - Yuxiao Bao
- Longgang Traditional Chinese Medicine Hospital, Beijing University of Chinese Medicine Shenzhen Hospital, Shenzhen, PR China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, PR China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yousheng Li
- The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, PR China
| |
Collapse
|
44
|
Khokhar M, Roy D, Modi A, Agarwal R, Yadav D, Purohit P, Sharma P. Perspectives on the role of PTEN in diabetic nephropathy: an update. Crit Rev Clin Lab Sci 2020; 57:470-483. [PMID: 32306805 DOI: 10.1080/10408363.2020.1746735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phosphatase and tensin homolog (PTEN) is a potent tumor suppressor gene that antagonizes the proto-oncogenic phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway and governs basic cellular metabolic processes. Recently, its role in cell growth, metabolism, architecture, and motility as an intramolecular and regulatory mediator has gained widespread research interest as it applies to non-tumorous diseases, such as insulin resistance (IR) and diabetic nephropathy (DN). DN is characterized by renal tubulointerstitial fibrosis (TIF) and epithelial-mesenchymal transition (EMT), and PTEN plays a significant role in the regulation of both. Epigenetics and microRNAs (miRNAs) are novel players in post-transcriptional regulation and research evidence demonstrates that they reduce the expression of PTEN by acting as key regulators of autophagy and TIF through activation of the Akt/mammalian target of rapamycin (mTOR) signaling pathway. These regulatory processes might play an important role in solving the complexities of DN pathogenesis and IR, as well as the therapeutic management of DN with the help of PTEN K27-linked polyubiquitination. Currently, there are no comprehensive reviews citing the role PTEN plays in the development of DN and its regulation via miRNA and epigenetic modifications. The present review explores these facets of PTEN in the pathogenesis of IR and DN.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Riddhi Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Dharmveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
45
|
Veiga G, Alves B, Perez M, Alcantara LV, Raimundo J, Zambrano L, Encina J, Pereira EC, Bacci M, Murad N, Fonseca F. NGAL and SMAD1 gene expression in the early detection of diabetic nephropathy by liquid biopsy. J Clin Pathol 2020; 73:713-721. [PMID: 32184218 DOI: 10.1136/jclinpath-2020-206494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Diabetic nephropathy (DN) is a disease that progresses with the slow and progressive decline of the glomerular filtration rate (GFR); the installation of this pathology is silent and one of the major causes of death in patients with diabetes. AIMS To identify new molecular biomarkers for early identification of the onset of DN in patients with type II diabetes mellitus (DM2). We studied the expression profile of the genes; suppressor of mothers against decapentaplegic type 1 (SMAD1), neutrophil gelatinase-associated lipocalin (NGAL) and type IV collagen (COLIV1A) in peripheral blood and urine sediment samples. METHODS Ninety volunteers, 51 with DM2 and 39 healthy, were recruited from the Faculdade de Medicina do ABC outpatient clinic. We conducted an interview and collected anthropometric data, as well as blood and urine samples for biochemical evaluation and real-time PCR amplification of the genes of interest. RESULTS Gene expression data: peripheral blood NGAL (DM2 0.09758±0.1914 vs CTL 0.02293±0.04578), SMAD1 (blood: DM2 0.01102±0.04059* vs CTL 0.0001317±0.0003609; urine: DM2 0.7195±2.344* vs CTL 0.09812±0.4755), there was no significant expression of COLIV1A. These genes demonstrated good sensitivity and specificity in the receiving operating characteristic curve evaluation. CONCLUSION Our data suggest the potential use of NGAL and SMAD1 gene expression in peripheral blood and urine samples as early biomarkers of DN.
Collapse
Affiliation(s)
- Glaucia Veiga
- Centro Universitário Saúde ABC/Faculdade de Medicina do ABC, Santo Andre, Brazil
| | - Beatriz Alves
- Centro Universitário Saúde ABC/Faculdade de Medicina do ABC, Santo Andre, Brazil
| | - Matheus Perez
- Centro Universitário Saúde ABC/Faculdade de Medicina do ABC, Santo Andre, Brazil
| | | | - Joyce Raimundo
- Centro Universitário Saúde ABC/Faculdade de Medicina do ABC, Santo Andre, Brazil
| | - Lysien Zambrano
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Francisco Morazán, Honduras
| | - Jessica Encina
- Centro Universitário Saúde ABC/Faculdade de Medicina do ABC, Santo Andre, Brazil
| | - Edimar Cristiano Pereira
- Pharmaceutical Sciences Department, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Marcelo Bacci
- Centro Universitário Saúde ABC/Faculdade de Medicina do ABC, Santo Andre, Brazil
| | - Neif Murad
- Centro Universitário Saúde ABC/Faculdade de Medicina do ABC, Santo Andre, Brazil
| | - Fernando Fonseca
- Centro Universitário Saúde ABC/Faculdade de Medicina do ABC, Santo Andre, Brazil.,Pharmaceutical Sciences Department, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
46
|
Quan J, Dong D, Lun Y, Sun B, Sun H, Wang Q, Yuan G. Circular RNA circHIAT1 inhibits proliferation and epithelial-mesenchymal transition of gastric cancer cell lines through downregulation of miR-21. J Biochem Mol Toxicol 2020; 34:e22458. [PMID: 32020707 DOI: 10.1002/jbt.22458] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Circular RNA circHIAT1 has been proved to play an antitumor role. We aimed to explore the function and mechanism of circHIAT1 in GC. MKN28 and MKN45 cells were transfected with PLCDH-circHIAT1, miR-21 mimic, and relative control. Cell viability and apoptosis were examined through Cell Counting Kit-8 and flow cytometry, respectively. CircHIAT1 expression and other relative factors were tested through quantitative reverse transcription-polymerase chain reaction and Western blot analysis, respectively. Our findings demonstrated that circHIAT1 was lowly expressed in GC tissues. After transfection with PLCDH-circHIAT1 in MKN28 and MKN45 cells, cell viability was decreased, while the expression levels of p53 and p21 were raised, as well as apoptosis. Besides this, the epithelial-mesenchymal transition process was inhibited by PLCDH-circHIAT1 transfection. Mechanistically, miR-21 expression was upregulated in GC tissues and could be negatively regulated by circHIAT1. Further experiments showed that the addition of miR-21 mimic reversed the growth inhibition effects of circHIAT1 overexpression. Moreover, circHIAT1 inhibited the activation of phosphatase and tensin homolog/phosphatidylinositol 3 kinase/protein kinase B and extracellular signal-regulated kinase signal pathways via downregulating miR-21. CircHIAT1 functioned as a tumor inhibitor in GC cells through downregulating miR-21, and could be a novel target for GC treatment.
Collapse
Affiliation(s)
- Jingzi Quan
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Dongfang Dong
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Yue Lun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Bo Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Haiyuan Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Qunying Wang
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Gang Yuan
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| |
Collapse
|
47
|
Abdelghaffar S, Shora H, Abdelatty S, Elmougy F, El Sayed R, Abdelrahman H, Soliman H, Algebaly H, Ahmed S, Alfy P, Elshiwy Y. MicroRNAs and Risk Factors for Diabetic Nephropathy in Egyptian Children and Adolescents with Type 1 Diabetes. Diabetes Metab Syndr Obes 2020; 13:2485-2494. [PMID: 32765027 PMCID: PMC7367734 DOI: 10.2147/dmso.s247062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Currently available markers for early detection of diabetic nephropathy (DN), the leading cause of end stage renal disease, have some limitations. There is insufficient evidence from previous studies about the role of several circulating microRNAs (miRNAs) in the early development of DN. This study aimed to describe the expression of miRNA-377, miRNA-93, miRNA-25, miRNA-216a, and miRNA-21 in a sample of type 1 diabetic children and adolescents to explore their association with DN and some indices of kidney injury. PATIENTS AND METHODS Seventy type 1 diabetic patients, with 5 years' duration of diabetes or more, were recruited from Children's Hospital, Faculty of Medicine, Cairo University. Quantitative real-time reverse-transcription PCR (qRT-PCR) was used to measure the expression of the above mentioned miRNAs in serum and to assess its association with DN, and the studied risk factors. RESULTS There was a significantly higher percentage of up-regulation of miRNA-377 and miRNA-93 (P=0.03, 0.02, respectively) in addition to significant down-regulation of miRNA-25 (P=0.01) in patients with DN than in patients without DN. In patients with DN, expression of miR-216a was significantly negatively correlated with creatinine (r=-0.4, P=0.04) and positively correlated with eGFR using creatinine (r=0.5, P=0.03). In the same group, expression of miR-21 was positively correlated with urinary cystatin C (r=0.6, P=0.01) and was negatively correlated with e-GFR using cystatin c (r=-0.6, P=0.01). miRNA-93 was associated with increased risk (odds ratio=15, 95% CI=12.03-24.63, P=0.01), while miRNA-25 was associated with decreased risk for albuminuria (odds ratio=0.15, 95% CI=0.08-0.55, P=0.03). CONCLUSION miRNA-377, miRNA-93, miRNA-216a, and miRNA-21 may be implicated in the pathogenesis of DN, while miRNA-25 may have a reno-protective role. More studies are needed to document the value of these miRNAs as diagnostic biomarkers as well as therapeutic targets in DN.
Collapse
Affiliation(s)
- Shereen Abdelghaffar
- Department of Pediatrics, Cairo University, Cairo, Egypt
- Correspondence: Shereen Abdelghaffar Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, EgyptTel +201005859252Fax +201272202209 Email
| | - Hassan Shora
- Department of Molecular Biology/Biochemistry, Port Said University, Port Said, Egypt
| | - Sahar Abdelatty
- Department of Clinical and Chemical Pathology, Cairo University, Cairo, Egypt
| | - Fatma Elmougy
- Department of Clinical and Chemical Pathology, Cairo University, Cairo, Egypt
| | - Reham El Sayed
- Department of Clinical and Chemical Pathology, Cairo University, Cairo, Egypt
| | - Heba Abdelrahman
- Department of Clinical and Chemical Pathology, Cairo University, Cairo, Egypt
| | - Hend Soliman
- Department of Pediatrics, Cairo University, Cairo, Egypt
| | | | | | - Peter Alfy
- Department of Pediatrics, Cairo University, Cairo, Egypt
| | - Yasmine Elshiwy
- Department of Clinical and Chemical Pathology, Cairo University, Cairo, Egypt
| |
Collapse
|
48
|
Luan J, Fu J, Chen C, Jiao C, Kong W, Zhang Y, Chang Q, Wang Y, Li D, Illei GG, Kopp JB, Pi J, Zhou H. LNA-anti-miR-150 ameliorated kidney injury of lupus nephritis by inhibiting renal fibrosis and macrophage infiltration. Arthritis Res Ther 2019; 21:276. [PMID: 31829247 PMCID: PMC6907329 DOI: 10.1186/s13075-019-2044-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background The prevalence of lupus nephritis (LN) remains high despite various emerging monoclonal antibodies against with targeting systemic lupus erythematosus (SLE). Renal fibrosis is the main feature of late stage LN, and novel therapeutic agents are still needed. We previously reported that microRNA (miR)-150 increases in renal biopsies of American LN patients and that miR-150 agonist promotes fibrosis in cultured kidney cells. Presently, we aim to verify whether locked nucleic acid (LNA)-anti-miR-150 can ameliorate LN in mice and to investigate its corresponding mechanisms. Methods We first observed natural history and renal miR-150 expression in female Fcgr2b−/− mice of a spontaneously developed LN model. We then verified miR-150 renal absorption and determined the dose of the suppressed miR-150 by subcutaneous injection of LNA-anti-miR-150 (2 and 4 mg/kg). Thirdly, we investigated the therapeutic effects of LNA-anti-miR-150 (2 mg/kg for 8 weeks) on LN mice and the corresponding mechanisms by studying fibrosis-related genes, cytokines, and kidney resident macrophages. Lastly, we detected the expression of renal miR-150 and the mechanism-associated factors in renal biopsies from new onset untreated LN patients. Results Fcgr2b−/− mice developed SLE indicated by positive serum autoantibodies at age 19 weeks and LN demonstrated by proteinuria at age 32 weeks. Renal miR-150 was overexpressed in LN mice compared to wild type mice. FAM-labeled LNA-anti-miR-150 was absorbed by both glomeruli and renal tubules. LNA-anti-miR-150 suppressed the elevated renal miR-150 levels in LN mice compared to the scrambled LNA without systemic toxicity. Meanwhile, serum double strand-DNA antibody, proteinuria, and kidney injury were ameliorated. Importantly, the elevated renal pro-fibrotic genes (transforming growth factor-β1, α-smooth muscle antibody, and fibronectin) and decreased anti-fibrotic gene suppressor of cytokine signal 1 were both reversed. Renal pro-inflammatory cytokines (interferon-γ, interleukin-6, and tumor necrosis factor-α) and macrophages were also decreased. In addition, the changes of renal miR-150 and associated proteins shown in LN mice were also seen in human subjects. Conclusions LNA-anti-miR-150 may be a promising novel therapeutic agent for LN in addition to the current emerging monoclonal antibodies, and its renal protective mechanism may be mediated by anti-fibrosis and anti-inflammation as well as reduction of the infiltrated kidney resident macrophages.
Collapse
Affiliation(s)
- Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Congcong Jiao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weiwei Kong
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Detian Li
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Jeffrey B Kopp
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China.
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
49
|
Morgado-Pascual JL, Rayego-Mateos S, Tejedor L, Suarez-Alvarez B, Ruiz-Ortega M. Bromodomain and Extraterminal Proteins as Novel Epigenetic Targets for Renal Diseases. Front Pharmacol 2019; 10:1315. [PMID: 31780938 PMCID: PMC6857099 DOI: 10.3389/fphar.2019.01315] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms, especially DNA methylation and histone modifications, are dynamic processes that regulate the gene expression transcriptional program in normal and diseased states. The bromodomain and extraterminal (BET) protein family (BRD2, BRD3, BRD4, and BRDT) are epigenetic readers that, via bromodomains, regulate gene transcription by binding to acetylated lysine residues on histones and master transcriptional factors. Experimental data have demonstrated the involvement of some BET proteins in many pathological conditions, including tumor development, infections, autoimmunity, and inflammation. Selective bromodomain inhibitors are epigenetic drugs that block the interaction between BET proteins and acetylated proteins, thus exerting beneficial effects. Recent data have described the beneficial effect of BET inhibition on experimental renal diseases. Emerging evidence underscores the importance of environmental modifications in the origin of pathological features in chronic kidney diseases (CKD). Several cellular processes such as oxidation, metabolic disorders, cytokines, inflammation, or accumulated uremic toxins may induce epigenetic modifications that regulate key processes involved in renal damage and in other pathological conditions observed in CKD patients. Here, we review how targeting bromodomains in BET proteins may regulate essential processes involved in renal diseases and in associated complications found in CKD patients, such as cardiovascular damage, highlighting the potential of epigenetic therapeutic strategies against BET proteins for CKD treatment and associated risks.
Collapse
Affiliation(s)
- Jose Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lucia Tejedor
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| |
Collapse
|
50
|
Yang J, Shen Y, Yang X, Long Y, Chen S, Lin X, Dong R, Yuan J. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol 2019; 317:F1350-F1358. [PMID: 31545928 DOI: 10.1152/ajprenal.00254.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to play an important role in diabetic nephropathy (DN). However, the molecular mechanism involved in this process remains poorly understood. Thus, the present study aimed to explore the function and molecular mechanism of dysregulated lncRNA X-inactive specific transcript (XIST) in DN. DN mouse models were established by streptozotocin treatment, and human renal tubular epithelial HK-2 cells were exposed to high glucose to produce an in vitro model. XIST was highly expressed in renal tissues of patients with DN, mice with DN, and high glucose-exposed HK-2 cells. To identify the interaction among XIST, miR-93-5p, and cyclin-dependent kinase inhibitor 1A (CDKN1A) and to analyze the functional significance of their interaction in renal interstitial fibrosis, we altered endogenous expression of XIST and miR-93-5p and CDKN1A. Dual-luciferase reporter assay results suggested that XIST was highly expressed in the kidney tissue of DN mice and high glucose-exposed HK-2 cells. XIST was identified to be a lncRNA that could bind to miR-93-5p, and CDKN1A was a target of miR-93-5p. Downregulated expression of XIST led to an increase in miR-93-5p expression, thereby decreasing CDKN1A and suppressing renal interstitial fibrosis in DN. Consistently, XIST knockdown reduced the expression of fibrosis markers (fibronectin, collagen type IV, and transforming growth factor-β1). Restoration of CDKN1A or decreasing miR-93-5p yielded a reversed effect on renal interstitial fibrosis. In conclusion, our study demonstrated that silenced XIST inducing miR-93-5p-dependent CDKN1A inhibition was beneficial for preventing renal interstitial fibrosis in DN, which may provide a future strategy to prevent the progression of DN.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Yan Shen
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Xia Yang
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Yanjun Long
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Shuang Chen
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Rong Dong
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| |
Collapse
|