1
|
Dores RM, McKinley G, Meyers A, Martin M, Shaughnessy CA. Structure/Function Studies on the Activation Motif of Two Non-Mammalian Mrap1 Orthologs, and Observations on the Phylogeny of Mrap1, Including a Novel Characterization of an Mrap1 from the Chondrostean Fish, Polyodon spathula. Biomolecules 2022; 12:1681. [PMID: 36421695 PMCID: PMC9688151 DOI: 10.3390/biom12111681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 08/12/2023] Open
Abstract
In derived bony vertebrates, activation of the melanocortin-2 receptor (Mc2r) by its ACTH ligand requires chaperoning by the Mc2r accessory protein (Mrap1). The N-terminal domain of the non-mammalian tetrapod MRAP1 from chicken (c; Gallus gallus) has the putative activation motif, W18D19Y20I21, and the N-terminal domain in the neopterygian ray-finned fish Mrap1 from bowfin (bf; Amia calva) has the putative activation motif, Y18D19Y20I21. The current study used an alanine-substitution paradigm to test the hypothesis that only the Y20 position in the Mrap1 ortholog of these non-mammalian vertebrates is required for activation of the respective Mc2r ortholog. Instead, we found that for cMRAP1, single alanine-substitution resulted in a gradient of inhibition of activation (Y20 >> D19 = W18 > I21). For bfMrap1, single alanine-substitution also resulted in a gradient of inhibition of activation (Y20 >> D19 > I21 > Y18). This study also included an analysis of Mc2r activation in an older lineage of ray-finned fish, the paddlefish (p), Polyodon spathula (subclass Chondronstei). Currently no mrap1 gene has been found in the paddlefish genome. When pmc2r was expressed alone in our CHO cell/cAMP reporter gene assay, no activation was observed following stimulation with ACTH. However, when pmc2r was co-expressed with either cmrap1 or bfmrap1 robust dose response curves were generated. These results indicate that the formation of an Mc2r/Mrap1 heterodimer emerged early in the radiation of the bony vertebrates.
Collapse
Affiliation(s)
- Robert M. Dores
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | | | | | | | | |
Collapse
|
2
|
Shaughnessy CA, Jensen MF, Dores RM. A basal actinopterygian melanocortin receptor: Molecular and functional characterization of an Mc2r ortholog from the Senegal bichir (Polypterus senegalus). Gen Comp Endocrinol 2022; 328:114105. [PMID: 35973587 DOI: 10.1016/j.ygcen.2022.114105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
In bony vertebrates, melanocortin 2 receptor (Mc2r) specifically binds adrenocorticotropic hormone (ACTH) and is responsible for mediating anterior pituitary signaling that stimulates corticosteroid production in the adrenal gland/interrenal cells. In bony fishes Mc2r requires the chaperoning of an accessory protein (Mrap1) to traffic to the membrane surface and bind ACTH. Here, we evaluated the structure and pharmacological properties of Mc2r from the Senegal bichir (Polypterus senegalus), which represents the most basal bony fish from which an Mc2r has been pharmacologically studied to date. In our experiments, cDNA constructs of the Mc2r from the Senegal bichir (sbMc2r) and various vertebrate Mrap1s were heterologously co-expressed in Chinese hamster ovary (CHO) cells, stimulated by ACTH or melanocyte-stimulating hormone (α-MSH) ligands, and assessed using a luciferase reporter gene assay. When expressed without an Mrap1, sbMc2r was not activated by ACTH. When co-expressed with Mrap1 from either chicken (Gallus gallus) or bowfin (Amia calva), sbMc2r could be activated in a dose-dependent manner by ACTH, but not α-MSH. Co-expression of sbMrap2 with sbMc2r resulted in no detectable activation of the receptor. Collectively, these results demonstrate that sbMc2r has pharmacological properties similar to those of Mc2rs of later-evolved bony fishes, such as Mrap1 dependence and ACTH selectivity, indicating that these qualities of Mc2r function are ancestral to all bony fish Mc2rs.
Collapse
Affiliation(s)
| | - Mary F Jensen
- Department of Biological Sciences, University of Denver, Denver, CO
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO
| |
Collapse
|
3
|
Zhang X, Su J, Huang T, Wang X, Wu C, Li J, Li J, Zhang J, Wang Y. Characterization of the chicken melanocortin 5 receptor and its potential role in regulating hepatic glucolipid metabolism. Front Physiol 2022; 13:917712. [PMID: 36277187 PMCID: PMC9583845 DOI: 10.3389/fphys.2022.917712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Melanocortin receptors (MC1R-MC5R) and their accessory proteins (MRAPs) are involved in a variety of physiological processes, including pigmentation, lipolysis, adrenal steroidogenesis, and immunology. However, the physiological roles of MC5R are rarely characterized in vertebrates, particularly in birds. In this work, we cloned the full-length cDNA of chicken MC5R and identified its core promoter region. Functional studies revealed that cMC5R was more sensitive to ACTH/α-MSH than β-MSH/γ-MSH, and was coupled to the cAMP/PKA signaling pathway. We demonstrated that MRAP2 decreased MC5R sensitivity to α-MSH, whereas MRAP1 did not have a similar effect, and that both MRAPs significantly reduced MC5R expression on the cell membrane surface. Transcriptome and qPCR data showed that both MRAP1 and MC5R were highly expressed in chicken liver. Additionally, we observed that ACTH might increase hepatic glucose production and decrease lipogenesis in primary hepatocytes, and dose-dependently downregulated the expression levels of ELOVL6 and THRSPA genes. These findings indicated that ACTH may act directly on hepatocytes to regulate glucolipid metabolism, which will help to understand the function of MC5R in avian.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiancheng Su
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianjiao Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinglong Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chenlei Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Kwok-Shing Wong M, Dores RM. Analyzing the Hypothalamus/Pituitary/Interrenal axis of the neopterygian fish, Lepisosteus oculatus: Co-localization of MC2R, MC5R, MRAP1, and MRAP2 in interrenal cells. Gen Comp Endocrinol 2022; 323-324:114043. [PMID: 35447133 DOI: 10.1016/j.ygcen.2022.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
RT-PCR analysis indicated that steroidogenic tissues are located along the length of the kidney of the neopterygian fish, Lepisosteus oculatus (spotted gar; g). However, RT-PCR analysis of the distribution of mc2r mRNA and mrap1 mRNA, critical components of the gar hypothalamus/pituitary/interrenal (HPI) axis, was only associated with the anterior and medial regions of the kidney. Steroidogenic cells were designated as interrenal cells that possess star mRNA (in situ hybridization) and lipid vesicles (histological analysis) within the kidney. RT-PCR also detected mc5r mRNA along the length of the tissues associated with the kidney. In situ hybridization analysis of the putative interrenal cells revealed co-expression of mc2r, and mc5r mRNAs in the same steroidogenic cells. Co-expression of gar Mc2r (gMc2r) and Mrap1 (gMrap1) in Chinese Hamster Ovary (CHO) cells stimulated with ACTH(1-24) resulted in activation with an EC50 value of 1.0 × 10-11M +/- 4.6 × 10-11); whereas stimulation of CHO cells co-expressed with gar Mc5r (gMc5r) and gMrap1 and stimulated with ACTH(1-24) resulted in an EC50 value that was 3 orders of magnitude lower (2.1 × 10-8 M +/- 3.5 × 10-9). Interesting, when CHO cells were co-transfected with gMc2r, gMc5r, and gMrap1 there was a decline in activation as measured by the Vmax values for CHO cells stimulated with either ACTH(1-24) or α-MSH. These results suggest that some interaction may occur between gMc2r and gMc5r when both receptors are expressed in the same cells. Phylogenetic and selection pressure analyses of vertebrate mc2r and mc5r genes concluded that the two genes are evolving at different rates after duplication from a proposed common ancestral gene.
Collapse
Affiliation(s)
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, USA.
| |
Collapse
|
5
|
Hoglin BE, Miner M, Dores RM. Pharmacological properties of whale shark (Rhincodon typus) melanocortin-2 receptor and melancortin-5 receptor: Interaction with MRAP1 and MRAP2. Gen Comp Endocrinol 2022; 315:113915. [PMID: 34607718 DOI: 10.1016/j.ygcen.2021.113915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In the current study, the whale shark (ws; Rhincodon typus) melanocortin-2 receptor (MC2R) co-expressed with wsMRAP1 in Chinese Hamster Ovary (CHO) Cells could be stimulated in a dose dependent manner by ACTH(1-24) with an EC50 of 2.6 × 10-10 M ± 9.7 × 10-11. When the receptor was expressed alone, stimulation was only observed at [10-6 M]. A comparable increase in sensitivity to stimulation by srDes-Ac-αMSH was also observed when the receptor was co-expressed with wsMRAP1. Furthermore, co-expression with wsMRAP1 significantly increased the trafficking of wsMC2R to the plasma membrane of CHO cells. Surprisingly, co-expression with wsMRAP2 also increased sensitivity to stimulation by ACTH(1-24) and srDes-Ac-αMSH, and increased trafficking of the receptor to the plasma membrane. These observations are in sharp contrast to the response of MC2R orthologs of bony vertebrates which have an obligate requirement for co-expression with MRAP1 for both trafficking to the plasma membrane and activation, whereas, co-expression with MRAP2 increases trafficking, but has minimal effects on activation. In addition, when comparing the activation features of wsMC2R with those of the elephant shark MC2R and red stingray MC2R orthologs, both similarities and differences are observed. The spectrum of features for cartilaginous fish MC2R orthologs will be discussed. A second objective of this study was to determine whether wsMC5R has features in common with wsMC2R in terms of ligand selectivity and interaction with wsMRAP paralogs. While wsMC5R can be activated by either srACTH(1-24) or srDes-Ac-αMSH, and co-expression with wsMRAP1 enhances this activation, wsMRAP1 had no effect on the trafficking of wsMC5R. In addition, co-expression with wsMRAP2 had no positive or negative effect on either ligand sensitivity or trafficking of wsMC5R.
Collapse
Affiliation(s)
- Brianne E Hoglin
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Marin Miner
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA.
| |
Collapse
|
6
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
7
|
Ancient fishes and the functional evolution of the corticosteroid stress response in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111024. [PMID: 34237466 DOI: 10.1016/j.cbpa.2021.111024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022]
Abstract
The neuroendocrine mechanism underlying stress responses in vertebrates is hypothesized to be highly conserved and evolutionarily ancient. Indeed, elements of this mechanism, from the brain to steroidogenic tissue, are present in all vertebrate groups; yet, evidence of the function and even identity of some elements of the hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is equivocal among the most basal vertebrates. The purpose of this review is to discuss the functional evolution of the HPA/I axis in vertebrates with a focus on our understanding of this neuroendocrine mechanism in the most ancient vertebrates: the agnathan (i.e., hagfish and lamprey) and chondrichthyan fishes (i.e., sharks, rays, and chimeras). A review of the current literature presents evidence of a conserved HPA/I axis in jawed vertebrates (i.e., gnathostomes); yet, available data in jawless (i.e., agnathan) and chondrichthyan fishes are limited. Neuroendocrine regulation of corticosteroidogenesis in agnathans and chondrichthyans appears to function through similar pathways as in bony fishes and tetrapods; however, key elements have yet to be identified and the involvement of melanotropins and gonadotropin-releasing hormone in the stress axis in these ancient fishes warrants further investigation. Further, the identities of physiological glucocorticoids are uncertain in hagfishes, chondrichthyans, and even coelacanths. Resolving these and other knowledge gaps in the stress response of ancient fishes will be significant for advancing knowledge of the evolutionary origins of the vertebrate stress response.
Collapse
|
8
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
10
|
Dores RM, Chapa E. Hypothesis and Theory: Evaluating the Co-Evolution of the Melanocortin-2 Receptor and the Accessory Protein MRAP1. Front Endocrinol (Lausanne) 2021; 12:747843. [PMID: 34790168 PMCID: PMC8591103 DOI: 10.3389/fendo.2021.747843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
The melanocortin receptors (MCRs) and the MRAP accessory proteins belong to distinct gene families that are unique to the chordates. During the radiation of the chordates, the melancortin-2 receptor paralog (MC2R) and the MRAP1 paralog (melanocortin-2 receptor accessory protein 1) have co-evolved to form a heterodimer interaction that can influence the ligand selectivity and trafficking properties of MC2R. This apparently spontaneous interaction may have begun with the ancestral gnathostomes and has persisted in both the cartilaginous fishes and the bony vertebrates. The ramifications of this interaction had profound effects on the hypothalamus/anterior pituitary/adrenal-interrenal axis of bony vertebrates resulting in MC2R orthologs that are exclusively selective for the anterior pituitary hormone, ACTH, and that are dependent on MRAP1 for trafficking to the plasma membrane. The functional motifs within the MRAP1 sequence and their potential contact sites with MC2R are discussed. The ramifications of the MC2R/MRAP1 interaction for cartilaginous fishes are also discussed, but currently the effects of this interaction on the hypothalamus/pituitary/interrenal axis is less clear. The cartilaginous fish MC2R orthologs have apparently retained the ability to be activated by either ACTH or MSH-sized ligands, and the effect of MRAP1 on trafficking varies by species. In this regard, the possible origin of the dichotomy between cartilaginous fish and bony vertebrate MC2R orthologs with respect to ligand selectivity and trafficking properties is discussed in light of the evolution of functional amino acid motifs within MRAP1.
Collapse
|
11
|
Dores RM, Oberer N, Hoglin B, Thomas A, Faught E, Vijayan MM. Evaluating interactions between the melanocortin-5 receptor, MRAP1, and ACTH(1-24): A phylogenetic study. Gen Comp Endocrinol 2020; 294:113476. [PMID: 32243958 DOI: 10.1016/j.ygcen.2020.113476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/20/2022]
Abstract
The melanocortin-2 receptor (MC2R) and the melanocortin-5 receptor (MC5R) are found on the same chromosome in most vertebrate genomes, and for the species analyzed in this study, MC2R and MC5R are co-expressed in glucocorticoid-producing cells that also express the accessory protein MRAP1. Since MRAP1 affects the ligand sensitivity of MC2R orthologs, this study tested the hypothesis that co-expression of MC5R with MRAP1 would also affect the ligand sensitivity of MC5R. The hypothesis was confirmed for stingray, rainbow trout, and chicken, MC5R orthologs. However, elephant shark MC5R was not affected in the same way by co-expression of MRAP1. It appears that, for some MC5R orthologs (i.e., stingray, rainbow trout, and chicken), a docking site for the R/KKRRP motif of ACTH(1-24) may become exposed on the receptor following co-expression with MRAP1. However, for elephant shark MC5R co-expression with MRAP1 may not affect engagement ACTH(1-24). Hence during the radiation of the chordates, the interaction between MRAP1 and MC5R has diverged.
Collapse
Affiliation(s)
- Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO, USA.
| | - Natalie Oberer
- University of Denver, Department of Biological Sciences, Denver, CO, USA
| | - Brianne Hoglin
- University of Denver, Department of Biological Sciences, Denver, CO, USA
| | - Alexa Thomas
- University of Denver, Department of Biological Sciences, Denver, CO, USA
| | - Erin Faught
- University of Calgary, Department of Biological Sciences, Calgary, Canada
| | | |
Collapse
|
12
|
Hoglin BE, Miner M, Dores RM. Pharmacological properties of whale shark (Rhincodon typus) melanocortin-2 receptor and melancortin-5 receptor: Interaction with MRAP1 and MRAP2. Gen Comp Endocrinol 2020; 293:113463. [PMID: 32213301 DOI: 10.1016/j.ygcen.2020.113463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 11/28/2022]
Abstract
In the current study, the whale shark (ws; Rhincodon typus) melanocortin-2 receptor (MC2R) co-expressed with wsMRAP1 in Chinese Hamster Ovary (CHO) Cells could be stimulated in a dose dependent manner by ACTH(1-24) with an EC50 of 2.6 × 10-10 M ± 9.7 × 10-11. When the receptor was expressed alone, stimulation was only observed at [10-6 M]. A comparable increase in sensitivity to stimulation by srDes-Ac-αMSH was also observed when the receptor was co-expressed with wsMRAP1. In addition, co-expression with wsMRAP1 significantly increased the trafficking of wsMC2R to the plasma membrane of CHO cells. Surprisingly, co-expression with wsMRAP2 also increased sensitivity to stimulation by ACTH(1-24) and srDes-Ac-αMSH, and increased trafficking of the receptor to the plasma membrane. These observations are in sharp contrast to the response of MC2R orthologs of bony vertebrates which have an obligate requirement for co-expression with MRAP1 for both trafficking to the plasma membrane and activation, and while co-expression with MRAP2 increases trafficking, it has minimal effects on activation. In addition, when comparing the activation features of wsMC2R with those of the elephant shark MC2R and red stingray MC2R orthologs, both similarities and differences are observed. The spectrum of features for cartilaginous fish MC2R orthologs will be discussed. A second objective of this study was to determine whether wsMC5R has features in common with wsMC2R in terms of ligand selectivity and interaction with wsMRAP paralogs. While wsMC5R can be activated by either srACTH(1-24) or srDes-Ac-αMSH, and co-expression with wsMRAP1 enhances this activation, wsMRAP1 had no effect on the trafficking of wsMC5R. Co-expression with wsMRAP2 had no positive or negative effect on either ligand sensitivity or trafficking of wsMC5R.
Collapse
Affiliation(s)
- Brianne E Hoglin
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Marin Miner
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA.
| |
Collapse
|
13
|
Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish ( Danio rerio) Testicular Explants. Biomolecules 2020; 10:biom10030429. [PMID: 32164184 PMCID: PMC7175196 DOI: 10.3390/biom10030429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Cortisol is the major endocrine factor mediating the inhibitory effects of stress on vertebrate reproduction. It is well known that cortisol affects reproduction by interacting with the hypothalamic–pituitary–gonads axis, leading to downstream inhibitory and stimulatory effects on gonads. However, the mechanisms are not fully understood. In this study, we provide novel data demonstrating the stimulatory effects of cortisol on spermatogenesis using an ex vivo organ culture system. The results revealed that cortisol treatment did not modulate basal androgen production, but it influenced transcript levels of a selected number of genes involved in the zebrafish testicular function ar (androgen receptor), star (steroidogenic acute regulatory), cyp17a1 (17α-hydroxylase/17,20 lyase/17,20 desmolase), cyp11a2 (cytochrome P450, family 11, subfamily A, polypeptide 2), hsd11b2 (11-beta hydroxysteroid dehydrogenase), cyp2k22 (cytochrome P450, family 2, subfamily K, polypeptide 22), fkbp5 (FKBP prolyl isomerase 5), grα (glucocorticoid receptor alpha), and grβ (glucocorticoid receptor beta) in a short-term culture. We also showed that cortisol stimulates spermatogonial proliferation and differentiation in an androgen independent manner as well as promoting meiosis and spermiogenesis by increasing the number of spermatozoa in the testes. Moreover, we demonstrated that concomitant treatment with RU 486, a potent glucocorticoid receptor (Gr) antagonist, did not affect the cortisol effects on spermatogonial differentiation but blocked the induced effects on meiosis and spermiogenesis. Supporting the Gr-mediated effects, RU 486 nullified the cortisol-induced expression of sycp3l (synaptonemal complex protein 3), a marker for the meiotic prophase that encodes a component of the synaptonemal complex. This is consistent with in silico analysis that found 10 putative GREs (glucocorticoid response elements) upstream of the zebrafish sycp3l. Finally, we also showed that grα mRNA is expressed in Sertoli and Leydig cells, but also in several types of germ cells, including spermatogonia and spermatocytes. Altogether, this evidence indicates that cortisol exerts paracrine roles in the zebrafish testicular function and spermatogenesis, highlighting its effects on spermatogonial differentiation, meiosis, and spermiogenesis.
Collapse
|
14
|
Hoglin BE, Ferguson A, Pahlavan S, Dores RM. Evidence for diversity in the activation of the melanocortin 2 receptor: A study on gar, elephant shark and stingray MC2Rs. Peptides 2020; 124:170209. [PMID: 31778725 DOI: 10.1016/j.peptides.2019.170209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
The melanocortin-2 receptor (MC2R) is a critical component of the HPI and HPA axes of cartilaginous fishes, teleosts and tetrapods. Studies on teleost and tetrapod orthologs suggest two contact sites between ACTH and the receptor involving the following motifs on ACTH: H6F7R8W9 and K15K16R17R18P19. Using spotted gar (g) MC2R as a representative bony fish MC2R ortholog, we found that activation of gMC2R in Chinese Hamster Ovary (CHO) cells was diminished following stimulation of the transfected cells with hACTH(1-24) analogs substituted with alanine at either the H6F7R8W9 or K15K16R17R18P19 motifs compared to stimulation with hACTH(1-24). This observation suggests two ligand contact sites necessary for activation of the gMC2R. The same experiments were done with elephant shark (es) MC2R, however only the H6F7R8W9 analogs blocked activation, pointing to a single contact on esMC2R. Conversely, the red stingray (sr) MC2R activation was blocked by both the H6F7R8W9 and K15K16R17R18P19 alanine-substituted analogs. Together these results build a picture of the evolution of the ligand and receptor interaction between ACTH and MC2R orthologs of different taxa. These results will be discussed in light of the parallel evolution of MC2R orthologs in cartilaginous fishes and bony vertebrates.
Collapse
Affiliation(s)
- Brianne E Hoglin
- University of Denver, Department of Biological Sciences, Denver, Colorado, 80210, USA
| | - Amanda Ferguson
- University of Denver, Department of Biological Sciences, Denver, Colorado, 80210, USA
| | - Sheila Pahlavan
- University of Denver, Department of Biological Sciences, Denver, Colorado, 80210, USA
| | - Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, Colorado, 80210, USA.
| |
Collapse
|
15
|
Rao YZ, Chen R, Zhang Y, Tao YX. Orange-spotted grouper melanocortin-4 receptor: Modulation of signaling by MRAP2. Gen Comp Endocrinol 2019; 284:113234. [PMID: 31398355 DOI: 10.1016/j.ygcen.2019.113234] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/02/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023]
Abstract
Melanocortin-4 receptor (MC4R) and melanocortin receptor accessory protein 2 (MRAP2) play important roles in the melanocortin system, and interaction of MC4R and MRAP2 is suggested to play pivotal role in energy balance of vertebrates. Orange-spotted grouper (Epinephelus coioides) is a widely cultured marine fish with high economic value in Asia. To explore potential interaction between grouper MC4R and MRAP2, herein we cloned grouper mc4r and mrap2. Grouper mc4r consisted of a 981 bp ORF encoding a putative protein of 327 amino acids, while the grouper mrap2 consisted of a 696 bp ORF encoding a putative protein of 232 amino acids. Sequence and phylogenetic analysis revealed that the grouper MC4R and MRAP2 were highly homologous at amino acid levels to several teleost MC4Rs and MRAP2s, respectively. qRT-PCR results showed that both mc4r and mrap2 were expressed primarily in the central nervous system. In the periphery, these genes were expressed more widely in male fish. The cloned grouper MC4R was functional, exhibiting high constitutive activity in cAMP pathway, capable of binding to three peptide agonists and increasing intracellular cAMP production dose-dependently. MRAP2 significantly decreased basal and agonist-stimulated cAMP signaling. MRAP2 also increased basal ERK1/2 activation but decreased ligand-induced stimulation when expressed at high levels. These data will facilitate future investigation of these molecules in regulating diverse physiological processes in orange-spotted grouper.
Collapse
Affiliation(s)
- Ying-Zhu Rao
- Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Rong Chen
- Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Yong Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
16
|
Vera-Chang MN, Moon TW, Trudeau VL. Cortisol disruption and transgenerational alteration in the expression of stress-related genes in zebrafish larvae following fluoxetine exposure. Toxicol Appl Pharmacol 2019; 382:114742. [PMID: 31476325 DOI: 10.1016/j.taap.2019.114742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 11/16/2022]
Abstract
Fluoxetine (FLX), the active ingredient in well-known therapeutic drugs such as Prozac, is highly prescribed worldwide to treat affective disorders even among pregnant women and adolescents. Given that FLX readily crosses the placenta, a fetus from a treated pregnant woman is potentially at risk from unintended effects of the chemical. Moreover, FLX reaches aquatic ecosystems at biologically active levels through sewage release, so fish may also be inadvertently affected. We previously demonstrated that FLX exposure to environmentally- (Low FLX Lineage; LFL) and human- (High FLX Lineage; HFL) relevant concentrations during the first 6 days of life in zebrafish (ZF; Danio rerio) reduced cortisol levels in the adults (F0), an effect that persisted across 3 consecutive unexposed generations (F1 to F3). Here, we show that the transcriptional profile of selected genes in the steroidogenesis pathway in the F0 whole-larvae varied in magnitude and direction in both FLX lineages, despite the same attenuated cortisol phenotype induced by both concentrations. We also observed an up-regulation in the transcript levels of some steroidogenic-related genes and a down-regulation of a gene involved in the inactivation of cortisol in the F3 HFL larvae. These findings on the transcript levels of the selected genes in the larvae from F0 and F3 suggest that specific coping mechanism(s) are activated in descendants to attempt to counteract the disruptive effects of FLX. Our data are cause for concern, given the increasing prescription rates of FLX and other antidepressants, and the potential long-term negative impacts on humans and aquatic organisms.
Collapse
Affiliation(s)
| | - Thomas W Moon
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
17
|
Davis PE, Wilkinson EC, Dores RM. Identifying Common Features in the Activation of Melanocortin-2 Receptors: Studies on the Xenopus tropicalis Melanocortin-2 Receptor. Int J Mol Sci 2019; 20:ijms20174166. [PMID: 31454910 PMCID: PMC6747542 DOI: 10.3390/ijms20174166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 12/03/2022] Open
Abstract
The interaction between the pituitary hormone, adrenocorticotropin (ACTH), and melanocortin-2 receptor (MC2R) orthologs involves the H6 F7 R8 W9 and R/K15 K16 R17 R18 motifs in ACTH making contact with corresponding contact sites on MC2R. Earlier studies have localized the common HFRW binding site of all melanocortin receptors to residues in TM2, TM3, and TM6 that are located close to the extracellular space. The current study has identified residues in Xenopus tropicalis (xt) MC2R in TM4 (I158, F161), in EC2 (M166), and in TM5 (V172) that also are involved in activation of xtMC2R, and may be in the R/KKRR contact site of xtMC2R. These results are compared to earlier studies on the corresponding domains of human MC2R and rainbow trout MC2R in an effort to identify common features in the activation of teleost and tetrapod MC2R orthologs following stimulation with ACTH.
Collapse
Affiliation(s)
- Perry E Davis
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Emily C Wilkinson
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA.
| |
Collapse
|
18
|
Sandhu N, Liang L, McGeer J, Dores RM, Vijayan MM. Cadmium disrupts melanocortin 2 receptor signaling in rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:26-33. [PMID: 30685544 DOI: 10.1016/j.aquatox.2019.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Cadmium is an endocrine disruptor and inhibits corticosteroid production, but the mechanisms are far from clear. We tested the hypothesis that sublethal exposure to environmentally realistic levels of cadmium impairs cortisol production by disrupting the melanocortin 2 receptor (MC2R) signaling in rainbow trout (Oncorhynchus mykiss). Fish were exposed to sublethal concentrations of cadmium (0.75 or 2.0 μg/L) in a flow-through system for 7 d and subjected to an acute secondary stressor to evoke a cortisol response. Cadmium exposure for 7 d did not affect plasma cortisol concentrations, but head kidney mc2r mRNA levels were higher than in control fish. The cortisol stress performance to a secondary-stressor was attenuated in the cadmium groups, and this corresponded with transient reduction in transcript abundance of mc2r and the gene encoding its accessory protein MRAP1 but not MRAP2 in the head kidney. Furthermore, in vivo cadmium exposure attenuated the adrenocorticotropic hormone (ACTH)-, but not 8-br-cAMP-stimulated cortisol production in head kidney slices ex vivo. This corresponded with reduced transcript abundance of mc2r and mrap1, but not mrap2 in these tissue slices. Also, reporter assays with CHO cells transiently transfected with rainbow trout mc2r and zebrafish mrap1 revealed a dose-independent inhibition in ACTH-stimulated luciferase activity by cadmium. Collectively, waterborne exposure to environmentally realistic concentration of cadmium compromises the stressor-induced cortisol response, and a mode of action involves the disruption of MC2R signaling in rainbow trout.
Collapse
Affiliation(s)
- Navdeep Sandhu
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Liang Liang
- Department of Biology, University of Denver, Denver, CO, 80208-9010, USA
| | - James McGeer
- Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Robert M Dores
- Department of Biology, University of Denver, Denver, CO, 80208-9010, USA
| | | |
Collapse
|
19
|
Barney E, Dores MR, McAvoy D, Davis P, Racareanu RC, Iki A, Hyodo S, Dores RM. Elephant shark melanocortin receptors: Novel interactions with MRAP1 and implication for the HPI axis. Gen Comp Endocrinol 2019; 272:42-51. [PMID: 30468718 DOI: 10.1016/j.ygcen.2018.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
The presence of Mrap1 and Mrap2 orthologs in the genome of the elephant shark (es), a cartilaginous fish, presented an opportunity to evaluate the potential interactions between these accessory proteins and melanocortin receptors of a cartilaginous fish. RT-PCR analysis indicated that Mrap1 mRNA was present in interrenal, brain, and pituitary tissue with mRNA for Mc2R, Mc3R, Mc4R, and Mc5r. Co-expression of esMrap1 cDNA with esMc2r cDNA or esMc5r cDNA in CHO cells increased sensitivity to stimulation with ACTH(1-24) 10 fold and 100 fold, respectfully, but had no effect on sensitivity to stimulation with DesAc-αMSH [i.e., ACTH(1-13)NH2] for either receptor, and had no effect on the ligand sensitivity of either esMc3r or esMc4r. Fluorescence image analysis indicated co-localization of esMrap1/esMc2r, and esMrap1/esMc5r on the plasma membrane; however, cell surface ELISA analysis indicated that co-expression with esMrap1 had no effect, positive or negative, on the trafficking of either esMc2r or esMc5r to the plasma membrane. RT-PCR analysis also indicated that Mrap2 mRNA, as well as, mRNAs for Mc2r, Mc3r, Mc4r, and Mc5r could be detected in brain tissue, however no Mrap2 mRNA was detected in interrenal tissue. Co-expression of esMrap2 in CHO cells with, respectively, esMc2r, esMc4r, or esMc5r had no effect on ligand sensitivity. However, co-expression of esMrap2 with esMc3r did lower sensitivity to stimulation by DesAc-αMSH 10 fold. These observations are discussed in the context of the parallel evolution of melanocortin receptors and their accessory proteins, and the hypothalamus/pituitary/adrenal axis and the hypothalamus/pituitary/interrenal axis in bony vertebrates and cartilaginous fishes.
Collapse
Affiliation(s)
- Emily Barney
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Michael R Dores
- Department of Biology, Hofstra University, Hampstead, NY, USA
| | - Danielle McAvoy
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Perry Davis
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | | | - Ayuko Iki
- Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Susumu Hyodo
- Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO, USA.
| |
Collapse
|
20
|
Dores RM, Scuba-Gray M, McNally B, Davis P, Takahashi A. Evaluating the interactions between red stingray (Dasyatis akajei) melanocortin receptors and elephant shark (Callorhinchus milii) MRAP1 and MRAP2 following stimulation with either stingray ACTH(1-24) or stingray Des-Acetyl-αMSH: A pharmacological study in Chinese Hamster Ovary cells. Gen Comp Endocrinol 2018. [PMID: 29524525 DOI: 10.1016/j.ygcen.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previous studies on bony vertebrate MC2R orthologs (i.e., ray finned fishes, amphibians, reptiles, birds, and mammals) have shown that these MC2R orthologs have an obligatory requirement for interaction with bony vertebrate MRAP1 orthologs to a) allow for the trafficking of the MC2R ortholog to the plasma membrane; and b) to allow activation by ACTH, but not by any MSH-sized ligand. In addition, previous studies have found that co-expression of teleost and mammalian MC4R orthologs with corresponding MRAP2 has positive effects on sensitivity to stimulation by αMSH or ACTH. MRAP1 and MRAP2 paralogs have been detected in the genome of a cartilaginous fish (elephant shark), yet two cartilaginous fish MC2R orthologs (elephant shark and red stingray) do not apparently require MRAP1 for trafficking to the plasma membrane when expressed in Chinese Hamster Ovary (CHO) cells, and both orthologs can be activated by either ACTH or MSH-sized ligands. This study was done to determine whether sensitivity to stimulation by ACTH(1-24) or Des-Acetyl-αMSH is affected when stingray (sr) MC1R, MC2R, MC3R, MC4R or MC5R were co-expressed in CHO cells with either elephant shark (es) MRAP1 or esMRAP2. The results indicated that co-expression with heterologous MRAP1 increased the sensitivity of all five stingray melanocortin receptors for srACTH(1-24), but had not statistically significant effect on stimulation by srDes-Acetyl-αMSH for any of the stingray melanocortin receptors. Conversely, co-expression with esMRAP2 only enhanced sensitivity for srDes-Acetyl-αMSH for srMC4R, but had no effect on the other stingray orthologs, and there was no increase in sensitivity for srACTH(1-24) for any of the stingray melanocortin receptors. It appears then that some stingray melanocortin receptors have retained the ability to interact with a cartilaginous MRAP1 paralog. These results are discussed with reference to radiation of MRAP-related accessory proteins in cartilaginous fishes.
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO, USA.
| | | | - Bridgette McNally
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Perry Davis
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | | |
Collapse
|
21
|
Gonçalves JPL, Palmer D, Meldal M. MC4R Agonists: Structural Overview on Antiobesity Therapeutics. Trends Pharmacol Sci 2018; 39:402-423. [PMID: 29478721 DOI: 10.1016/j.tips.2018.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
The melanocortin-4 receptor (MC4R) regulates adipose tissue formation and energy homeostasis, and is believed to be a monogenic target for novel antiobesity therapeutics. Several research efforts targeting this receptor have identified potent and selective agonists. While viable agonists have been characterized in vitro, undesirable side effects frequently appeared during clinical trials. The most promising candidates have diverse structures, including linear peptides, cyclic peptides, and small molecules. Herein, we present a compilation of potent MC4R agonists and discuss the pivotal structural differences within those molecules that resulted in good selectivity for MC4R over other melanocortins. We provide insight on recent progress in the field and reflect on directions for development of new agonists.
Collapse
Affiliation(s)
- Juliana Pereira Lopes Gonçalves
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| | - Daniel Palmer
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| |
Collapse
|
22
|
Liang L, Davis PV, Dores MR, Dores RM. The melanocortin-2 receptor of the rainbow trout: Identifying a role for critical positions in transmembrane domain 4, extracellular loop 2, and transmembrane domain 5 in the activation of rainbow trout MC2R. Gen Comp Endocrinol 2018; 257:161-167. [PMID: 28495271 DOI: 10.1016/j.ygcen.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 11/25/2022]
Abstract
The activation of either teleost or tetrapod melanocortin-2 receptor (MC2R) orthologs requires interaction between the HFRW motif and R/KKRRP motif in the primary sequence of ACTH, and two corresponding sites on the melanocortin 2 receptor. While the HFRW contact site on MC2R appears to involve residues in TM2, TM3, and TM6, several studies on human MC2R point to the EC2/TM5 region of MC2R as a possible location for the R/KKRRP contact site. In this study nineteen single-alanine mutants of rainbow trout (rt) MC2R were made beginning at V153 in TM4, at all positions in EC2 (extracellular loop 2), to F175 in TM5. For twelve of these alanine mutants (i.e., V153, G155, C162, D163, T165, V166, I167, H169, F170, H172, V173, L174), alanine substitution did not have a statistically significant effect on activation of the receptor. For four of these alanine mutations (i.e., V157, M158, F161, K168), while the negative shift in ligand sensitivity was statistically significant, the magnitude of the negative shift in activation was fivefold or less. However, for substitution at V159 in TM4 (negative shift in activation: 110 fold), F171 in TM5 (negative shift in activation: 48-fold), and F175 in TM5 (negative shift in activation: 100 fold), the effect on activation was both statistically significant and may be physiologically relevant. To support this conclusion, a triple alanine mutant of rtMC2R (V159/A, F171/A, F175/A), and this mutant receptor could not be activated by ACTH at concentrations as high as 10-6M. A Cell Surface ELISA analysis indicated that the trafficking of the triple alanine mutant rtMC2R to the plasma membrane was not impaired by the alanine substitutions. Collectively, these observations point to a critical role for TM4 and TM5 in the activation of the rainbow trout melanocortin-2 receptor.
Collapse
Affiliation(s)
- Liang Liang
- University of Denver, Department of Biological Sciences, Denver, CO, USA
| | - Perry V Davis
- University of Denver, Department of Biological Sciences, Denver, CO, USA
| | - Michael R Dores
- Hofstra University, Biology Department, Hempstead, NY 11549, USA
| | - Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO, USA.
| |
Collapse
|
23
|
Tsalafouta A, Gorissen M, Pelgrim TNM, Papandroulakis N, Flik G, Pavlidis M. α-MSH and melanocortin receptors at early ontogeny in European sea bass (Dicentrarchus labrax, L.). Sci Rep 2017; 7:46075. [PMID: 28378841 PMCID: PMC5380957 DOI: 10.1038/srep46075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/10/2017] [Indexed: 11/18/2022] Open
Abstract
Temporal patterns of whole-body α-MSH concentrations and of transcripts of melanocortin receptors during early development as well as the endocrine response (α-MSH, cortisol, MCR mRNAs) to stress at the end of the larval period were characterized in Dicentrarchus labrax. Immunohistochemistry showed α-MSH positive cells in the pituitary pars intermedia in all stages examined. As development proceeds, α-MSH content gradually increases; mRNA levels of mc2r and mc4r remain low until first feeding where peak values are observed. Mc1r expression was constant during development, pomc mRNA levels remain low until the stage of flexion after which a significant increase is observed. At the stage of the formation of all fins, whole-body cortisol and α-MSH concentrations responded with peak values at 2 h post stress. Additionally, the stress challenge resulted in elevated transcript levels of pomc, mc2r and mc4r but not in mc1r, with a pattern characterized by peak values at 1 h post stress and a strong correlation with whole body α-MSH concentrations was found. Our data provide for the first time a view on the importance of the α-MSH stress response in early development of European sea bass, an additional and relatively poorly understood signal involved in the stress response in teleosts.
Collapse
Affiliation(s)
- A Tsalafouta
- Hellenic Center for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, P.O. Box 2214, Heraklion, Crete, Greece.,University of Crete, Department of Biology, P.O. Box 2208, GR-714 09, Heraklion, Crete, Greece
| | - M Gorissen
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, Heyendaalseweg 135, 6525AJ, The Netherlands
| | - T N M Pelgrim
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, Heyendaalseweg 135, 6525AJ, The Netherlands
| | - N Papandroulakis
- Hellenic Center for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, P.O. Box 2214, Heraklion, Crete, Greece
| | - G Flik
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, Heyendaalseweg 135, 6525AJ, The Netherlands
| | - M Pavlidis
- University of Crete, Department of Biology, P.O. Box 2208, GR-714 09, Heraklion, Crete, Greece
| |
Collapse
|
24
|
Fridmanis D, Roga A, Klovins J. ACTH Receptor (MC2R) Specificity: What Do We Know About Underlying Molecular Mechanisms? Front Endocrinol (Lausanne) 2017; 8:13. [PMID: 28220105 PMCID: PMC5292628 DOI: 10.3389/fendo.2017.00013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
Abstract
Coincidentally, the release of this Research Topic in Frontiers in Endocrinology takes place 25 years after the discovery of the adrenocorticotropic hormone receptor (ACTHR) by Mountjoy and colleagues. In subsequent years, following the discovery of other types of mammalian melanocortin receptors (MCRs), ACTHR also became known as melanocortin type 2 receptor (MC2R). At present, five types of MCRs have been reported, all of which share significant sequence similarity at the amino acid level, and all of which specifically bind melanocortins (MCs)-a group of biologically active peptides generated by proteolysis of the proopiomelanocortin precursor. All MCs share an identical -H-F-R-W- pharmacophore sequence. α-Melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) are the most extensively studied MCs and are derived from the same region. Essentially, α-MSH is formed from the first 13 amino acid residues of ACTH. ACTHR is unique among MCRs because it binds one sole ligand-ACTH, which makes it a very attractive research object for molecular pharmacologists. However, much research has failed, and functional studies of this receptor are lagging behind other MCRs. The reason for these difficulties has already been outlined by Mountjoy and colleagues in their publication on ACTHR coding sequence discovery where the Cloudman S91 melanoma cell line was used for receptor expression because it was a "more sensitive assay system." Subsequent work showed that ACTHR could be successfully expressed only in endogenous MCR-expressing cell lines, since in other cell lines it is retained within the endoplasmic reticulum. The resolution of this methodological problem came in 2005 with the discovery of melanocortin receptor accessory protein, which is required for the formation of functionally active ACTHR. The decade that followed this discovery was filled with exciting research that provided insight into the molecular mechanisms underlying the action of ACTHR. The purpose of this review is to summarize the advances in this fascinating research field.
Collapse
Affiliation(s)
| | - Ance Roga
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
25
|
Takahashi A, Davis P, Reinick C, Mizusawa K, Sakamoto T, Dores RM. Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish. Gen Comp Endocrinol 2016; 232:115-24. [PMID: 27021018 DOI: 10.1016/j.ygcen.2016.03.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/27/2022]
Abstract
Melanocortin (MC) systems are composed of MC peptides such as adrenocorticotropic hormone (ACTH), several molecular forms of melanocyte-stimulating hormones (MSHs) and MC receptors (MCRs). Here we demonstrated that the cartilaginous fish, Dasyatis akajei (stingray) expresses five subtypes of MCR genes-mc1r to mc5r-as in the case of teleost and tetrapod species. This is the first evidence showing the presence of the full repertoire of melanocortin receptors in a single of cartilaginous fish. Expression of respective stingray mcr cDNAs in Chinese hamster ovary cells revealed that Des-acetyl-α-MSH exhibited cAMP-producing activity indistinguishable to ACTH(1-24) on MC1R and MC2R, while the activity of Des-acetyl-α-MSH on MC3R, MC4R, and MC5R were similar to or slightly greater than that of ACTH(1-24). Notably, in contrast to the other vertebrates, MC2R did not require coexpression with a melanocortin receptor-2 accessory protein 1 (mrap1) cDNA for functional expression. One of the roles of MC system resides in regulation of the pituitary-interrenal (PI) axis-a homologue of tetrapod pituitary-adrenal axis. In stingray, interrenal tissues were shown to express mc2r and mc5r as major MCR genes. These results established the presence of functional PI axis in stingray at the level of receptor molecule. While MC2R participates in adrenal functions together with MRAP1 in tetrapod species, the fact that sensitivity of MC5R to Des-acetyl-α-MSH and ACTH(1-24) were two order of magnitude higher than MC2R without coexpression with MRAP1 suggested that MC5R could play a more important role than MC2R to transmit signals conveyed by ACTH and MSHs if MRAP1 is really absent in the stingray.
Collapse
Affiliation(s)
- Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Sagaminara 252-0373, Japan.
| | - Perry Davis
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Christina Reinick
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Sagaminara 252-0373, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi 701-4303 Japan
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
26
|
Watson IPB, Brüne M, Bradley AJ. The evolution of the molecular response to stress and its relevance to trauma and stressor-related disorders. Neurosci Biobehav Rev 2016; 68:134-147. [PMID: 27216210 DOI: 10.1016/j.neubiorev.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
The experience of "stress", in its broadest meaning, is an inevitable part of life. All living creatures have evolved multiple mechanisms to deal with such threats and challenges and to avoid damage to the organism that may be incurred from these stress responses. Trauma and stressor-related disorders are psychiatric conditions that are caused specifically by the experience of stress, though depression, anxiety and some other disorders may also be unleashed by stress. Stress, however, is not a mandatory criterion of these diagnoses. This article focuses on the evolution of the neurochemicals involved in the response to stress and the systems in which they function. This includes the skin and gut, and the immune system. Evidence suggests that responses to stress are evolutionarily highly conserved, have wider involvement than the hypothalamic pituitary adrenal stress axis alone, and that excessive stress responses can produce stressor-related disorders in both humans and animals.
Collapse
Affiliation(s)
- Ian P Burges Watson
- University of Tasmania, Department of Psychiatry, Hobart, Tasmania 7005, Australia
| | - Martin Brüne
- LWL University Hospital, Department of Psychiatry, Division of Cognitive Neuropsychiatry, Ruhr-University Bochum, Germany.
| | - Adrian J Bradley
- School of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
27
|
Dores RM, Liang L, Davis P, Thomas AL, Petko B. 60 YEARS OF POMC: Melanocortin receptors: evolution of ligand selectivity for melanocortin peptides. J Mol Endocrinol 2016; 56:T119-33. [PMID: 26792827 DOI: 10.1530/jme-15-0292] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 01/31/2023]
Abstract
The evolution of the melanocortin receptors (MCRs) is linked to the evolution of adrenocorticotrophic hormone (ACTH), the melanocyte-stimulating hormones (MSHs), and their common precursor pro-opiomelanocortin (POMC). The origin of the MCRs and POMC appears to be grounded in the early radiation of the ancestral protochordates. During the genome duplications that have occurred during the evolution of the chordates, the organization plan for POMC was established, and features that have been retained include, the high conservation of the amino acid sequences of α-MSH and ACTH, and the presence of the HFRW MCR activation motif in all of the melanocortin peptides (i.e. ACTH, α-MSH, β-MSH, γ-MSH, and δ-MSH). For the MCRs, the chordate genome duplication events resulted in the proliferation of paralogous receptor genes, and a divergence in ligand selectivity. While most gnathostome MCRs can be activated by either ACTH or the MSHs, teleost and tetrapod MC2R orthologs can only be activated by ACTH. The appearance of the accessory protein, MRAP1, paralleled the emergence of teleost and tetrapods MC2R ligand selectivity, and the dependence of these orthologs on MRAP1 for trafficking to the plasma membrane. The accessory protein, MRAP2, does not affect MC2R ligand selectivity, but does influence the functionality of MC4R orthologs. In this regard, the roles that these accessory proteins may play in the physiology of the five MCRs (i.e. MC1R, MC2R, MC3R, MC4R, and MC5R) are discussed.
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Liang Liang
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Perry Davis
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Alexa L Thomas
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Bogdana Petko
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| |
Collapse
|
28
|
Dores RM. Hypothesis and Theory: Revisiting Views on the Co-evolution of the Melanocortin Receptors and the Accessory Proteins, MRAP1 and MRAP2. Front Endocrinol (Lausanne) 2016; 7:79. [PMID: 27445982 PMCID: PMC4923161 DOI: 10.3389/fendo.2016.00079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/09/2023] Open
Abstract
The evolution of the melanocortin receptors (MCRs) is closely associated with the evolution of the melanocortin-2 receptor accessory proteins (MRAPs). Recent annotation of the elephant shark genome project revealed the sequence of a putative MRAP1 ortholog. The presence of this sequence in the genome of a cartilaginous fish raises the possibility that the mrap1 and mrap2 genes in the genomes of gnathostome vertebrates were the result of the chordate 2R genome duplication event. The presence of a putative MRAP1 ortholog in a cartilaginous fish genome is perplexing. Recent studies on melanocortin-2 receptor (MC2R) in the genomes of the elephant shark and the Japanese stingray indicate that these MC2R orthologs can be functionally expressed in CHO cells without co-expression of an exogenous mrap1 cDNA. The novel ligand selectivity of these cartilaginous fish MC2R orthologs is discussed. Finally, the origin of the mc2r and mc5r genes is reevaluated. The distinctive primary sequence conservation of MC2R and MC5R is discussed in light of the physiological roles of these two MCR paralogs.
Collapse
Affiliation(s)
- Robert M. Dores
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- *Correspondence: Robert M. Dores,
| |
Collapse
|
29
|
Maben ZJ, Malik S, Jiang LH, Hinkle PM. Dual Topology of the Melanocortin-2 Receptor Accessory Protein Is Stable. Front Endocrinol (Lausanne) 2016; 7:96. [PMID: 27486435 PMCID: PMC4947873 DOI: 10.3389/fendo.2016.00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 01/02/2023] Open
Abstract
Melanocortin 2 receptor accessory protein (MRAP) facilitates trafficking of melanocortin 2 (MC2) receptors and is essential for ACTH binding and signaling. MRAP is a single transmembrane domain protein that forms antiparallel homodimers. These studies ask when MRAP first acquires this dual topology, whether MRAP architecture is static or stable, and whether the accessory protein undergoes rapid turnover. To answer these questions, we developed an approach that capitalizes on the specificity of bacterial biotin ligase, which adds biotin to lysine in a short acceptor peptide sequence; the distinct mobility of MRAP protomers of opposite orientations based on their N-linked glycosylation; and the ease of identifying biotin-labeled proteins. We inserted biotin ligase acceptor peptides at the N- or C-terminal ends of MRAP and expressed the modified proteins in mammalian cells together with either cytoplasmic or endoplasmic reticulum-targeted biotin ligase. MRAP assumed dual topology early in biosynthesis in both CHO and OS3 adrenal cells. Once established, MRAP orientation was stable. Despite its conformational stability, MRAP displayed a half-life of under 2 h in CHO cells. The amount of MRAP was increased by the proteasome inhibitor MG132 and MRAP underwent ubiquitylation on lysine and other amino acids. Nonetheless, when protein synthesis was blocked with cycloheximide, MRAP was rapidly degraded even when MG132 was included and all lysines were replaced by arginines, implicating non-proteasomal degradation pathways. The results show that although MRAP does not change orientations during trafficking, its synthesis and degradation are dynamically regulated.
Collapse
Affiliation(s)
- Zachary J. Maben
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Liyi H. Jiang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Patricia M. Hinkle
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- *Correspondence: Patricia M. Hinkle,
| |
Collapse
|
30
|
|
31
|
Malik S, Dolan TM, Maben ZJ, Hinkle PM. Adrenocorticotropic Hormone (ACTH) Responses Require Actions of the Melanocortin-2 Receptor Accessory Protein on the Extracellular Surface of the Plasma Membrane. J Biol Chem 2015; 290:27972-85. [PMID: 26424796 DOI: 10.1074/jbc.m115.668491] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 01/26/2023] Open
Abstract
The melanocortin-2 (MC2) receptor is a G protein-coupled receptor that mediates responses to ACTH. The MC2 receptor acts in concert with the MC2 receptor accessory protein (MRAP) that is absolutely required for ACTH binding and signaling. MRAP has a single transmembrane domain and forms a highly unusual antiparallel homodimer that is stably associated with MC2 receptors at the plasma membrane. Despite the physiological importance of the interaction between the MC2 receptor and MRAP, there is little understanding of how the accessory protein works. The dual topology of MRAP has made it impossible to determine whether highly conserved and necessary regions of MRAP are required on the intracellular or extracellular face of the plasma membrane. The strategy used here was to fix the orientation of two antiparallel MRAP molecules and then introduce inactivating mutations on one side of the membrane or the other. This was achieved by engineering proteins containing tandem copies of MRAP fused to the amino terminus of the MC2 receptor. The data firmly establish that only the extracellular amino terminus (Nout) copy of MRAP, oriented with critical segments on the extracellular side of the membrane, is essential. The transmembrane domain of MRAP is also required in only the Nout orientation. Finally, activity of MRAP-MRAP-MC2-receptor fusion proteins with inactivating mutations in either MRAP or the receptor was rescued by co-expression of free wild-type MRAP or free wild-type receptor. These results show that the basic MRAP-MRAP-receptor signaling unit forms higher order complexes and that these multimers signal.
Collapse
Affiliation(s)
- Sundeep Malik
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| | - Terrance M Dolan
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| | - Zachary J Maben
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| | - Patricia M Hinkle
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| |
Collapse
|