1
|
Pei X, Li H, Yu H, Wang W, Mao D. APN Expression in Serum and Corpus Luteum: Regulation of Luteal Steroidogenesis Is Possibly Dependent on the AdipoR2/AMPK Pathway in Goats. Cells 2023; 12:1393. [PMID: 37408227 DOI: 10.3390/cells12101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Adiponectin (APN) is an essential adipokine for a variety of reproductive processes. To investigate the role of APN in goat corpora lutea (CLs), CLs and sera from different luteal phases were collected for analysis. The results showed that the APN structure and content had no significant divergence in different luteal phases both in CLs and sera; however, high molecular weight APN was dominant in serum, while low molecular weight APN was more present in CLs. The luteal expression of both AdipoR1/2 and T-cadherin (T-Ca) increased on D11 and 17. APN and its receptors (AdipoR1/2 and T-Ca) were mainly expressed in goat luteal steroidogenic cells. The steroidogenesis and APN structure in pregnant CLs had a similar model as in the mid-cycle CLs. To further explore the effects and mechanisms of APN in CLs, steroidogenic cells from pregnant CLs were isolated to detect the AMPK-mediated pathway by the activation of APN (AdipoRon) and knockdown of APN receptors. The results revealed that P-AMPK in goat luteal cells increased after incubation with APN (1 μg/mL) or AdipoRon (25 μM) for 1 h, and progesterone (P4) and steroidogenic proteins levels (STAR/CYP11A1/HSD3B) decreased after 24 h. APN did not affect the steroidogenic protein expression when cells were pretreated with Compound C or SiAMPK. APN increased P-AMPK and reduced the CYP11A1 expression and P4 levels when cells were pretreated with SiAdipoR1 or SiT-Ca, while APN failed to affect P-AMPK, the CYP11A1 expression or the P4 levels when pretreated with SiAdipoR2. Therefore, the different structural forms of APN in CLs and sera may possess distinct functions; APN might regulate luteal steroidogenesis through AdipoR2 which is most likely dependent on AMPK.
Collapse
Affiliation(s)
- Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Complement 1q/Tumor Necrosis Factor-Related Proteins (CTRPs): Structure, Receptors and Signaling. Biomedicines 2023; 11:biomedicines11020559. [PMID: 36831095 PMCID: PMC9952994 DOI: 10.3390/biomedicines11020559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction.
Collapse
|
3
|
Retraction: Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation. PLoS One 2023; 18:e0283354. [PMID: 36920966 PMCID: PMC10016713 DOI: 10.1371/journal.pone.0283354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
4
|
Han W, Yang S, Xiao H, Wang M, Ye J, Cao L, Sun G. Role of Adiponectin in Cardiovascular Diseases Related to Glucose and Lipid Metabolism Disorders. Int J Mol Sci 2022; 23:15627. [PMID: 36555264 PMCID: PMC9779180 DOI: 10.3390/ijms232415627] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Lifestyle changes have led to increased incidence of cardiovascular disease (CVD); therefore, potential targets against CVD should be explored to mitigate its risks. Adiponectin (APN), an adipokine secreted by adipose tissue, has numerous beneficial effects against CVD related to glucose and lipid metabolism disorders, including regulation of glucose and lipid metabolism, increasing insulin sensitivity, reduction of oxidative stress and inflammation, protection of myocardial cells, and improvement in endothelial cell function. These effects demonstrate the anti-atherosclerotic and antihypertensive properties of APN, which could aid in improving myocardial hypertrophy, and reducing myocardial ischemia/reperfusion (MI/R) injury and myocardial infarction. APN can also be used for diagnosing and predicting heart failure. This review summarizes and discusses the role of APN in the treatment of CVD related to glucose and lipid metabolism disorders, and explores future APN research directions and clinical application prospects. Future studies should elucidate the signaling pathway network of APN cardiovascular protective effects, which will facilitate clinical trials targeting APN for CVD treatment in a clinical setting.
Collapse
Affiliation(s)
- Wen Han
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shuxian Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haiyan Xiao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Li Cao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
5
|
Guan F, Ding Y, He Y, Li L, Yang X, Wang C, Hu M. Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:457-468. [PMID: 36302621 PMCID: PMC9614402 DOI: 10.4196/kjpp.2022.26.6.457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.
Collapse
Affiliation(s)
- Feng Guan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yikang He
- Tongji Medical College Huazhong University of Science and Technology, School of Nursing, Wuhan 430030, China
| | - Lu Li
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Xinyu Yang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China,Correspondence Changhua Wang, E-mail:
| | - Mingbai Hu
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China,Mingbai Hu, E-mail:
| |
Collapse
|
6
|
Hu X, Xi Y, Bai W, Zhang Z, Qi J, Dong L, Liang H, Sun Z, Lei L, Fan G, Sun C, Huo C, Huang J, Wang T. Polymorphisms of adiponectin gene and gene–lipid interaction with hypertension risk in Chinese coal miners: A matched case-control study. PLoS One 2022; 17:e0268984. [PMID: 36094942 PMCID: PMC9467355 DOI: 10.1371/journal.pone.0268984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/12/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Low serum adiponectin level can predict hypertension development, and adiponectin gene (ADIPOQ) polymorphisms have been reported to be linked with hypertension risk. Whereas, the interaction between ADIPOQ polymorphisms and environmental factors on the susceptibility of hypertension remained unclear. The purpose of this study was to explore the relationship of ADIPOQ polymorphisms with hypertension risk and their interaction with lipid levels in coal miners. Methods A matched case-control study with 296 case-control pairs was performed in a large coal mining group located in North China. The participants were questioned by trained interviewers, and their ADIPOQ genotype and lipid levels were determined. Logistic regression, stratified analysis, and crossover analysis were applied to evaluate the effects of rs2241766, rs1501299, and rs266729 genotypes and gene–lipid interaction on hypertension risk. Results In this matched case-control study, the genotypes of rs2241766 TG+GG, rs1501299 GT+TT, and rs266729 CG+GG were marginally related to hypertension risk. Individuals with high total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) level were susceptible to hypertension (TC: odds ratio [OR] = 1.807, 95% confidence intervals [95%CI] = 1.266–2.581; LDL-C: OR = 1.981, 95%CI = 1.400–2.803; HDL-C: OR = 1.559, 95%CI = 1.093–2.223). Antagonistic interactions were detected between rs2241766 and TC, rs1501299 and TC, rs2241766 and LDL-C, and rs1501299 and HDL-C (rs2241766 and TC: OR = 0.393, 95%CI = 0.191–0.806; rs1501299 and TC: OR = 0.445, 95%CI = 0.216–0.918; rs2241766 and LDL-C: OR = 0.440, 95%CI = 0.221–0.877; rs1501299 and HDL-C: OR = 0.479, 95%CI = 0.237–0.967). Stratified analysis showed that hypertension risk was high for the subjects with rs2241766 TG+GG or rs1501299 GG under the low lipid level but low for those under the high lipid level. In the case group, the TC and LDL-C levels for rs2241766 TG+GG were lower than those for rs2241766 GG, and the TC and HDL-C levels for rs1501299 GT+TT were higher than those for rs1501299 GG. Conclusions Although the effects of ADIPOQ polymorphisms alone were not remarkable, an antagonistic interaction was observed between ADIPOQ polymorphisms and lipid levels.
Collapse
Affiliation(s)
- Xiaoqin Hu
- Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Shanxi Province Cancer Hospital, School of Public Health, Shanxi Medical University, Taiyuan, China
- * E-mail: (TW); (XH)
| | - Yanfeng Xi
- Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Shanxi Province Cancer Hospital, Taiyuan, China
| | - Wenqi Bai
- Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Shanxi Province Cancer Hospital, Taiyuan, China
| | - Zhenjun Zhang
- Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Shanxi Province Cancer Hospital, Taiyuan, China
| | - Jiahao Qi
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Liang Dong
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Huiting Liang
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zeyu Sun
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Lijian Lei
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Guoquan Fan
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Chenming Sun
- Sinopharm Tongmei General Hospital, Datong, China
| | - Cheng Huo
- Sinopharm Tongmei General Hospital, Datong, China
| | | | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan, China
- * E-mail: (TW); (XH)
| |
Collapse
|
7
|
Single Nucleotide Polymorphism in the ADIPOQ Gene Modifies Adiponectin Levels and Glycemic Control in Type Two Diabetes Mellitus Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6632442. [PMID: 35528179 PMCID: PMC9068336 DOI: 10.1155/2022/6632442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus (DM) is the ninth leading cause of death worldwide. Mortality from DM is largely attributed to disease complications. Glycemic control of DM patients reduces mortality. Studies indicated that the lack of glycemic control in DM patients could be influenced by the genetic background of the patients. Evidence suggests that adiponectin levels are dysregulated in DM patients with poor glycemic control. Serum adiponectin level is a heritable trait influenced by single nucleotide polymorphisms (SNPs) in the ADIPOQ gene. It is hypothesized that SNPs in ADIPOQ could modify glycemic control in DM patients. To test this hypothesis, 375 type 2 DM (T2DM) patients were recruited. Patients were classified into good vs. poor glycemic control according to hemoglobin A1c levels. Study subjects were genotyped for variations of four SNPs in ADIPOQ (rs17300539, rs266729, rs2241766, and rs1501299). Adiponectin levels were measured from the serum. Our analysis showed that reduced serum adiponectin, a longer duration of treatment, and increased insulin resistance were all significant predictors of poor glycemic control. Moreover, the T allele and the TT genotype of rs2241766 were significantly more frequent in patients with poor glycemic control (P < 0.05). Individuals with the TT genotype of rs2241766 had significantly lower levels of serum adiponectin (P < 0.05). It was concluded that lower levels of serum adiponectin and the T allele of rs2241766 SNP in ADIPOQ were associated with poor glycemic control in T2DM patients.
Collapse
|
8
|
Guo Q, Chang B, Yu QL, Xu ST, Yi XJ, Cao SC. Adiponectin treatment improves insulin resistance in mice by regulating the expression of the mitochondrial-derived peptide MOTS-c and its response to exercise via APPL1-SIRT1-PGC-1α. Diabetologia 2020; 63:2675-2688. [PMID: 32880686 DOI: 10.1007/s00125-020-05269-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Adiponectin stimulates mitochondrial biogenesis through peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), a major regulator of mitochondrial biogenesis. MOTS-c (mitochondrial open reading frame of the 12S rRNA) is a biologically active mitochondrial-derived peptide encoded by mitochondrial DNA. It influences the mechanisms of obesity and diabetes. We hypothesised that the adiponectin pathway may regulate the production and/or secretion of MOTS-c in skeletal muscle. We aimed to determine whether exercise and adiponectin affect MOTS-c to improve insulin resistance in mice. METHODS To investigate this hypothesis, we used wild-type C57BL/6 mice subjected to high-fat diet, an exercise regimen, and i.p. injection of recombinant mouse adiponectin (Acrp30) or MOTS-c, and adiponectin knockout (Adipoq-/-) mice (C57BL/6 background) subjected to i.p. injection of Acrp30. C2C12 myotubes were also treated with sirtuin 1 (SIRT1) inhibitor, PGC-1α inhibitor, SIRT1 activator, plasmid-expressed active APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper), pcDNA-SIRT1, or siRNA against APPL1, SIRT1 or PGC-1α. RESULTS In Adipoq-/- mice, MOTS-c levels in the plasma and skeletal muscle were downregulated. In C2C12 myotubes, adiponectin increased the mRNA expression of MOTS-c. APPL1 protein level following adiponectin treatment positively correlated with MOTS-c protein and mRNA levels in C2C12 myotubes. SIRT1 overexpression increased the adiponectin-induced mRNA and protein expression of MOTS-c, SIRT1 and PGC-1α. Pharmacologic and genetic inhibition of PGC-1α suppressed the increases in MOTS-c mRNA and protein levels induced by SIRT1 overexpression. In mice, plasma and skeletal muscle MOTS-c levels were significantly downregulated following high-fat-diet. Exercise and i.p. Acrp30 or MOTS-c increased MOTS-c levels and adiponectin mRNA and protein expression in the plasma and skeletal muscle. CONCLUSIONS/INTERPRETATION Our findings showed that the APPL1-SIRT1-PGC-1α pathway regulates the production and/or secretion of skeletal muscle MOTS-c by mediating adiponectin signalling. Our study provides an insight into the cellular and molecular pathways underlying the pathogenesis of diabetes and shows that MOTS-c is a potential novel therapeutic target in the treatment of diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Qi Guo
- Department of Sports Medicine, China Medical University, Shenyang, China
| | - Bo Chang
- Exercise and Health Research Center/Department of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Qiong-Li Yu
- Department of Sports Medicine, China Medical University, Shenyang, China
| | - Si-Tong Xu
- Exercise and Health Research Center/Department of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Jie Yi
- Exercise and Health Research Center/Department of Kinesiology, Shenyang Sport University, Shenyang, China.
| | - Shi-Cheng Cao
- Department of Sports Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Choi HM, Doss HM, Kim KS. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int J Mol Sci 2020; 21:ijms21041219. [PMID: 32059381 PMCID: PMC7072842 DOI: 10.3390/ijms21041219] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/28/2022] Open
Abstract
Adiponectin is the richest adipokine in human plasma, and it is mainly secreted from white adipose tissue. Adiponectin circulates in blood as high-molecular, middle-molecular, and low-molecular weight isoforms. Numerous studies have demonstrated its insulin-sensitizing, anti-atherogenic, and anti-inflammatory effects. Additionally, decreased serum levels of adiponectin is associated with chronic inflammation of metabolic disorders including Type 2 diabetes, obesity, and atherosclerosis. However, recent studies showed that adiponectin could have pro-inflammatory roles in patients with autoimmune diseases. In particular, its high serum level was positively associated with inflammation severity and pathological progression in rheumatoid arthritis, chronic kidney disease, and inflammatory bowel disease. Thus, adiponectin seems to have both pro-inflammatory and anti-inflammatory effects. This indirectly indicates that adiponectin has different physiological roles according to an isoform and effector tissue. Knowledge on the specific functions of isoforms would help develop potential anti-inflammatory therapeutics to target specific adiponectin isoforms against metabolic disorders and autoimmune diseases. This review summarizes the current roles of adiponectin in metabolic disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Hyung Muk Choi
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; (H.M.C.); (H.M.D.)
| | - Hari Madhuri Doss
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; (H.M.C.); (H.M.D.)
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Gandong-gu, Seoul 02447, Korea
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; (H.M.C.); (H.M.D.)
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Gandong-gu, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9619
| |
Collapse
|
10
|
Lu Y, Ma Y, Wang R, Sun J, Guo B, Wei R, Jia Y. Adiponectin inhibits vascular smooth muscle cell calcification induced by beta-glycerophosphate through JAK2/STAT3 signaling pathway. J Biosci 2019. [DOI: 10.1007/s12038-019-9895-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Inhibition of SphK2 Stimulated Hepatic Gluconeogenesis Associated with Dephosphorylation and Deacetylation of STAT3. Arch Med Res 2018; 49:335-341. [PMID: 30448236 DOI: 10.1016/j.arcmed.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sphingosine kinase (SphK) is considered as a potential target for developing novel therapeutics of cancer and other diseases including diabetes. As the major SphK isoform in the liver, much less is known the role of SphK2 involved in regulating hepatic glucose metabolism. METHOD In this study, RNA interference, real time RT-PCR, western blot and immunoprecipitation method was used to investigate the regulation of SphK2 in hepatic glucose metabolism. RESULTS Both siRNA and SphK2 inhibitor ABC294640 stimulated expression of gluconeogenetic gene PEPCK and G6Pase but not enzymes of hepatic glycogenolysis, glycolysis and glycogen synthesis. Inhibition of SphK2 also prevented insulin repressed PEPCK and G6Pase expression as well as glucose production levels. Furtherly, inhibition of SphK2 inactivated STAT3 by decreasing both phosphorylation on Tyr705 and acetylation on lysine residue, and led to stimulation of PEPCK and G6Pase expression. Inhibition of SphK2 also prevented IL-6 dependent activation of STAT3 and suppression of PEPCK and G6pase expression both in vitro and in vivo. CONCLUSION Our study suggests that SphK2 participates in hepatic glucose metabolism related to activation of STAT3.
Collapse
|
12
|
Wang B, Guo H, Li X, Yue L, Liu H, Zhao L, Bai H, Liu X, Wu X, Qu Y. Adiponectin Attenuates Oxygen-Glucose Deprivation-Induced Mitochondrial Oxidative Injury and Apoptosis in Hippocampal HT22 Cells via the JAK2/STAT3 Pathway. Cell Transplant 2018; 27:1731-1743. [PMID: 29947255 PMCID: PMC6300778 DOI: 10.1177/0963689718779364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is among the leading causes of morbidity and mortality worldwide. Improving the tolerance of neurons to ischemia and reperfusion injury could be a feasible strategy against ischemia. Adiponectin (APN) is a major adipokine that regulates glucose and lipid metabolism and plays an important role in the protection of the cerebral nervous system. We aimed to investigate the effects of APN on oxygen and glucose deprivation (OGD)-induced neuronal injury in hippocampal neuronal HT22 cells. APN displayed neuroprotective effects against OGD, evidenced by increased cell viability and decreased lactate dehydrogenase release and apoptotic rate. Additionally, APN also maintained mitochondrial ultrastructure and transmembrane potential, attenuated reactive oxygen species and malondialdehyde, and increased superoxide dismutase and glutathione peroxidase activity. Moreover, APN promoted Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) phosphorylation, enhanced STAT3 nuclear translocation, increased the Bcl-2/Bax ratio, and decreased cleaved caspase-3. The aforementioned APN-induced effects were almost reversed by a JAK2 inhibitor, AG490. APN may attenuate OGD-induced hippocampal HT22 neuronal impairment by protecting cells against mitochondrial oxidative stress and apoptosis, mediated by JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Bodong Wang
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,2 Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Hao Guo
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xia Li
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liang Yue
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,3 Department of Neurosurgery, Xi'an Aerospace General Hospital, Xi'an, China
| | - Haixiao Liu
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Zhao
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Bai
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xunyuan Liu
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xun Wu
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Qu
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Ding Y, Wang B, Chen X, Zhou Y, Ge J. Staurosporine suppresses survival of HepG2 cancer cells through Omi/HtrA2-mediated inhibition of PI3K/Akt signaling pathway. Tumour Biol 2017; 39:1010428317694317. [PMID: 28349827 DOI: 10.1177/1010428317694317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Staurosporine, which is an inhibitor of a broad spectrum of protein kinases, has shown cytotoxicity on several human cancer cells. However, the underlying mechanism is not well understood. In this study, we examined whether and how this compound has an inhibitory action on phosphatidylinositol 3-kinase (PI3K)/Akt pathway in vitro using HepG2 human hepatocellular carcinoma cell line. Cell viability and apoptosis were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxyribonucleotidyl transferase–mediated dUTP-digoxigenin nick end labeling (TUNEL) assay, respectively. Glutathione S-transferase (GST) pull-down assay and co-immunoprecipitation were performed to detect protein–protein interactions. Small interfering RNA (siRNA) was used to silence the expression of targeted protein. We found that staurosporine significantly decreased cell viability and increased cell apoptosis in a concentration- and time-dependent manner in HepG2 cancer cells, along with the decreased expressions of PDK1 protein and Akt phosphorylation. Staurosporine was also found to enhance Omi/HtrA2 release from mitochondria. Furthermore, Omi/HtrA2 directly bound to PDK1. Pharmacological and genetic inhibition of Omi/HtrA2 restored protein levels of PDK1 and protected HepG2 cancer cells from staurosporine-induced cell death. In addition, staurosporine was found to activate autophagy. However, inhibition of autophagy exacerbated cell death under concomitant treatment with staurosporine. Taken together, our results indicate that staurosporine induced cytotoxicity response by inhibiting PI3K/Akt signaling pathway through Omi/HtrA2-mediated PDK1 degradation, and the process provides a novel mechanism by which staurosporine produces its therapeutic effects.
Collapse
Affiliation(s)
- Youming Ding
- Department of Hepatobiliary & Laparoscopic Surgery, Wuhan University Renmin Hospital, Wuhan, China
| | - Bin Wang
- Department of Hepatobiliary & Laparoscopic Surgery, Wuhan University Renmin Hospital, Wuhan, China
| | - Xiaoyan Chen
- Department of Hepatobiliary & Laparoscopic Surgery, Wuhan University Renmin Hospital, Wuhan, China
| | - Yu Zhou
- Department of Hepatobiliary & Laparoscopic Surgery, Wuhan University Renmin Hospital, Wuhan, China
| | - Jianhui Ge
- Department of Hepatobiliary & Laparoscopic Surgery, Wuhan University Renmin Hospital, Wuhan, China
| |
Collapse
|
14
|
Liu Z, Xiao T, Peng X, Li G, Hu F. APPLs: More than just adiponectin receptor binding proteins. Cell Signal 2017; 32:76-84. [PMID: 28108259 DOI: 10.1016/j.cellsig.2017.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/31/2022]
Abstract
APPLs (adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif) are multifunctional adaptor proteins that bind to various membrane receptors, nuclear factors and signaling proteins to regulate many biological activities and processes, such as cell proliferation, chromatin remodeling, endosomal trafficking, cell survival, cell metabolism and apoptosis. APPL1, one of the APPL isoforms, was the first identified protein and interacts directly with adiponectin receptors to mediate adiponectin signaling to enhance lipid oxidation and glucose uptake. APPLs also act on insulin signaling pathways and are important mediators of insulin sensitization. Based on recent findings, this review highlights the critical roles of APPLs, particularly APPL1 and its isoform partner APPL2, in mediating adiponectin, insulin, endosomal trafficking and other signaling pathways. A deep understanding of APPLs and their related signaling pathways may potentially lead to therapeutic and interventional treatments for obesity, diabetes, cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhuoying Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ting Xiao
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaoyu Peng
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|