1
|
Sur S, Stewart C, Liddle TA, Monteiro AM, Denizli I, Majumdar G, Stevenson TJ. Molecular basis of photoinduced seasonal energy rheostasis in Japanese quail (Coturnix japonica). Mol Cell Endocrinol 2025; 595:112415. [PMID: 39561917 DOI: 10.1016/j.mce.2024.112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Seasonal rhythms in photoperiod are a predictive cue used by many temperate-zone animals to time cycles of lipid accumulation. The neuroendocrine regulation of seasonal energy homeostasis and rheostasis are widely studied. However, the molecular pathways underlying tissue-specific adaptations remain poorly described. We conducted two experiments to examine long-term rheostatic changes in energy stability using the well-characterized photoperiodic response of the Japanese quail. In experiment 1, we exposed quails to photoperiodic transitions simulating the annual photic cycle and examined the morphology and fat deposition in liver, muscle, and adipose tissue. To identify changes in gene expression and molecular pathways during the vernal transition in lipid accumulation, we conducted transcriptomic analyses of adipose and liver tissues. Experiment 2 assessed whether the changes observed in Experiment 1 reflected constitutive levels or were due to time-of-day sampling. We identified increased expression of transcripts involved in adipocyte growth, such as Cysteine Rich Angiogenic Inducer 61 and Very Low-Density Lipoprotein Receptor, and in obesity-linked disease resistance, such as Insulin-Like Growth Factor Binding Protein 2 and Apolipoprotein D, in anticipation of body mass gain. Under long photoperiods, hepatic transcripts involved in fatty acid (FA) synthesis (FA Synthase, FA Desaturase 2) were down-regulated. Parallel upregulation of hepatic FA Translocase and Pyruvate Dehydrogenase Kinase 4 expression suggests increased FA uptake and inhibition of the pyruvate dehydrogenase complex. Our findings demonstrate tissue-specific biochemical and molecular changes that drive photoperiod-induced adipogenesis. These findings can be used to determine conserved pathways that enable animals to accumulate fat without developing metabolic diseases.
Collapse
Affiliation(s)
- Sayantan Sur
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Calum Stewart
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Timothy A Liddle
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Ana Maria Monteiro
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Irem Denizli
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Gaurav Majumdar
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom; Department of Zoology, University of Allahabad, Uttar Pradesh, 211002, India.
| | - Tyler J Stevenson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
2
|
Williams CC, Chuck J, Munoz-Tello P, Kojetin DJ. A tethering mechanism underlies Pin1-catalyzed proline cis-trans isomerization at a noncanonical site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604348. [PMID: 39091828 PMCID: PMC11291072 DOI: 10.1101/2024.07.19.604348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The prolyl isomerase Pin1 catalyzes the cis-trans isomerization of proline peptide bonds, a non-covalent post-translational modification that influences cellular and molecular processes, including protein-protein interactions. Pin1 is a two-domain enzyme containing a WW domain that recognizes phosphorylated serine/threonine-proline (pS/pT-P) canonical motifs and an enzymatic PPIase domain that catalyzes proline cis-trans isomerization of pS/pT-P motifs. Here, we show that Pin1 uses a tethering mechanism to bind and catalyze proline cis-trans isomerization of a noncanonical motif in the disordered N-terminal activation function-1 (AF-1) domain of the human nuclear receptor PPARγ. NMR reveals multiple Pin1 binding regions within the PPARγ AF-1, including a canonical motif that when phosphorylated by the kinase ERK2 (pS112-P113) binds the Pin1 WW domain with high affinity. NMR methods reveal that Pin1 also binds and accelerates cis-trans isomerization of a noncanonical motif containing a tryptophan-proline motif (W39-P40) previously shown to be involved in an interdomain interaction with the C-terminal ligand-binding domain (LBD). Cellular transcription studies combined with mutagenesis and Pin1 inhibitor treatment reveal a functional role for Pin1-mediated acceleration of cis-trans isomerization of the W39-P40 motif. Our data inform a refined model of the Pin1 catalytic mechanism where the WW domain binds a canonical pS/T-P motif and tethers Pin1 to the target, which enables the PPIase domain to exert catalytic cis-trans isomerization at a distal noncanonical site.
Collapse
Affiliation(s)
- Christopher C. Williams
- Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, United States
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
| | - Jonathan Chuck
- Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, United States
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
| | - Paola Munoz-Tello
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Douglas J. Kojetin
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
3
|
Zhao T, Tian T, Yu H, Cao C, Zhang Z, He Z, Ma Z, Cai R, Li F, Pang W. Identification of porcine fast/slow myogenic exosomes and their regulatory effects on lipid accumulation in intramuscular adipocytes. J Anim Sci Biotechnol 2024; 15:73. [PMID: 38824596 PMCID: PMC11144342 DOI: 10.1186/s40104-024-01029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/01/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Pork quality is affected by the type of muscle fibers, which is closely related to meat color, tenderness and juiciness. Exosomes are tiny vesicles with a diameter of approximately 30-150 nm that are secreted by cells and taken up by recipient cells to mediate communication. Exosome-mediated muscle-fat tissue crosstalk is a newly discovered mechanism that may have an important effect on intramuscular fat deposition and with that on meat quality. Various of adipose tissue-derived exosomes have been discovered and identified, but the identification and function of muscle exosomes, especially porcine fast/slow myotube exosomes, remain unclear. Here, we first isolated and identified exosomes secreted from porcine extensor digitorum longus (EDL) and soleus (SOL), which represent fast and slow muscle, respectively, and further explored their effects on lipid accumulation in longissimus dorsi adipocytes. RESULTS Porcine SOL-derived exosomes (SOL-EXO) and EDL-derived exosomes (EDL-EXO) were first identified and their average particle sizes were approximately 84 nm with double-membrane disc- shapes as observed via transmission electron microscopy and scanning electron microscopy. Moreover, the intramuscular fat content of the SOL was greater than that of the EDL at 180 days of age, because SOL intramuscular adipocytes had a stronger lipid-accumulating capacity than those of the EDL. Raman spectral analysis revealed that SOL-EXO protein content was much greater than that of EDL-EXO. Proteomic sequencing identified 72 proteins that were significantly differentially expressed between SOL-EXO and EDL-EXO, 31 of which were downregulated and 41 of which were upregulated in SOL-EXO. CONCLUSIONS Our findings suggest that muscle-fat tissue interactions occur partly via SOL-EXO promoting adipogenic activity of intramuscular adipocytes.
Collapse
Affiliation(s)
- Tiantian Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tingting Tian
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - He Yu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chaoyue Cao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziyi Zhang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhaozhao He
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zeqiang Ma
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rui Cai
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Li Y, Lee SH, Piao M, Kim HS, Lee KY. Metallothionein 3 Inhibits 3T3-L1 Adipocyte Differentiation via Reduction of Reactive Oxygen Species. Antioxidants (Basel) 2023; 12:antiox12030640. [PMID: 36978888 PMCID: PMC10045306 DOI: 10.3390/antiox12030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Metallothionein 3 (MT3), also known as a neuronal growth-inhibitory factor, is a member of the metallothionein family and is involved in a variety of biological functions, including protection against metal toxicity and reactive oxygen species (ROS). However, less is known about the role of MT3 in the differentiation of 3T3-L1 cells into adipocytes. In this study, we observed that MT3 levels were downregulated during 3T3-L1 adipocyte differentiation. Mt3 overexpression inhibited adipocyte differentiation and reduced the levels of the adipogenic transcription factors C/EBPα and PPARγ. Further analyses showed that MT3 also suppressed the transcriptional activity of PPARγ, and this effect was not mediated by a direct interaction between MT3 with PPARγ. In addition, Mt3 overexpression resulted in a decrease in ROS levels during early adipocyte differentiation, while treatment with antimycin A, which induces ROS generation, restored the ROS levels. Mt3 knockdown, on the other hand, elevated ROS levels, which were suppressed upon treatment with the antioxidant N-acetylcysteine. Our findings indicate a previously unknown role of MT3 in the differentiation of 3T3-L1 cells into adipocytes and provide a potential novel target that might facilitate obesity treatment.
Collapse
Affiliation(s)
- Yuankuan Li
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung Ho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Meiyu Piao
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Correspondence: (H.S.K.); (K.Y.L.)
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence: (H.S.K.); (K.Y.L.)
| |
Collapse
|
5
|
Caligiuri I, Vincenzo C, Asano T, Kumar V, Rizzolio F. The metabolic crosstalk between PIN1 and the tumour microenvironment. Semin Cancer Biol 2023; 91:143-157. [PMID: 36871635 DOI: 10.1016/j.semcancer.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is a member of a family of peptidyl-prolyl isomerases that specifically recognizes and binds phosphoproteins, catalyzing the rapid cis-trans isomerization of phosphorylated serine/threonine-proline motifs, which leads to changes in the structures and activities of the targeted proteins. Through this complex mechanism, PIN1 regulates many hallmarks of cancer including cell autonomous metabolism and the crosstalk with the cellular microenvironment. Many studies showed that PIN1 is largely overexpressed in cancer turning on a set of oncogenes and abrogating the function of tumor suppressor genes. Among these targets, recent evidence demonstrated that PIN1 is involved in lipid and glucose metabolism and accordingly, in the Warburg effect, a characteristic of tumor cells. As an orchestra master, PIN1 finely tunes the signaling pathways allowing cancer cells to adapt and take advantage from a poorly organized tumor microenvironment. In this review, we highlight the trilogy among PIN1, the tumor microenvironment and the metabolic program rewiring.
Collapse
Affiliation(s)
- Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Canzonieri Vincenzo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tomochiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy.
| |
Collapse
|
6
|
Chen L, Liu R, He X, Pei S, Li D. Effects of brown seaweed polyphenols, a class of phlorotannins, on metabolic disorders via regulation of fat function. Food Funct 2021; 12:2378-2388. [PMID: 33645609 DOI: 10.1039/d0fo02886j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that fat dysfunction is the main driver of development of metabolic disorders. Changes in diet and lifestyle are particularly important to reverse the current global rise in obesity-related metabolic disorders. Seaweed has been consumed for thousands of years, and it is rich in bioactive compounds, especially unique polyphenols. The aim of the present review is to summarize the effects of different seaweed polyphenols on fat function in metabolic disorders and the related mechanisms. Seaweed polyphenols activate white adipose tissue to "brown" or "beige" adipose tissue to enhance energy consumption. In addition, the amelioration of fat factor imbalance and inflammatory response is also considered as an important reason for the regulation of lipid function with seaweed polyphenols. The present review provides an important basis for using seaweed polyphenols as potential dietary supplements to prevent metabolic disorders.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | | | | | | | | |
Collapse
|
7
|
Li J, Mo C, Guo Y, Zhang B, Feng X, Si Q, Wu X, Zhao Z, Gong L, He D, Shao J. Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. Theranostics 2021; 11:3348-3358. [PMID: 33537091 PMCID: PMC7847688 DOI: 10.7150/thno.45889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Pin1 belongs to the peptidyl-prolyl cis-trans isomerases (PPIases) superfamily and catalyzes the cis-trans conversion of proline in target substrates to modulate diverse cellular functions including cell cycle progression, cell motility, and apoptosis. Dysregulation of Pin1 has wide-ranging influences on the fate of cells; therefore, it is closely related to the occurrence and development of various diseases. This review summarizes the current knowledge of Pin1 in disease pathogenesis.
Collapse
Affiliation(s)
- Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yifan Guo
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Bowen Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Xiao Feng
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Qiuyue Si
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiaobo Wu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Zhe Zhao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dan He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Vohra MS, Ahmad B, Serpell CJ, Parhar IS, Wong EH. Murine in vitro cellular models to better understand adipogenesis and its potential applications. Differentiation 2020; 115:62-84. [PMID: 32891960 DOI: 10.1016/j.diff.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, PJ 47500, Selangor, Malaysia.
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
9
|
Nakatsu Y, Matsunaga Y, Ueda K, Yamamotoya T, Inoue Y, Inoue MK, Mizuno Y, Kushiyama A, Ono H, Fujishiro M, Ito H, Okabe T, Asano T. Development of Pin1 Inhibitors and their Potential as Therapeutic Agents. Curr Med Chem 2020; 27:3314-3329. [PMID: 30394205 DOI: 10.2174/0929867325666181105120911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022]
Abstract
The prolyl isomerase Pin1 is a unique enzyme, which isomerizes the cis-trans conformation between pSer/pThr and proline and thereby regulates the function, stability and/or subcellular distribution of its target proteins. Such regulations by Pin1 are involved in numerous physiological functions as well as the pathogenic mechanisms underlying various diseases. Notably, Pin1 deficiency or inactivation is a potential cause of Alzheimer's disease, since Pin1 induces the degradation of Tau. In contrast, Pin1 overexpression is highly correlated with the degree of malignancy of cancers, as Pin1 controls a number of oncogenes and tumor suppressors. Accordingly, Pin1 inhibitors as anti-cancer drugs have been developed. Interestingly, recent intensive studies have demonstrated Pin1 to be responsible for the onset or development of nonalcoholic steatosis, obesity, atherosclerosis, lung fibrosis, heart failure and so on, all of which have been experimentally induced in Pin1 deficient mice. In this review, we discuss the possible applications of Pin1 inhibitors to a variety of diseases including malignant tumors and also introduce the recent advances in Pin1 inhibitor research, which have been reported.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yasuka Matsunaga
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Koji Ueda
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Takeshi Yamamotoya
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yuki Inoue
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Masa-Ki Inoue
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yu Mizuno
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Akifumi Kushiyama
- The Division of Diabetes and Metabolism, Institute for Adult Diseases, Asahi Life Foundation, Chuo-ku, Tokyo 103-0002, Japan
| | - Hiraku Ono
- Department of Clinical Cell Biology, Chiba University Graduate School of Medicine, Chiba City, Chiba 260-8677, Japan
| | - Midori Fujishiro
- The Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Hisanaka Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| |
Collapse
|
10
|
Hu X, Chen LF. Pinning Down the Transcription: A Role for Peptidyl-Prolyl cis-trans Isomerase Pin1 in Gene Expression. Front Cell Dev Biol 2020; 8:179. [PMID: 32266261 PMCID: PMC7100383 DOI: 10.3389/fcell.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pin1 is a peptidyl-prolyl cis-trans isomerase that specifically binds to a phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif and catalyzes the cis-trans isomerization of proline imidic peptide bond, resulting in conformational change of its substrates. Pin1 regulates many biological processes and is also involved in the development of human diseases, like cancer and neurological diseases. Many Pin1 substrates are transcription factors and transcription regulators, including RNA polymerase II (RNAPII) and factors associated with transcription initiation, elongation, termination and post-transcription mRNA decay. By changing the stability, subcellular localization, protein-protein or protein-DNA/RNA interactions of these transcription related proteins, Pin1 modulates the transcription of many genes related to cell proliferation, differentiation, apoptosis and immune response. Here, we will discuss how Pin regulates the properties of these transcription relevant factors for effective gene expression and how Pin1-mediated transcription contributes to the diverse pathophysiological functions of Pin1.
Collapse
Affiliation(s)
- Xiangming Hu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
11
|
Pin1 Plays Essential Roles in NASH Development by Modulating Multiple Target Proteins. Cells 2019; 8:cells8121545. [PMID: 31795496 PMCID: PMC6952946 DOI: 10.3390/cells8121545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Pin1 is one of the three known prolyl-isomerase types and its hepatic expression level is markedly enhanced in the obese state. Pin1 plays critical roles in favoring the exacerbation of both lipid accumulation and fibrotic change accompanying inflammation. Indeed, Pin1-deficient mice are highly resistant to non-alcoholic steatohepatitis (NASH) development by either a high-fat diet or methionine-choline-deficient diet feeding. The processes of NASH development can basically be separated into lipid accumulation and subsequent fibrotic change with inflammation. In this review, we outline the molecular mechanisms by which increased Pin1 promotes both of these phases of NASH. The target proteins of Pin1 involved in lipid accumulation include insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase 1 (ACC1), while the p60 of the NF-kB complex and transforming growth factor β (TGF-β) pathway appear to be involved in the fibrotic process accelerated by Pin1. Interestingly, Pin1 deficiency does not cause abnormalities in liver size, appearance or function. Therefore, we consider the inhibition of increased Pin1 to be a promising approach to treating NASH and preventing hepatic fibrosis.
Collapse
|
12
|
SNV discovery and functional candidate gene identification for milk composition based on whole genome resequencing of Holstein bulls with extremely high and low breeding values. PLoS One 2019; 14:e0220629. [PMID: 31369641 PMCID: PMC6675115 DOI: 10.1371/journal.pone.0220629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
We have sequenced the whole genomes of eight proven Holstein bulls from the four half-sib or full-sib families with extremely high and low estimated breeding values (EBV) for milk protein percentage (PP) and fat percentage (FP) using Illumina re-sequencing technology. Consequently, 2.3 billion raw reads were obtained with an average effective depth of 8.1×. After single nucleotide variant (SNV) calling, total 10,961,243 SNVs were identified, and 57,451 of them showed opposite fixed sites between the bulls with high and low EBVs within each family (called as common differential SNVs). Next, we annotated the common differential SNVs based on the bovine reference genome, and observed that 45,188 SNVs (78.70%) were located in the intergenic region of genes and merely 11,871 SNVs (20.67%) located within the protein-coding genes. Of them, 13,099 common differential SNVs that were within or close to protein-coding genes with less than 5 kb were chosen for identification of candidate genes for milk compositions in dairy cattle. By integrated analysis of the 2,657 genes with the GO terms and pathways related to protein and fat metabolism, and the known quantitative trait loci (QTLs) for milk protein and fat traits, we identified 17 promising candidate genes: ALG14, ATP2C1, PLD1, C3H1orf85, SNX7, MTHFD2L, CDKN2D, COL5A3, FDX1L, PIN1, FIG4, EXOC7, LASP1, PGS1, SAO, GPLD1 and MGEA5. Our findings provided an important foundation for further study and a prompt for molecular breeding of dairy cattle.
Collapse
|
13
|
Matena A, Rehic E, Hönig D, Kamba B, Bayer P. Structure and function of the human parvulins Pin1 and Par14/17. Biol Chem 2018; 399:101-125. [PMID: 29040060 DOI: 10.1515/hsz-2017-0137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
Parvulins belong to the family of peptidyl-prolyl cis/trans isomerases (PPIases) assisting in protein folding and in regulating the function of a broad variety of proteins in all branches of life. The human representatives Pin1 and Par14/17 are directly involved in processes influencing cellular maintenance and cell fate decisions such as cell-cycle progression, metabolic pathways and ribosome biogenesis. This review on human parvulins summarizes the current knowledge of these enzymes and intends to oppose the well-studied Pin1 to its less well-examined homolog human Par14/17 with respect to structure, catalytic and cellular function.
Collapse
Affiliation(s)
- Anja Matena
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Edisa Rehic
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Dana Hönig
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Bianca Kamba
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| |
Collapse
|
14
|
Li Q, Zhu Y, Liu J, Yu X, Chen M, Dong N, Gong Y, Yuan Y. HpSlyD inducing CDX2 and VIL1 expression mediated through TCTP protein may contribute to intestinal metaplasia in the stomach. Sci Rep 2017; 7:2278. [PMID: 28536478 PMCID: PMC5442128 DOI: 10.1038/s41598-017-02642-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori infection is the most important risk factor for gastric intestinal metaplasia (IM). Our previous study demonstrated that infection with H. pylori HpslyD-positive strains associated with IM. To further investigate the signalling pathway involved in HpSlyD-induced IM, CDX2 and VIL1 expressions were determined before and after HpSlyD application. TCTP was knocked down by siRNA or overexpressed by plasmid transfection. An HpSlyD binding protein was used to block HpSlyD's enzymatic activity. The expression of CDX2 and TCTP in gastric diseases was measured by immunohistochemistry. Our results showed HpSlyD induced CDX2 and VIL1 expressions. TCTP protein expression was markedly increased after application of HpSlyD and in an HpSlyD-expressing stable cell line. Downregulation of TCTP protein led to decreased HpSlyD-induced CDX2 and VIL1. Overexpression of TCTP protein improved the expression of CDX2 and VIL1. Co-application of HpSlyD and FK506 led to significant reductions in CDX2, VIL1, and TCTP expression. Immunohistochemistry demonstrated that CDX2 and TCTP expression was higher in HpslyD-positive specimens compared with HpslyD-negative ones. Expression of CDX2 was positively correlated with TCTP in HpslyD-positive cells. Our study is the first to show that HpSlyD induction of CDX2 and VIL1 expression mediated through TCTP may contribute to IM in the stomach.
Collapse
Affiliation(s)
- Qiuping Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China
| | - Yanmei Zhu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China.,Department of Pathology, Cancer Hospital of China Medical University; Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Jun Liu
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26506-9229, USA
| | - Xiuwen Yu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China.,Department of Pathology, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Moye Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China
| | - Nannan Dong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China.
| |
Collapse
|
15
|
Wan-Loy C, Siew-Moi P. Marine Algae as a Potential Source for Anti-Obesity Agents. Mar Drugs 2016; 14:md14120222. [PMID: 27941599 PMCID: PMC5192459 DOI: 10.3390/md14120222] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023] Open
Abstract
Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.
Collapse
Affiliation(s)
- Chu Wan-Loy
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Phang Siew-Moi
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Institute of Ocean & Earth Sciences (IOES), University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
16
|
Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations. Int J Mol Sci 2016; 17:ijms17091495. [PMID: 27618008 PMCID: PMC5037772 DOI: 10.3390/ijms17091495] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14). Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer's disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.
Collapse
|