1
|
Perusquía M, Herrera N. Rat Model of Menopausal/Andropausal Hypertension with Different Sensitivities to Non-Genomic Antihypertensive Responses of Female and Male Sex Steroids. Pharmacology 2024:1-12. [PMID: 39406205 DOI: 10.1159/000542007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/09/2024] [Indexed: 11/12/2024]
Abstract
INTRODUCTION Hypertension is prevalent in older women and men, but the impact of sex differences is unclear. METHODS Blood pressure (BP) was evaluated weekly for 15 weeks using tail-cuff plethysmography in intact or gonadectomized female and male rats. Similarly, gonadectomized rats were subcutaneously treated daily for 15 weeks with estradiol in females or testosterone in males. Treatment with estrogen in males and androgen in females for BP was also examined. The non-genomic antihypertensive potency and efficacy of different sex steroids were determined; catheters were implanted in the carotid artery of hypertensive rats for BP recording with bolus injections in the jugular vein at cumulative doses (1 × 10-7-1 × 10-4M kg-1 min-1) of dehydroepiandrosterone (DHEA), estradiol, testosterone, or 5β-dihydrotestosterone (5β-DHT). RESULTS Data showed a time-dependent increase in BP after gonadectomy in female and male rats until hypertension values were reached. Males are more sensitive to the development of hypertension than females. The increases in BP in females and males were completely prevented by estradiol or testosterone, respectively. Testosterone completely prevented hypertension in females, whereas estradiol only partially in males. Antihypertensive potencies in conscious hypertensive rats were DHEA = 5β-DHT = testosterone >> estradiol, in females and DHEA = 5β-DHT >> testosterone >> estradiol in males. The efficacy was DHEA = 5β-DHT = testosterone >> estradiol in females and 5β-DHT = DHEA >> testosterone >> estradiol in males. CONCLUSION Gonadectomized males developed hypertension faster than females, suggesting that androgen deficiency plays an important role in BP reduction. Antihypertensive responses of steroids are structure-dependent; estradiol demonstrated the lowest potency, whereas 5β-DHT was a potent antihypertensive without estrogenic and androgenic actions, suggesting it is as a therapeutic candidate for controlling hypertension in both sexes.
Collapse
Affiliation(s)
- Mercedes Perusquía
- Department of Cell Biology and Physiology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| | - Nieves Herrera
- Department of Cell Biology and Physiology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
2
|
Romero-Martínez BS, Flores-Soto E, Sommer B, Reyes-García J, Arredondo-Zamarripa D, Solís-Chagoyán H, Lemini C, Rivero-Segura NA, Santiago-de-la-Cruz JA, Pérez-Plascencia C, Montaño LM. 17β-estradiol induces hyperresponsiveness in guinea pig airway smooth muscle by inhibiting the plasma membrane Ca 2+-ATPase. Mol Cell Endocrinol 2024; 590:112273. [PMID: 38763427 DOI: 10.1016/j.mce.2024.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
High serum estrogen concentrations are associated with asthma development and severity, suggesting a link between estradiol and airway hyperresponsiveness (AHR). 17β-estradiol (E2) has non-genomic effects via Ca2+ regulatory mechanisms; however, its effect on the plasma membrane Ca2+-ATPases (PMCA1 and 4) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) is unknown. Hence, in the present study, we aim to demonstrate if E2 favors AHR by increasing intracellular Ca2+ concentrations in guinea pig airway smooth muscle (ASM) through a mechanism involving Ca2+-ATPases. In guinea pig ASM, Ca2+ microfluorometry, muscle contraction, and Western blot were evaluated. Then, we performed molecular docking analysis between the estrogens and Ca2+ ATPases. In tracheal rings, E2 produced AHR to carbachol. In guinea pig myocytes, acute exposure to physiological levels of E2 modified the transient Ca2+ peak induced by caffeine to a Ca2+ plateau. The incubation with PMCA inhibitors (lanthanum and carboxyeosin, CE) partially reversed the E2-induced sustained plateau in the caffeine response. In contrast, cyclopiazonic acid (SERCA inhibitor), U-0126 (an inhibitor of ERK 1/2), and choline chloride did not modify the Ca2+ plateau produced by E2. The mitochondrial uniporter activity and the capacitative Ca2+ entry were unaffected by E2. In guinea pig ASM, Western blot analysis demonstrated PMCA1 and PMCA4 expression. The results from the docking modeling demonstrate that E2 binds to both plasma membrane ATPases. In guinea pig tracheal smooth muscle, inhibiting the PMCA with CE, induced hyperresponsiveness to carbachol. 17β-estradiol produces hyperresponsiveness by inhibiting the PMCA in the ASM and could be one of the mechanisms responsible for the increase in asthmatic crisis in women.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Calz. De Tlalpan 4502, Col. Sección XVI, Alcaldía de Tlalpan, CP 14080, CDMX, México
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - David Arredondo-Zamarripa
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma Del Estado de Morelos, CP 62209, Morelos, México
| | - Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Nadia A Rivero-Segura
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México, CP 10200, México
| | | | - Carlos Pérez-Plascencia
- Unidad de Genómica y Cáncer, Subdirección de Investigación Básica, INCan, SSA, Av. San Fernando 22, Alcaldía de Tlalpan, CP 14080, CDMX, México; Facultad de Estudios Superiores Iztacala, Av. de Los Barrios S/N Los Reyes Ixtacala Tlalnepantla de Baz, Edo. de México, CP 54090, Tlalnepantla de Baz, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México.
| |
Collapse
|
3
|
Carbajal-García A, Reyes-García J, Díaz-Hernández V, Casas-Hernández MF, Flores-Murrieta FJ, Montaño LM. Testosterone Enhances K V Currents and Airway Smooth Muscle Relaxation Induced by ATP and UTP through P2Y 4 Receptors and Adenylyl Cyclase Pathway. Int J Mol Sci 2024; 25:4652. [PMID: 38731872 PMCID: PMC11083821 DOI: 10.3390/ijms25094652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| | - Verónica Díaz-Hernández
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - María F. Casas-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| | - Francisco Javier Flores-Murrieta
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| |
Collapse
|
4
|
Mohammed SAH, Mirdamadi M, Szucs KF, Gaspar R. Non-genomic actions of steroid hormones on the contractility of non-vascular smooth muscles. Biochem Pharmacol 2024; 222:116063. [PMID: 38373593 DOI: 10.1016/j.bcp.2024.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/03/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Steroid hormones play an important role in physiological processes. The classical pathway of steroid actions is mediated by nuclear receptors, which regulate genes to modify biological processes. Non-genomic pathways of steroid actions are also known, mediated by cell membrane-located seven transmembrane domain receptors. Sex steroids and glucocorticoids have several membrane receptors already identified to mediate their rapid actions. However, mineralocorticoids have no identified membrane receptors, although their rapid actions are also measurable. In non-vascular smooth muscles (bronchial, uterine, gastrointestinal, and urinary), the rapid actions of steroids are mediated through the modification of the intracellular Ca2+ level by various Ca-channels and the cAMP and IP3 system. The non-genomic action can be converted into a genomic one, suggesting that these distinct pathways may interconnect, resulting in convergence between them. Sex steroids mostly relax all the non-vascular smooth muscles, except androgens and progesterone, which contract colonic and urinary bladder smooth muscles, respectively. Corticosteroids also induce relaxation in bronchial and uterine tissues, but their actions on gastrointestinal and urinary bladder smooth muscles have not been investigated yet. Bile acids also contribute to the smooth muscle contractility. Although the therapeutic application of the rapid effects of steroid hormones and their analogues for smooth muscle contractility disorders seems remote, the actions and mechanism discovered so far are promising. Further research is needed to expand our knowledge in this field by using existing experience. One of the greatest challenges is to separate genomic and non-genomic effects, but model molecules are available to start this line of research.
Collapse
Affiliation(s)
- Saif-Alnasr H Mohammed
- Department of Pharmacology and Pharmacotherapy, Albert-Szent-Györgyi Medical School, University of Szeged, Hungary
| | - Mohsen Mirdamadi
- Department of Pharmacology and Pharmacotherapy, Albert-Szent-Györgyi Medical School, University of Szeged, Hungary
| | - Kalman F Szucs
- Department of Pharmacology and Pharmacotherapy, Albert-Szent-Györgyi Medical School, University of Szeged, Hungary
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Albert-Szent-Györgyi Medical School, University of Szeged, Hungary.
| |
Collapse
|
5
|
Yao Y, Borkar NA, Zheng M, Wang S, Pabelick CM, Vogel ER, Prakash YS. Interactions between calcium regulatory pathways and mechanosensitive channels in airways. Expert Rev Respir Med 2023; 17:903-917. [PMID: 37905552 PMCID: PMC10872943 DOI: 10.1080/17476348.2023.2276732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Mengning Zheng
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - YS Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Romero-Martínez BS, Sommer B, Solís-Chagoyán H, Calixto E, Aquino-Gálvez A, Jaimez R, Gomez-Verjan JC, González-Avila G, Flores-Soto E, Montaño LM. Estrogenic Modulation of Ionic Channels, Pumps and Exchangers in Airway Smooth Muscle. Int J Mol Sci 2023; 24:ijms24097879. [PMID: 37175587 PMCID: PMC10178541 DOI: 10.3390/ijms24097879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 05/15/2023] Open
Abstract
To preserve ionic homeostasis (primarily Ca2+, K+, Na+, and Cl-), in the airway smooth muscle (ASM) numerous transporters (channels, exchangers, and pumps) regulate the influx and efflux of these ions. Many of intracellular processes depend on continuous ionic permeation, including exocytosis, contraction, metabolism, transcription, fecundation, proliferation, and apoptosis. These mechanisms are precisely regulated, for instance, through hormonal activity. The lipophilic nature of steroidal hormones allows their free transit into the cell where, in most cases, they occupy their cognate receptor to generate genomic actions. In the sense, estrogens can stimulate development, proliferation, migration, and survival of target cells, including in lung physiology. Non-genomic actions on the other hand do not imply estrogen's intracellular receptor occupation, nor do they initiate transcription and are mostly immediate to the stimulus. Among estrogen's non genomic responses regulation of calcium homeostasis and contraction and relaxation processes play paramount roles in ASM. On the other hand, disruption of calcium homeostasis has been closely associated with some ASM pathological mechanism. Thus, this paper intends to summarize the effects of estrogen on ionic handling proteins in ASM. The considerable diversity, range and power of estrogens regulates ionic homeostasis through genomic and non-genomic mechanisms.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 14080, Mexico
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Eduardo Calixto
- Departamento de Neurobiología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City 14080, Mexico
| | - Ruth Jaimez
- Laboratorio de Estrógenos y Hemostasis, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México 10200, Mexico
| | - Georgina González-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
7
|
Reyes-García J, Díaz-Hernández V, Carbajal-García A, Casas-Hernández MF, Sommer B, Montaño LM. Theophylline-Induced Relaxation Is Enhanced after Testosterone Treatment via Increased K V1.2 and K V1.5 Protein Expression in Guinea Pig Tracheal Smooth Muscle. Int J Mol Sci 2023; 24:ijms24065884. [PMID: 36982957 PMCID: PMC10059212 DOI: 10.3390/ijms24065884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/30/2023] Open
Abstract
Theophylline is a drug commonly used to treat asthma due to its anti-inflammatory and bronchodilatory properties. Testosterone (TES) has been suggested to reduce the severity of asthma symptoms. This condition affects boys more than girls in childhood, and this ratio reverses at puberty. We reported that guinea pig tracheal tissue chronic exposure to TES increases the expression of β2-adrenoreceptors and enhances salbutamol-induced K+ currents (IK+). Herein, we investigated whether the upregulation of K+ channels can enhance the relaxation response to methylxanthines, including theophylline. Chronic incubation of guinea pig tracheas with TES (40 nM, 48 h) enhanced the relaxation induced by caffeine, isobutylmethylxanthine, and theophylline, an effect that was abolished by tetraethylammonium. In tracheal myocytes, chronic incubation with TES increased theophylline-induced IK+; flutamide reversed this effect. The increase in IK+ was blocked by 4-aminopyridine by ~82%, whereas iberiotoxin reduced IK+ by ~17%. Immunofluorescence studies showed that chronic TES exposure increased the expression of KV1.2 and KV1.5 in airway smooth muscle (ASM). In conclusion, chronic exposure to TES in guinea pig ASM promotes upregulation of KV1.2 and KV1.5 and enhances theophylline relaxation response. Therefore, gender should be considered when prescribing methylxanthines, as teenage boys and males are likely to respond better than females.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Verónica Díaz-Hernández
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - María F Casas-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
8
|
Ou ZF, Zhu LK, Liu QW, Jiang J, Jiang R. Effect of low androgen levels on transient receptor potential channels expression in rat penile corpus cavernosum tissue and its relationship with erectile function. Andrologia 2022; 54:e14477. [PMID: 35596534 DOI: 10.1111/and.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
The exact mechanism by which testosterone deficiency causes ED has not yet been elucidated. TRPC is involved in the process of smooth muscle cell contraction and relaxation. The effect of androgens on TRPCs and their relationship with erectile function are currently unclear. Thirty male SD rats were randomly divided into six groups: control group, castration group, castration + testosterone (T) group (cast + T), control + transfection group (control + trans), control + empty transfection group and castration + transfection group (cast + trans). The transfection group rats were given with lentivirus (1 × 108 TU/mL, 15 μl) carrying the siRNA targeting TRPC4 gene in the rat penile cavernous tissue at 4 weeks after castration. The tests were performed at 5 weeks after castration. Comparing the cast group with the control, the ICPmax/MAP, p-eNOS/eNOS and NO levels in the rat penile tissue were significantly lower (p < 0.01) and the level of TRPC3, TRPC4 and TRPC6 in the rat penile tissue was significantly increased (p < 0.01). When the cast + trans group was compared to the cast group, ICPmax/MAP was markedly higher (p < 0.05), and the level of the TRPC4 was remarkably lower (p < 0.05). Low androgen levels might inhibit an erectile function through up-regulation of the expression of TRPC3, TRPC4 and TRPC6 in rat penile cavernous tissue. Inhibition the level of TRPC4 in rat penile tissue may improve the erectile function in low androgen levels.
Collapse
Affiliation(s)
- Zhi-Fu Ou
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li-Kun Zhu
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qin-Wen Liu
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Jiang
- Department of Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Jiang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nephropathy Clinical Medical Research Center of Sichuan Province, China
| |
Collapse
|
9
|
Could Lower Testosterone in Older Men Explain Higher COVID-19 Morbidity and Mortalities? Int J Mol Sci 2022; 23:ijms23020935. [PMID: 35055119 PMCID: PMC8781054 DOI: 10.3390/ijms23020935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/08/2023] Open
Abstract
The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede. This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect is related to the observation that most COVID-19 casualties were older males, a tendency also noticed in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This gender-related difference in the COVID-19 death toll might be directly involved with testosterone (TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST can be determinant in the infection’s outcome and might be related to a dysfunctional cell Ca2+ homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular calcium concentrations, but these proteins have also been proven to be necessary for the replication of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins in healthy tissues and propose how low TEST concentrations might facilitate the replication of the SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+ concentrations.
Collapse
|
10
|
Norton N, Bruno KA, Di Florio DN, Whelan ER, Hill AR, Morales-Lara AC, Mease AA, Sousou JM, Malavet JA, Dorn LE, Salomon GR, Macomb LP, Khatib S, Anastasiadis ZP, Necela BM, McGuire MM, Giresi PG, Kotha A, Beetler DJ, Weil RM, Landolfo CK, Fairweather D. Trpc6 Promotes Doxorubicin-Induced Cardiomyopathy in Male Mice With Pleiotropic Differences Between Males and Females. Front Cardiovasc Med 2022; 8:757784. [PMID: 35096991 PMCID: PMC8792457 DOI: 10.3389/fcvm.2021.757784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Doxorubicin is a widely used and effective chemotherapy, but the major limiting side effect is cardiomyopathy which in some patients leads to congestive heart failure. Genetic variants in TRPC6 have been associated with the development of doxorubicin-induced cardiotoxicity, suggesting that TRPC6 may be a therapeutic target for cardioprotection in cancer patients. Methods: Assessment of Trpc6 deficiency to prevent doxorubicin-induced cardiac damage and function was conducted in male and female B6.129 and Trpc6 knock-out mice. Mice were treated with doxorubicin intraperitoneally every other day for a total of 6 injections (4 mg/kg/dose, cumulative dose 24 mg/kg). Cardiac damage was measured in heart sections by quantification of vacuolation and fibrosis, and in heart tissue by gene expression of Tnni3 and Myh7. Cardiac function was determined by echocardiography. Results: When treated with doxorubicin, male Trpc6-deficient mice showed improvement in markers of cardiac damage with significantly reduced vacuolation, fibrosis and Myh7 expression and increased Tnni3 expression in the heart compared to wild-type controls. Similarly, male Trpc6-deficient mice treated with doxorubicin had improved LVEF, fractional shortening, cardiac output and stroke volume. Female mice were less susceptible to doxorubicin-induced cardiac damage and functional changes than males, but Trpc6-deficient females had improved vacuolation with doxorubicin treatment. Sex differences were observed in wild-type and Trpc6-deficient mice in body-weight and expression of Trpc1, Trpc3 and Rcan1 in response to doxorubicin. Conclusions: Trpc6 promotes cardiac damage following treatment with doxorubicin resulting in cardiomyopathy in male mice. Female mice are less susceptible to cardiotoxicity with more robust ability to modulate other Trpc channels and Rcan1 expression.
Collapse
Affiliation(s)
- Nadine Norton
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center of Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center of Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Anneliese R. Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Anna A. Mease
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - John M. Sousou
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Jose A. Malavet
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Lauren E. Dorn
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Gary R. Salomon
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Logan P. Macomb
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Sami Khatib
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Brian M. Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Molly M. McGuire
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Presley G. Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Archana Kotha
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center of Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center of Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - Raegan M. Weil
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Carolyn K. Landolfo
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center of Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
11
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
12
|
Ambhore NS, Kalidhindi RSR, Sathish V. Sex-Steroid Signaling in Lung Diseases and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:243-273. [PMID: 33788197 DOI: 10.1007/978-3-030-63046-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sex/gender difference exists in the physiology of multiple organs. Recent epidemiological reports suggest the influence of sex-steroids in modulating a wide variety of disease conditions. Sex-based discrepancies have been reported in pulmonary physiology and various chronic inflammatory responses associated with lung diseases like asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and rare lung diseases. Notably, emerging clinical evidence suggests that several respiratory diseases affect women to a greater degree, with increased severity and prevalence than men. Although sex-specific differences in various lung diseases are evident, such differences are inherent to sex-steroids, which are major biological variables in men and women who play a central role to control these differences. The focus of this chapter is to comprehend the sex-steroid biology in inflammatory lung diseases and to understand the mechanistic role of sex-steroids signaling in regulating these diseases. Exploring the roles of sex-steroid signaling in the regulation of lung diseases and inflammation is crucial for the development of novel and effective therapy. Overall, we will illustrate the importance of differential sex-steroid signaling in lung diseases and their possible clinical implications for the development of complementary and alternative medicine to treat lung diseases.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
13
|
Non-genomic actions of sex hormones on pregnant uterine contractility in rats: An in vitro study at term. Life Sci 2020; 263:118584. [PMID: 33058919 DOI: 10.1016/j.lfs.2020.118584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
AIMS The non-genomic (prompt) actions of sex steroids on pregnant uterine contractility are not fully explored yet, the aim of our study was to clarify such effects of 17-β estradiol (E2), progesterone (P4) and testosterone (T) on late (22-day) pregnant uterine contractions together with the signaling pathways in rats in vitro. METHODS The uterine effects of sex steroids on KCl-stimulated contractions were examined in the presence of genomic pathway blocker actinomycin D and cycloheximide, sex hormone receptor antagonists (flutamide, fulvestrant, mifepristone) and also after removing the endometrium. The modifications in uterine G-protein activation and cAMP levels were also detected. RESULTS T and E2 both relaxed the uterine contractions in the concentration range of 10-8-10-3 M with an increase in the activated G-protein and cAMP levels of the uterus, while P4 was ineffective. Cycloheximide, actinomycin D, antagonist for T and E2 were not able to modify the responses along with the endothelium removal. Mifepristone blocked the relaxing effects of T and E2 and reduced the activation of G-protein and the formation of cAMP. SIGNIFICANCE T and E2 can inhibit KCl-stimulated contractions in the late pregnant uterus in high concentrations and in a non-genomic manner. Their actions are mediated by a G-protein coupled receptor that can be blocked by mifepristone. A single and high dose of T or E2 might be considered in premature contractions, however, further preclinical and clinical studies are required for the approval of such a therapeutic intervention.
Collapse
|
14
|
Nunes KP, Webb RC. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases 2020; 12:458-469. [PMID: 32970516 DOI: 10.1080/21541248.2020.1822721] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
While Rho-signalling controlling vascular contraction is a canonical mechanism, with the modern approaches used in research, we are advancing our understanding and details into this pathway are often uncovered. RhoA-mediated Rho-kinase is the major regulator of vascular smooth muscle cells and a key player manoeuvring other functions in these cells. The discovery of new interactions, such as oxidative stress and hydrogen sulphide with Rho signalling are emerging addition not only in the physiology of the smooth muscle, but especially in the pathophysiology of vascular diseases. Likewise, the interplay between ageing and Rho-kinase in the vasculature has been recently considered. Importantly, in smooth muscle contraction, this pathway may also be affected by sex hormones, and consequently, sex-differences. This review provides an overview of Rho signalling mediating vascular contraction and focuses on recent topics discussed in the literature affecting this pathway such as ageing, sex differences and oxidative stress.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
15
|
Carbajal-García A, Reyes-García J, Casas-Hernández MF, Flores-Soto E, Díaz-Hernández V, Solís-Chagoyán H, Sommer B, Montaño LM. Testosterone augments β 2 adrenergic receptor genomic transcription increasing salbutamol relaxation in airway smooth muscle. Mol Cell Endocrinol 2020; 510:110801. [PMID: 32278021 DOI: 10.1016/j.mce.2020.110801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/12/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
Androgens in asthmatic men may be linked to asthma severity, acting via nongenomic and genomic effects. This ailment affects boys more than girls during infancy, and this proportion reverses in puberty. Plasmatic androgen concentration in young men increases at this age and might be related to lower asthma symptoms. Nongenomic actions occur in a brief period and are independent of the androgen receptor (AR), while genomic effects depend on AR, take hours-days and are modified by transcription or protein synthesis inhibitors. Guinea pig tracheas chronic incubation with testosterone (TES, 40 nM, 48 h) potentiates salbutamol-induced relaxation, an effect that was reversed by flutamide, not observed when tissues were pre-incubated with TES-bovine serum albumin (TES-BSA) nor when tissues were preincubated with TES for 15-60 min. In tracheal myocytes, TES chronic incubation increases salbutamol-induced K+ currents (IK+), an effect that was also reversed by flutamide, actinomycin D and cycloheximide and not seen with TES-BSA. The increment in IK+ was blocked by 4-aminopyridine and iberiotoxin, indicating that delayed rectifier K+ and high-conductance Ca2+ activated K+ channels were involved in the TES potentiation effect. Immunofluorescence studies showed that chronic TES augmented the β2 adrenergic receptor (β2-AR) expression in ASM and this finding was corroborated by q-PCR and Western blot assays. β2-AR affinity for salbutamol after TES incubation was increased. In conclusion, chronic exposure to physiological TES concentration of the guinea pig ASM promotes β2-AR upregulation favoring β2 adrenergic responses and probably limiting the severity of the asthmatic exacerbations in teenage boys and men.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - María F Casas-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Verónica Díaz-Hernández
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, CDMX, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, CDMX, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| |
Collapse
|
16
|
Lorigo M, Mariana M, Lemos MC, Cairrao E. Vascular mechanisms of testosterone: The non-genomic point of view. J Steroid Biochem Mol Biol 2020; 196:105496. [PMID: 31655180 DOI: 10.1016/j.jsbmb.2019.105496] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 01/19/2023]
Abstract
Testosterone (T) is the predominant endogenous androgen in the bloodstream. At the vascular level, T presents genomic and non-genomic effects, and both effects may overlap. The genomic actions assume that androgens can freely cross the plasma membrane of target cells and bind to nuclear androgen receptors, inducing gene transcription and protein synthesis. The non-genomic effects have a more rapid onset and may be related to the interaction with protein/receptor/ion channels of the plasma membrane. The key T effect at the vascular level is vasorelaxation, which is primarily due to its rapid effect. Thus, the main purpose of this review is to discuss the T non-genomic effects at the vascular level and the molecular pathways involved in its vasodilator effect observed in in vivo and in vitro studies. In this sense, the nuclear receptor activation, the influence of vascular endothelium and the activation or inhibition of ion channels (potassium and calcium channels, respectively) will be reviewed regarding all the data that corroborated or not. Moreover, this review also provides a brief update on the association of T with the risk factors for cardiovascular diseases, namely metabolic syndrome, type 2 diabetes mellitus, obesity, atherosclerosis, dyslipidaemia, and hypertension. In summary, in this paper we consider the non-genomic vascular mode of action of androgen in physiological conditions and the main risk factors for cardiovascular diseases.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Melissa Mariana
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Manuel C Lemos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
17
|
Carbajal-García A, Reyes-García J, Montaño LM. Androgen Effects on the Adrenergic System of the Vascular, Airway, and Cardiac Myocytes and Their Relevance in Pathological Processes. Int J Endocrinol 2020; 2020:8849641. [PMID: 33273918 PMCID: PMC7676939 DOI: 10.1155/2020/8849641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Androgen signaling comprises nongenomic and genomic pathways. Nongenomic actions are not related to the binding of the androgen receptor (AR) and occur rapidly. The genomic effects implicate the binding to a cytosolic AR, leading to protein synthesis. Both events are independent of each other. Genomic effects have been associated with different pathologies such as vascular ischemia, hypertension, asthma, and cardiovascular diseases. Catecholamines play a crucial role in regulating vascular smooth muscle (VSM), airway smooth muscle (ASM), and cardiac muscle (CM) function and tone. OBJECTIVE The aim of this review is an updated analysis of the role of androgens in the adrenergic system of vascular, airway, and cardiac myocytes. Body. Testosterone (T) favors vasoconstriction, and its concentration fluctuation during life stages can affect the vascular tone and might contribute to the development of hypertension. In the VSM, T increases α1-adrenergic receptors (α 1-ARs) and decreases adenylyl cyclase expression, favoring high blood pressure and hypertension. Androgens have also been associated with asthma. During puberty, girls are more susceptible to present asthma symptoms than boys because of the increment in the plasmatic concentrations of T in young men. In the ASM, β 2-ARs are responsible for the bronchodilator effect, and T augments the expression of β 2-ARs evoking an increase in the relaxing response to salbutamol. The levels of T are also associated with an increment in atherosclerosis and cardiovascular risk. In the CM, activation of α 1A-ARs and β 2-ARs increases the ionotropic activity, leading to the development of contraction, and T upregulates the expression of both receptors and improves the myocardial performance. CONCLUSIONS Androgens play an essential role in the adrenergic system of vascular, airway, and cardiac myocytes, favoring either a state of health or disease. While the use of androgens as a therapeutic tool for treating asthma symptoms or heart disease is proposed, the vascular system is warmly affected.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
18
|
Montaño LM, Flores-Soto E, Sommer B, Solís-Chagoyán H, Perusquía M. Androgens are effective bronchodilators with anti-inflammatory properties: A potential alternative for asthma therapy. Steroids 2020; 153:108509. [PMID: 31586608 DOI: 10.1016/j.steroids.2019.108509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Changes in plasma androgen levels in asthmatic men may be linked to asthma severity, seemingly acting through nongenomic and genomic effects. Nongenomic effects include rapid relaxation of carbachol or antigenic challenge pre-contracted guinea pig airway smooth muscle (ASM) in vitro: testosterone (TES) blocks l-type voltage dependent Ca2+ channels, stored operated Ca2+ channels, inositol 1,4,5-trisphosphate receptors and promotes prostaglandin E2 biosynthesis. In ASM at rest, TES lowers basal intracellular Ca2+ concentration and tension, maintaining a proper airway patency keeping steady smooth muscle tension and basal intracellular Ca2+ concentration at rest. Moreover, the bronchospasm in sensitized guinea-pigs was ablated by dehydroepiandrosterone (DHEA), a precursor of steroids, TES and its metabolites 5α- and 5β-dihydrotestosterone (DHT). On the other hand, genomic effects related to androgens' anti-inflammatory properties in asthma have been recently studied. Briefly, TES negatively regulates type 2 immune response sustained by CD4+ Th2 and group 2 innate lymphoid cells, diminishing allergic airway inflammation in males. Also, novel findings establish that TES decreases interleukin (IL)-17A protein expression produced by CD4+ Th17 cells and therefore neutrophilic airway inflammation. Clearly, DHEA, TES or its 5β-reduced metabolite that possesses minimal androgenic effect, might have potential therapeutic capacities in the treatment of severe asthma via mechanisms distinct from corticosteroid treatment.
Collapse
Affiliation(s)
- Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, CDMX, Mexico.
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, CDMX, Mexico.
| | - Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico.
| |
Collapse
|
19
|
Osgood RS, Kasahara DI, Tashiro H, Cho Y, Shore SA. Androgens augment pulmonary responses to ozone in mice. Physiol Rep 2019; 7:e14214. [PMID: 31544355 PMCID: PMC6755142 DOI: 10.14814/phy2.14214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
Ozone causes airway hyperresponsiveness, a defining feature of asthma, and is an asthma trigger. In mice, ozone-induced airway hyperresponsiveness is greater in males than in females, suggesting a role for sex hormones in the response to ozone. To examine the role of androgens in these sex differences, we castrated 4-week-old mice. Controls underwent sham surgery. At 8 weeks of age, mice were exposed to ozone (2ppm, 3 h) or room air. Twenty-four hours later, mice were anesthetized and measurements of airway responsiveness to inhaled aerosolized methacholine were made. Mice were then euthanized and bronchoalveolar lavage was performed. Castration attenuated ozone-induced airway hyperresponsiveness and reduced bronchoalveolar lavage cells. In intact males, flutamide, an androgen receptor inhibitor, had similar effects to castration. Bronchoalveolar lavage concentrations of several cytokines were reduced by either castration or flutamide treatment, but only IL-1α was reduced by both castration and flutamide. Furthermore, an anti-IL-1α antibody reduced bronchoalveolar lavage neutrophils in intact males, although it did not alter ozone-induced airway hyperresponsiveness. Our data indicate that androgens augment pulmonary responses to ozone and that IL-1α may contribute to the effects of androgens on ozone-induced cellular inflammation but not airway hyperresponsiveness.
Collapse
Affiliation(s)
- Ross S. Osgood
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - David I. Kasahara
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - Hiroki Tashiro
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - Youngji Cho
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - Stephanie A. Shore
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| |
Collapse
|
20
|
Kalidhindi RSR, Katragadda R, Beauchamp KL, Pabelick CM, Prakash YS, Sathish V. Androgen Receptor-Mediated Regulation of Intracellular Calcium in Human Airway Smooth Muscle Cells. Cell Physiol Biochem 2019; 53:215-228. [PMID: 31299143 PMCID: PMC6896987 DOI: 10.33594/000000131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIMS With the prevalence of asthma being greater in women, detrimental effects of female sex steroids have been explored, but potential protective effects of androgens are not established. Airway smooth muscle (ASM) is a key cell type in contractility and remodelling of asthma. There are no data on expression and functionality of androgen receptor (AR) in human ASM cells. METHODS We used primary human ASM cells from non-asthmatics vs. asthmatics to determine AR expression at baseline and with inflammation measured using Western blotting/qRT-PCR, and the role of AR in regulating intracellular Ca2+ ([Ca2+]i) measured using Fluo-3 loaded real time [Ca2+]i imaging. RESULTS We found that compared to females, baseline AR is greater in male ASM and increases with inflammation/asthma. Androgens, via AR, blunted TNFα or IL-13-induced enhancement of ASM [Ca2+]i in both males and females, with retained efficacy in asthmatics. AR effects involve reduced Ca2+ influx via L-type channels and store-operated Ca2+ entry, the latter by downregulating STIM1 and Orai1 and increasing TMEM66. CONCLUSION Our data show AR expression is increased in female ASM with asthma, but has retained functionality that could be used to reduce [Ca2+]i towards alleviating airway hyperresponsiveness.
Collapse
Affiliation(s)
| | - Rathnavali Katragadda
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Kerri L Beauchamp
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA,
| |
Collapse
|
21
|
Chen P, Xiao H, Huang W, Xu DQ, Guo YM, Wang X, Wang XH, DiSanto ME, Zhang XH. Testosterone regulates myosin II isoforms expression and functional activity in the rat prostate. Prostate 2018; 78:1283-1298. [PMID: 30073674 DOI: 10.1002/pros.23702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/11/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is mainly caused by increased prostatic smooth muscle (SM) tone and prostatic volume. At the molecular level, SM myosin II (SMM II) and non-muscle myosin II (NMM II) mediate SM tone and cell proliferation while testosterone (T) plays a permissive role in the development of BPH. AIMS The novel objective of this study was to elucidate the effects of T on the proliferation and apoptosis of rat prostatic cells and SM contractility as well as related regulatory signaling pathways. MATERIALS AND METHODS Briefly, 36 male rats were divided into three groups (sham-operated, surgically castrated, and castrated with T supplementation). In vitro organ bath studies, competitive RT-PCR, Western-blotting analysis, Masson's trichrome staining, and immunofluorescence staining were performed. RESULTS Our data showed that castration dramatically increased prostatic SM contractility and SM MHC immunostaining revealed a relatively increased SM cell numbers in the stroma. T deprivation altered prostate SMM II isoform composition with upregulation of SM-B and SM2 but downregulation of LC17a, favoring a faster more phasic-type contraction. Moreover, protein expressions of MLCK, p-MLCP, RhoB, ROCK1, and ROCK2 increased in castrated rats. Meanwhile NMM II heavy chain isoforms A, B, and C (NMMHC-A, B, and C isoforms) were altered by castration which may be linked to decreased cell proliferation and increased apoptosis. CONCLUSION Our novel data demonstrated T regulates SMM II and NMM II and their functional activities in rat prostate and T ablation not only decreases prostate size (static component) but also changes the prostatic SM tone (dynamic component).
Collapse
Affiliation(s)
- Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - He Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Wei Huang
- Department of Urology, People's Hospital of Tuanfeng County, Hubei, China
| | - De-Qiang Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Yu-Ming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Xiao Wang
- Department of Urology, People's Hospital of Wuhan University, Wuhan, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Michael E DiSanto
- Departments of Biomedical Sciences and Surgery, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Xin-Hua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
22
|
Reyes-García J, Flores-Soto E, Carbajal-García A, Sommer B, Montaño LM. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (Review). Int J Mol Med 2018; 42:2998-3008. [PMID: 30280184 PMCID: PMC6202086 DOI: 10.3892/ijmm.2018.3910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023] Open
Abstract
In airway smooth muscle, the intracellular basal Ca2+ concentration [b(Ca2+)i] must be tightly regulated by several mechanisms in order to maintain a proper airway patency. The b[Ca2+]i is efficiently regulated by sarcoplasmic reticulum Ca2+-ATPase 2b, plasma membrane Ca2+-ATPase 1 or 4 and by the Na+/Ca2+ exchanger. Membranal Ca2+ channels, including the L-type voltage dependent Ca2+ channel (L-VDCC), T-type voltage dependent Ca2+ channel (T-VDCC) and transient receptor potential canonical 3 (TRPC3), appear to be constitutively active under basal conditions via the action of different signaling pathways, and are responsible for Ca2+ influx to maintain b[Ca2+]i. The two types of voltage-dependent Ca2+ channels (L- and T-type) are modulated by phosphorylation processes mediated by mitogen-activated protein kinase kinase (MEK) and extracellular-signal-regulated kinase 1 and 2 (ERK1/2). The MEK/ERK signaling pathway can be activated by G-protein-coupled receptors through the αq subunit when the endogenous ligand (i.e., acetylcholine, histamine, leukotrienes, etc.) is present under basal conditions. It may also be stimulated when receptor tyrosine kinases are occupied by the appropriate ligand (cytokines, growth factors, etc.). ERK1/2 phosphorylates L-VDCC on Ser496 of the β2 subunit and Ser1928 of the α1 subunit, decreasing or increasing the channel activity, respectively, and enabling it to switch between an open and closed state. T-VDCC is also probably phosphorylated by ERK1/2, although further research is required to identify the phosphorylation sites. TRPC3 is directly activated by diacylglycerol produced by phospholipase C (PLCβ or γ). Constitutive inositol 1,4,5-trisphosphate production induces the release of Ca2+ from the sarcoplasmic reticulum through inositol triphosphate receptor 1. This ion induces Ca2+-induced Ca2+ release through the ryanodine receptor 2 (designated as Ca2+ ‘sparks’). Therefore, several Ca2+ handling mechanisms are finely tuned to regulate basal intracellular Ca2+ concentrations. It is conceivable that alterations in any of these processes may render airway smooth muscle susceptible to develop hyperresponsiveness that is observed in ailments such as asthma.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
23
|
Montaño LM, Flores-Soto E, Reyes-García J, Díaz-Hernández V, Carbajal-García A, Campuzano-González E, Ramírez-Salinas GL, Velasco-Velázquez MA, Sommer B. Testosterone induces hyporesponsiveness by interfering with IP 3 receptors in guinea pig airway smooth muscle. Mol Cell Endocrinol 2018; 473:17-30. [PMID: 29275169 DOI: 10.1016/j.mce.2017.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Asthma symptoms have been associated with sex steroids. During childhood, this illness seems more frequent in boys than in girls and this tendency reverts in puberty when it is more severe in women. Testosterone (TES), at supraphysiological concentrations, relaxed pre-contracted airway smooth muscle, but its effects at physiological concentrations have not been thoroughly studied. We explored this possibility in guinea pig tracheal smooth muscle. In myocytes TES (10 nM) abolished carbachol (CCh)-induced intracellular Ca2+ concentration ([Ca2+]i) increment. Ca2+ responses to ATP were partially modified by TES while histamine's were not. These results indicate that inositol 1,4,5-trisphosphate (IP3) signaling pathway might be involved. Photolysis of caged-IP3 increased [Ca2+]i and TES abolished this effect. TES diminished reactivity of the smooth muscle to CCh and this effect was non-genomic since it was unchanged by flutamide. In tracheal smooth muscle, mRNA for each IP3 receptor (ITPR) isoform was found and, by immunofluorescence, ITPR1 and ITPR3 seems to be the main isoforms observed while ITPR2 was less prominent. Comparing the amino acid sequence of ITPR1 and the sequence of the TES binding site on the androgen receptor, we found that they share a short sequence. This domain could be responsible for the TES binding to the ITPR1 and probably for its blocking effect. We conclude that TES modifies ITPR1 function in airway smooth muscle, turning this tissue less reactive to contractile agonists that act through PLCβ-IP3 signaling cascade. These results might be related to the low asthma prevalence in males from puberty to adulthood.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Carbachol/pharmacology
- Genome
- Guinea Pigs
- Histamine/pharmacology
- Humans
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Intracellular Space/metabolism
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Protein Isoforms/metabolism
- Receptors, Androgen/chemistry
- Receptors, Androgen/metabolism
- Signal Transduction/drug effects
- Testosterone/pharmacology
- Trachea/drug effects
- Trachea/physiology
Collapse
Affiliation(s)
- Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Verónica Díaz-Hernández
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Elías Campuzano-González
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - G Lizbeth Ramírez-Salinas
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Cátedras CONACYT, Mexico; Unidad Periférica de Biomedicina Traslacional, (CMN 20 de Noviembre, ISSSTE) Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Marco A Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Unidad Periférica de Biomedicina Traslacional, (CMN 20 de Noviembre, ISSSTE) Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, 14080, Ciudad de México, Mexico
| |
Collapse
|
24
|
Abstract
BACKGROUND Testosterone, 5α- and 5β-dihydrotestosterone (-DHT) induce an acute in vitro vasorelaxation and in vivo vasodepressor, hypotensive and antihypertensive responses. Our aim was to study whether androgen-induced blood pressure (BP) reduction is involved with a blockade of Ca2+ influx through L-type voltage-operated calcium channels (L-VOCCs) and/or the signaling pathways of α1-adrenoceptors to induce vasoconstriction, which are one of the major mechanisms of BP maintenance. MATERIALS AND METHODS The relaxing potency and efficacy of each androgen in large conduit (thoracic aorta) and resistance (mesenteric) arteries from male hypertensive (SHR) and normotensive (WKY) rats were established. Blood vessels were isometrically recorded and precontracted with KCl or phenylephrine (Phe). RESULTS Androgens induced concentration-dependent vasorelaxation in precontracted arteries from SHR and WKY rats. 5β-DHT was always the most potent vasorelaxant in arteries from SHR. The KCl-induced contraction resulted significantly more sensitive to androgen-induced vasorelaxation than the Phe-induced contraction. On Phe-induced contraction, 5β-DHT was more potent in the mesenteric artery than in the thoracic aorta. CONCLUSIONS The vasorelaxation induced by androgens is mainly mediated by blocking L-VOCCs and in lesser extent by the blockade of multiple signaling pathways operative during α-adrenoceptor-induced vasoconstriction. 5β-DHT regulates vascular resistance and BP by mainly acting in the mesenteric arterial bed, which may explain its outstanding antihypertensive response previously reported.
Collapse
Affiliation(s)
- Lucía Isidoro
- a Departamento de Fisiología, Facultad de Medicina , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología , Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Mercedes Ferrer
- a Departamento de Fisiología, Facultad de Medicina , Universidad Autónoma de Madrid , Madrid , Spain
| | - Mercedes Perusquía
- b Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología , Universidad Nacional Autónoma de México , Mexico City , Mexico
| |
Collapse
|
25
|
Perusquía M, Hanson AE, Meza CM, Kubli C, Herrera N, Stallone JN. Antihypertensive responses of vasoactive androgens in an in vivo experimental model of preeclampsia. J Steroid Biochem Mol Biol 2018; 178:65-72. [PMID: 29113921 DOI: 10.1016/j.jsbmb.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/12/2017] [Accepted: 11/02/2017] [Indexed: 01/12/2023]
Abstract
Dehydroepiandrosterone (DHEA), testosterone (TES) and its 5-reduced metabolites induce a nongenomic vasorelaxation in several vascular beds of mammals; similarly these hormones produce systemic hypotensive and antihypertensive responses in normotensive and hypertensive male rats. Thus, it was hypothesized that the antihypertensive response of androgens, whose levels are elevated during gestation, protect against gestational hypertension. An animal model of preeclampsia was induced in female Wistar rats using DOCA-salt-treated pregnant (PT) and normal pregnant (NP) rats. In vivo experiments in conscious rats revealed that bolus intravenous injections of DHEA, TES, 5α- or 5β-dihydrotestosterone (-DHT) log -1.0 to 2.0μmolk-1min-1, produced substantial transient reductions in arterial blood pressure (BP), without significant changes in heart rate (HR). Mean arterial blood pressure (MAP) was reduced significantly in both groups. PT rats were more sensitive to the antihypertensive responses of androgens than NP. DHEA and 5β-DHT were the most potent to reduce MAP: 66±07 and 69±2.0mmHg in PT but only 33±0.5 and 35±1.2mmHg in NP rats, respectively. In isolated aortas of PT and NP, the concentration-response curves to each androgen (0.1-100μM) indicated that KCl-induced pre-contraction is more sensitive to all androgens than phenylephrine (Phe) pre-contractions. Notably, 5β-DHT is the greatest vasorelaxant with KCl-induced contraction than with Phe contraction of both groups, suggesting a preferential blockade on L-VOCCs. TES exhibited minor vasorelaxing effect of aortas pre-contracted with KCl, compared to its precursor DHEA and its 5-reduced metabolites. These data show that these androgens exert acute vasorelaxing effects in vitro and remarkably, reduce the BP in vivo in PT and NP at term pregnancy. Moreover, a deficit in feto-placental androgen production during pregnancy may trigger the development of preeclampsia or gestational hypertension.
Collapse
Affiliation(s)
- Mercedes Perusquía
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, México City 04510, Mexico.
| | - Andrea E Hanson
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, USA
| | - Claudia M Meza
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, México City 04510, Mexico
| | - Cris Kubli
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, México City 04510, Mexico
| | - Nieves Herrera
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, México City 04510, Mexico
| | - John N Stallone
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, USA; Women's Health Division, Michael E. DeBakey, Texas A&M University, College Station, TX 77843-4466, USA
| |
Collapse
|