1
|
Zou T, Jia Z, Wu J, Liu X, Deng M, Zhang X, Lin Y, Ping J. PAQR6 as a prognostic biomarker and potential therapeutic target in kidney renal clear cell carcinoma. Front Immunol 2024; 15:1521629. [PMID: 39742277 PMCID: PMC11685228 DOI: 10.3389/fimmu.2024.1521629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
Background Progestin And AdipoQ Receptor Family Member VI (PAQR6) plays a significant role in the non-genomic effects of rapid steroid responses and is abnormally expressed in various tumors. However, its biological function in kidney renal clear cell carcinoma (KIRC) and its potential as a therapeutic target remain underexplored. Methods In this study, PAQR6 was identified as a critical oncogene by WGCNA algorithm and differential gene expression analysis using TCGA - KIRC and GSE15641 data. The differences in PAQR6 expression and its association with KIRC survival outcomes were investigated, and transcriptomic data were used to further elucidate PAQR6's biological functions. Moreover, XCELL and single - cell analysis assessed the correlation between PAQR6 expression and immune infiltration. TIDE algorithm was used to assess how well various patient cohorts responded to immune checkpoint therapy. Finally, the role of PAQR6 in the development of KIRC was verified through EdU, scratch assays, and Transwell assays. Results Our findings suggest that elevated expression of PAQR6 is linked to a poor prognosis for KIRC patients. Functional enrichment analysis demonstrated that PAQR6 is primarily involved in angiogenesis and pluripotent stem cell differentiation, which are crucial in mediating the development of KIRC. Additionally, we established a ceRNA network that is directly related to overall prognosis, further supporting the role of PAQR6 as a prognostic biomarker for KIRC. Conclusion Using both computational and experimental methods, this study leads the charge in discovering and verifying PAQR6 as a prognostic biomarker and possible therapeutic target for KIRC. In the future, to determine its molecular mechanism in KIRC carcinogenesis, more in vivo research will be carried out.
Collapse
Affiliation(s)
- Tao Zou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zongming Jia
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jixiang Wu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuxu Liu
- Department of Neurology Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Minghao Deng
- Department of Urology, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Xuefeng Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Jigen Ping
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Pavlik T, Konchekov E, Shimanovskii N. Antitumor progestins activity: Cytostatic effect and immune response. Steroids 2024; 210:109474. [PMID: 39048056 DOI: 10.1016/j.steroids.2024.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Progestins are used to treat some hormone-sensitive tumors. This review discusses the mechanisms of progestins' effects on tumor cells, the differences in the effects of progesterone and its analogs on different tumor types, and the influence of progestins on the antitumor immune response. Progestins cause a cytostatic effect, but at the same time they can suppress the antitumor immune response, and this can promote the proliferation and metastasis of tumor cells. Such progestins as dienogest, megestrol acetate and levonorgestrel increase the activity of NK-cells, which play a major role in the body's fight against tumor cells. The use of existing progestins and the development of new drugs with gestagenic activity may hold promise in oncotherapy.
Collapse
Affiliation(s)
- T Pavlik
- Pirogov Russian National Research Medical University, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia.
| | - E Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia; Peoples Friendship University of Russia (RUDN University), Russia
| | - N Shimanovskii
- Pirogov Russian National Research Medical University, Russia
| |
Collapse
|
3
|
Agbana S, McIlroy M. Extra-nuclear and cytoplasmic steroid receptor signalling in hormone dependent cancers. J Steroid Biochem Mol Biol 2024; 243:106559. [PMID: 38823459 DOI: 10.1016/j.jsbmb.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Steroid hormone receptors are key mediators in the execution of hormone action through a combination of genomic and non-genomic action. Since their isolation and characterisation in the early 20th Century much of our understanding of the biological actions of steroid hormones are underpinned by their activated receptor activity. Over the past two decades there has been an acceleration of more omics-based research which has resulted in a major uptick in our comprehension of genomic steroid action. However, it is well understood that steroid hormones can induce very rapid signalling events in tandem with their genomic actions wherein they exert their influence through alterations in gene expression. Thus the totality of genomic and non-genomic steroid action occurs in a simultaneous and reciprocal manner and a greater appreciation of whole cell action is required to fully evaluate steroid hormone activity in vivo. In this mini-review we outline the most recent developments in non-genomic steroid action and cytoplasmic steroid hormone receptor biology in endocrine-related cancers with a focus on the 3-keto steroid receptors, in particular the androgen receptor.
Collapse
Affiliation(s)
- Stephanie Agbana
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland
| | - Marie McIlroy
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland.
| |
Collapse
|
4
|
Shchelkunova TA, Levina IS, Morozov IA, Rubtsov PM, Goncharov AI, Kuznetsov YV, Zavarzin IV, Smirnova OV. Effects of Progesterone and Selective Ligands of Membrane Progesterone Receptors in HepG2 Cells of Human Hepatocellular Carcinoma. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1920-1932. [PMID: 38105209 DOI: 10.1134/s0006297923110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Progesterone exerts multiple effects in different tissues through nuclear receptors (nPRs) and through membrane receptors (mPRs) of adiponectin and progestin receptor families. The effect of progesterone on the cells through different types of receptors can vary significantly. At the same time, it affects the processes of proliferation and apoptosis in normal and tumor tissues in a dual way, stimulating proliferation and carcinogenesis in some tissues, suppressing them and stimulating cell death in others. In this study, we have shown the presence of high level of mPRβ mRNA and protein in the HepG2 cells of human hepatocellular carcinoma. Expression of other membrane and classical nuclear receptors was not detected. It could imply that mPRβ has an important function in the HepG2 cells. The main goal of the work was to study functions of this protein and mechanisms of its action in human hepatocellular carcinoma cells. Previously, we have identified selective mPRs ligands, compounds LS-01 and LS-02, which do not interact with nuclear receptors. Their employment allows differentiating the effects of progestins mediated by different types of receptors. Effects of progesterone, LS-01, and LS-02 on proliferation and death of HepG2 cells were studied in this work, as well as activating phosphorylation of two kinases, p38 MAPK and JNK, under the action of three steroids. It was shown that all three progestins after 72 h of incubation with the cells suppressed their viability and stimulated appearance of phosphatidylserine on the outer surface of the membranes, which was detected by binding of annexin V, but they did not affect DNA fragmentation of the cell nuclei. Progesterone significantly reduced expression of the proliferation marker genes and stimulated expression of the p21 protein gene, but had a suppressive effect on the expression of some proapoptotic factor genes. All three steroids activated JNK in these cells, but had no effect on the p38 MAPK activity. The effects of progesterone and selective mPRs ligands in HepG2 cells were the same in terms of suppression of proliferation and stimulation of apoptotic changes in outer membranes, therefore, they were mediated through interaction with mPRβ. JNK is a member of the signaling cascade activated in these cells by the studied steroids.
Collapse
Affiliation(s)
| | - Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey I Goncharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Yury V Kuznetsov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga V Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
5
|
Zamora-Sánchez CJ, Camacho-Arroyo I. Allopregnanolone: Metabolism, Mechanisms of Action, and Its Role in Cancer. Int J Mol Sci 2022; 24:ijms24010560. [PMID: 36614002 PMCID: PMC9820109 DOI: 10.3390/ijms24010560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Allopregnanolone (3α-THP) has been one of the most studied progesterone metabolites for decades. 3α-THP and its synthetic analogs have been evaluated as therapeutic agents for pathologies such as anxiety and depression. Enzymes involved in the metabolism of 3α-THP are expressed in classical and nonclassical steroidogenic tissues. Additionally, due to its chemical structure, 3α-THP presents high affinity and agonist activity for nuclear and membrane receptors of neuroactive steroids and neurotransmitters, such as the Pregnane X Receptor (PXR), membrane progesterone receptors (mPR) and the ionotropic GABAA receptor, among others. 3α-THP has immunomodulator and antiapoptotic properties. It also induces cell proliferation and migration, all of which are critical processes involved in cancer progression. Recently the study of 3α-THP has indicated that low physiological concentrations of this metabolite induce the progression of several types of cancer, such as breast, ovarian, and glioblastoma, while high concentrations inhibit it. In this review, we explore current knowledge on the metabolism and mechanisms of action of 3α-THP in normal and tumor cells.
Collapse
|
6
|
Thomas P, Pang Y, Camilletti MA, Castelnovo LF. Functions of Membrane Progesterone Receptors (mPRs, PAQRs) in Nonreproductive Tissues. Endocrinology 2022; 163:6679267. [PMID: 36041040 DOI: 10.1210/endocr/bqac147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Gender differences in a wide variety of physiological parameters have implicated the ovarian hormones, estrogens and progesterone, in the regulation of numerous nonreproductive tissue functions. Rapid, nongenomic (nonclassical) progesterone actions mediated by membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor family, have been extensively investigated in reproductive and nonreproductive tissues since their discovery in fish ovaries 20 years ago. The 5 mPR subtypes (α, β, γ, δ, ε) are widely distributed in vertebrate tissues and are often expressed in the same cells as the nuclear progesterone receptor (PR) and progesterone receptor membrane component 1, thereby complicating investigations of mPR-specific functions. Nevertheless, mPR-mediated progesterone actions have been identified in a wide range of reproductive and nonreproductive tissues and distinguished from nuclear PR-mediated ones by knockdown of these receptors with siRNA in combination with a pharmacological approach using mPR- and PR-specific agonists. There are several recent reviews on the roles of the mPRs in vertebrate reproduction and cancer, but there have been no comprehensive assessments of mPR functions in nonreproductive tissues. Therefore, this article briefly reviews mPR functions in a broad range of nonreproductive tissues. The evidence that mPRs mediate progesterone and progestogen effects on neuroprotection, lordosis behavior, respiratory control of apnea, olfactory responses to pheromones, peripheral nerve regeneration, regulation of prolactin secretion in prolactinoma, immune functions, and protective functions in vascular endothelial and smooth muscle cells is critically reviewed. The ubiquitous expression of mPRs in vertebrate tissues suggests mPRs regulate many additional nonreproductive functions that remain to be identified.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Yefei Pang
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | | | - Luca F Castelnovo
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
7
|
Thomas P. Membrane Progesterone Receptors (mPRs, PAQRs): Review of Structural and Signaling Characteristics. Cells 2022; 11:cells11111785. [PMID: 35681480 PMCID: PMC9179843 DOI: 10.3390/cells11111785] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 02/05/2023] Open
Abstract
The role of membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor (PAQR) family, in mediating rapid, nongenomic (non-classical) progestogen actions has been extensively studied since their identification 20 years ago. Although the mPRs have been implicated in progestogen regulation of numerous reproductive and non-reproductive functions in vertebrates, several critical aspects of their structure and signaling functions have been unresolved until recently and remain the subject of considerable debate. This paper briefly reviews recent developments in our understanding of the structure and functional characteristics of mPRs. The proposed membrane topology of mPRα, the structure of its ligand-binding site, and the binding affinities of steroids were predicted from homology modeling based on the structures of other PAQRs, adiponectin receptors, and confirmed by mutational analysis and ligand-binding assays. Extensive data demonstrating that mPR-dependent progestogen regulation of intracellular signaling through mPRs is mediated by activation of G proteins are reviewed. Close association of mPRα with progesterone membrane receptor component 1 (PGRMC1), its role as an adaptor protein to mediate cell-surface expression of mPRα and mPRα-dependent progestogen signaling has been demonstrated in several vertebrate models. In addition, evidence is presented that mPRs can regulate the activity of other hormone receptors.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
8
|
Kelder J, Pang Y, Dong J, Schaftenaar G, Thomas P. Molecular modeling, mutational analysis and steroid specificity of the ligand binding pocket of mPRα (PAQR7): Shared ligand binding with AdipoR1 and its structural basis. J Steroid Biochem Mol Biol 2022; 219:106082. [PMID: 35189329 DOI: 10.1016/j.jsbmb.2022.106082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
The 7-transmembrane architecture of adiponectin receptors (AdipoRs), determined from their X-ray crystal structures, was used for homology modeling of another progesterone and adipoQ receptor (PAQR) family member, membrane progesterone receptor alpha (mPRα). The mPRα model identified excess positively charged residues on the cytosolic side, suggesting it has the same membrane orientation as AdipoRs with an intracellular N-terminus. The homology model showed identical amino acid residues to those forming the zinc binding pocket in AdipoRs, which strongly implies that zinc is also present in mPRα. The homology model showed a critical H-bond interaction between the glutamine (Q) residue at 206 in the binding pocket and the 20-carbonyl of progesterone. Mutational analysis showed no progesterone binding to the arginine (R) 206 mutant and modeling predicted this was due to the strong positive charge of arginine stabilizing the presence of an oleic acid (C18:1) molecule in the binding pocket, as observed in the X-rays of AdipoRs. High Zn2+ concentrations are predicted to form a salt with the carboxylate group of the oleic acid, thereby eliminating its binding to the free fatty acid (FFA) binding pocket, and allowing progesterone to bind. This is supported by experiments showing 100 µM Zn2+ addition restored [3H]-progesterone binding of the Q206R mutant to levels in WT mPRα and increased [3H]-progesterone binding to mPRγ and AdipoR1 which have arginine residues in this region. The model predicts hydrophobic interactions of progesterone with amino acid residues surrounding the binding pocket, including valine 146 in TM3, which when mutated into a polar serine resulted in a complete loss of [3H]-progesterone binding. The mPRα model showed there is no hydrogen bond donor in the vicinity of the 3-keto group of progesterone and ligand structure-activity studies with 3-deoxy steroids revealed that, unlike the nuclear progesterone receptor, the 3-carbonyl oxygen is not essential for binding to mPRα. Interestingly, the small synthetic AdipoR agonist, AdipoRon, displayed binding affinity for mPRα and mimicked progesterone signaling, whereas D-e-MAPP, a ceramidase inhibitor, blocked progesterone signaling. Thus, critical residues around the binding pocket and steroid structures that bind mPRα, as well as similarities with AdipoRs, can be predicted from the homology model.
Collapse
Affiliation(s)
- Jan Kelder
- Theoretical & Computational Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Yefei Pang
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Jing Dong
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Gijs Schaftenaar
- Theoretical & Computational Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Peter Thomas
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
9
|
Xia Z, Xiao J, Dai Z, Chen Q. Membrane progesterone receptor α (mPRα) enhances hypoxia-induced vascular endothelial growth factor secretion and angiogenesis in lung adenocarcinoma through STAT3 signaling. J Transl Med 2022; 20:72. [PMID: 35123491 PMCID: PMC8817580 DOI: 10.1186/s12967-022-03270-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/22/2022] [Indexed: 12/27/2022] Open
Abstract
Lung cancer remains a huge challenge to public health because of its high incidence and mortality, and lung adenocarcinoma (LUAD) is the main subtype of lung cancer. Hypoxia-induced vascular endothelial growth factor (VEGF) release and angiogenesis have been regarded as critical events in LUAD carcinogenesis. In the present study, membrane progesterone receptor α (mPRα) is deregulated within LUAD tissue samples; increased mPRα contributes to a higher microvessel density (MVD) in LUAD tissues. mPRα knockdown in A549 and PC-9 cells significantly inhibited STAT3 phosphorylation, as well as HIF1α and VEGF protein levels, decreasing cancer cell migration and invasion. The in vivo xenograft model further confirmed that mPRα enhanced the aggressiveness of LUAD cells. Furthermore, mPRα knockdown significantly inhibited hypoxia-induced upregulation in HIF1α and VEGF levels, as well as LUAD cell migration and invasion. Under the hypoxic condition, conditioned medium (CM) derived from mPRα knockdown A549 cells, namely si-mPRα-CM, significantly inhibited HUVEC migration and tube formation and decreased VEGF level in the culture medium. In contrast, CM derived from mPRα-overexpressing A549 cells, namely mPRα-CM, further enhanced HUVEC migration and tube formation and increased VEGF level under hypoxia, which was partially reversed by STAT3 inhibitor Stattic. In conclusion, in LUAD cells, highly expressed mPRα enhances the activation of cAMP/JAK/STAT3 signaling and increases HIF1α-induced VEGF secretion into the tumor microenvironment, promoting HUVEC migration and tube formation under hypoxia.
Collapse
|
10
|
Lopez-Garcia CA, Lopez-Rivera V, Dono A, Salazar-Marioni S, Novo JE, Sheth SA, Ballester LY, Esquenazi Y. Hormone exposure and its suppressive effect on risk of high-grade gliomas among patients with breast cancer. J Clin Neurosci 2021; 94:200-203. [PMID: 34863438 DOI: 10.1016/j.jocn.2021.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/30/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Prior reports demonstrate the expression of estrogen and progesterone receptors in high-grade gliomas (HGGs), but the relationship between hormone receptor-positive disease and risk of HHGs in patients with breast cancer (BC) remains uncharacterized. METHODS Using the SEER 18 registries (2000-2017), we examined the temporal trend of the incidence of HGGs and BC. The standardized incidence ratio was calculated to assess the risk of subsequent HGG in BC patients. RESULTS During the study period, the incidence of BC and HGGs remained comparable for men and women. Among 976,134 patients with BC, we found a decreased incidence of HGGs in females, but not in males. Female BC patients with hormone receptor-positive disease were at a lower risk of developing glioblastoma and anaplastic astrocytoma. CONCLUSION Our study findings allude to the protective role of hormone exposure in the development of HGGs, which may lead to the development of therapies targeting hormonal pathways.
Collapse
Affiliation(s)
- Carlos A Lopez-Garcia
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victor Lopez-Rivera
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio Dono
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sergio Salazar-Marioni
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jorge E Novo
- Department of Pathology and Laboratory Medicine Northwestern, Chicago, IL, USA
| | - Sunil A Sheth
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA; Memorial Hermann Hospital, Houston, TX, USA.
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA; Memorial Hermann Hospital, Houston, TX, USA; Center of Precision Health, School of Biomedical Informatics, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
11
|
Goncharov AI, Levina IS, Shliapina VL, Morozov IA, Rubtsov PM, Zavarzin IV, Smirnova OV, Shchelkunova TA. Cytotoxic Effects of the Selective Ligands of Membrane Progesterone Receptors in Human Pancreatic Adenocarcinoma Cells BxPC3. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1446-1460. [PMID: 34906046 DOI: 10.1134/s0006297921110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Progesterone and its synthetic analogues act on cells through different types of receptors, affecting proliferation and apoptosis. These compounds exert their effect through the nuclear receptors and the insufficiently studied membrane progesterone receptors (mPRs) belonging to the progestin and adiponectin Q receptor (PAQR) family. We have identified two selective ligands of mPRs that activate only this type of progesterone receptors - 19-hydroxypregn-4-en-20-one (LS-01) and 19-hydroxy-5β-pregn-3-en-20-one (LS-02). The goal of this work is to study the effect of these compounds on proliferation and death of human pancreatic adenocarcinoma cells BxPC3 and involvement of the two kinases (p38 MAPK and JNK) in signaling pathways activated by progestins through mPRs. It was shown that progesterone and the compound LS-01 significantly (p < 0.05) inhibited the BxPC3 cell viability, with JNK serving as a mediator. The identified targets of these two steroids are the genes of the proteins Ki67, cyclin D1, PCNA, and p21. Progesterone and the compound LS-01 significantly (p < 0.05) stimulate DNA fragmentation, enhancing the cell death. The p38 mitogen-activated protein kinase (MAPK) is a key mediator of this process. The BCL2A1 protein gene was identified as a target of both steroids. The compound LS-02 significantly (p < 0.05) alters membrane permeability and changes the exposure of phosphatidylserine on the outer membrane leaflet, also enhancing the cell death. This compound acts on these processes by activating both kinases, JNK and p38 MAPK. The compound LS-02 targets the genes encoding the proteins HRK, caspase 9, and DAPK.
Collapse
Affiliation(s)
- Alexey I Goncharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | | | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga V Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
12
|
Castelnovo LF, Thomas P. Membrane progesterone receptor α (mPRα/PAQR7) promotes migration, proliferation and BDNF release in human Schwann cell-like differentiated adipose stem cells. Mol Cell Endocrinol 2021; 531:111298. [PMID: 33930460 DOI: 10.1016/j.mce.2021.111298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022]
Abstract
Membrane progesterone receptors (mPRs) were recently found to be present and active in Schwann cells, where they have a potentially pro-regenerative activity. In this study, we investigated the role of mPRs in human adipose stem cells (ASC) differentiated into Schwann cell-like cells (SCL-ASC), which represent a promising alternative to Schwann cells for peripheral nerve regeneration. Our findings show that mPRs are present both in undifferentiated and differentiated ASC, and that the differentiation protocol upregulates mPR expression. Activation of mPRα promoted cell migration and differentiation in SCL-ASC, alongside with changes in cell morphology and mPRα localization. Moreover, it increased the expression and release of BDNF, a neurotrophin with pro-regenerative activity. Further analysis showed that Src and PI3K-Akt signaling pathways are involved in mPRα activity in SCL-ASC. These findings suggest that mPRα could play a pro-regenerative role in SCL-ASC and may be a promising target for the promotion of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Luca F Castelnovo
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas (TX), 78373, United States.
| | - Peter Thomas
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas (TX), 78373, United States
| |
Collapse
|
13
|
Bello-Alvarez C, Camacho-Arroyo I. Impact of sex in the prevalence and progression of glioblastomas: the role of gonadal steroid hormones. Biol Sex Differ 2021; 12:28. [PMID: 33752729 PMCID: PMC7986260 DOI: 10.1186/s13293-021-00372-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND As in other types of cancers, sex is an essential factor in the origin and progression of glioblastomas. Research in the field of endocrinology and cancer suggests that gonadal steroid hormones play an important role in the progression and prevalence of glioblastomas. In the present review, we aim to discuss the actions and mechanism triggered by gonadal steroid hormones in glioblastomas. MAIN BODY Glioblastoma is the most common malignant primary brain tumor. According to the epidemiological data, glioblastomas are more frequent in men than in women in a 1.6/1 proportion both in children and adults. This evidence, and the knowledge about sex influence over the prevalence of countless diseases, suggest that male gonadal steroid hormones, such as testosterone, promote glioblastomas growth. In contrast, a protective role of female gonadal steroid hormones (estradiol and progesterone) against glioblastomas has been questioned. Several pieces of evidence demonstrate a variety of effects induced by female and male gonadal steroid hormones in glioblastomas. Several studies indicate that pregnancy, a physiological state with the highest progesterone and estradiol levels, accelerates the progression of low-grade astrocytomas to glioblastomas and increases the symptoms associated with these tumors. In vitro studies have demonstrated that progesterone has a dual role in glioblastoma cells: physiological concentrations promote cell proliferation, migration, and invasion while very high doses (out physiological range) reduce cell proliferation and increases cell death. CONCLUSION Gonadal steroid hormones can stimulate the progression of glioblastomas through the increase in proliferation, migration, and invasion. However, the effects mentioned above depend on the concentrations of these hormones and the receptor involved in hormone actions. Estradiol and progesterone can exert promoter or protective effects while the role of testosterone has been always associated to glioblastomas progression.
Collapse
Affiliation(s)
- Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México.
| |
Collapse
|
14
|
Levina IS, Kuznetsov YV, Shchelkunova TA, Zavarzin IV. Selective ligands of membrane progesterone receptors as a key to studying their biological functions in vitro and in vivo. J Steroid Biochem Mol Biol 2021; 207:105827. [PMID: 33497793 DOI: 10.1016/j.jsbmb.2021.105827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Progesterone modulates many processes in the body, acting through nuclear receptors (nPR) in various organs and tissues. However, a number of effects are mediated by membrane progesterone receptors (mPRs), which are members of the progestin and adipoQ (PAQR) receptor family. These receptors are found in most tissues and immune cells. They are expressed in various cancer cells and appear to play an important role in the development of tumors. The role of mPRs in the development of insulin resistance and metabolic syndrome has also attracted attention. Since progesterone efficiently binds to both nPRs and mPRs, investigation of the functions of the mPRs both at the level of the whole body and at the cell level requires ligands that selectively interact with mPRs, but not with nPRs, with an affinity comparable with that of the natural hormone. The development of such ligands faces difficulties primarily due to the lack of data on the three-dimensional structure of the ligand-binding site of mPR. This review is the first attempt to summarize available data on the structures of compounds interacting with mPRs and analyze them in terms of the differences in binding to membrane and nuclear receptors. Based on the identified main structural fragments of molecules, which affect the efficiency of binding to mPRs and are responsible for the selectivity of interactions, we propose directions of modification of the steroid scaffold to create new selective mPRs ligands.
Collapse
Affiliation(s)
- Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia.
| | - Yury V Kuznetsov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia
| | - Tatiana A Shchelkunova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia
| |
Collapse
|
15
|
González-Orozco JC, Gaona-Domínguez S, Camacho-Arroyo I. In Vitro Models for Studying Tumor Progression. Methods Mol Biol 2021; 2174:193-206. [PMID: 32813251 DOI: 10.1007/978-1-0716-0759-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Beyond cell proliferation, one of the most outstanding characteristics of the cancerous cells that promotes the tumoral progression is their high capacity to migrate and invade the surrounding healthy tissue. These cellular processes (migration and invasion) are critical steps to metastasis. Metastatic progression of the tumors is often the leading cause of morbidity and mortality in cancer patients. Critical genes and cell signaling pathways involved in cell migration and invasion of tumor cells have been identified, and several clinical efforts to alleviate cancer are focused on them; however, once the tumor has metastasized, it is extremely difficult to stop the progression of very aggressive forms of cancer such as glioblastomas. Therefore, it is crucial to elucidate the specific molecular mechanisms underlying tumor progression. In this chapter, we describe some methods to study tumor progression by assessing migration and cell invasion in 2D and 3D cell culture conditions.
Collapse
Affiliation(s)
- Juan Carlos González-Orozco
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Saúl Gaona-Domínguez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
16
|
Bello-Alvarez C, Moral-Morales AD, González-Arenas A, Camacho-Arroyo I. Intracellular Progesterone Receptor and cSrc Protein Working Together to Regulate the Activity of Proteins Involved in Migration and Invasion of Human Glioblastoma Cells. Front Endocrinol (Lausanne) 2021; 12:640298. [PMID: 33841333 PMCID: PMC8032993 DOI: 10.3389/fendo.2021.640298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastomas are the most common and aggressive primary brain tumors in adults, and patients with glioblastoma have a median survival of 15 months. Some alternative therapies, such as Src family kinase inhibitors, have failed presumably because other signaling pathways compensate for their effects. In the last ten years, it has been proven that sex hormones such as progesterone (P4) can induce growth, migration, and invasion of glioblastoma cells through its intracellular progesterone receptor (PR), which is mostly known for its role as a transcription factor, but it can also induce non-genomic actions. These non-classic actions are, in part, a consequence of its interaction with cSrc, which plays a significant role in the progression of glioblastomas. We studied the relation between PR and cSrc, and its effects in human glioblastoma cells. Our results showed that P4 and R5020 (specific PR agonist) activated cSrc protein since both progestins increased the p-cSrc (Y416)/cSrc ratio in U251 and U87 human glioblastoma derived cell lines. When siRNA against the PR gene was used, the activation of cSrc by P4 was abolished. The co-immunoprecipitation assay showed that cSrc and PR interact in U251 cells. P4 treatment also promoted the increase in the p-Fak (Y397) (Y576/577)/Fak and the decrease in p-Paxillin (Y118)/Paxillin ratio, which are significant components of the focal adhesion complex and essential for migration and invasion processes. A siRNA against cSrc gene blocked the increase in the p-Fak (Y576/Y577)/Fak ratio and the migration induced by P4, but not the decrease in p-Paxillin (Y118)/Paxillin ratio. We analyzed the potential role of cSrc over PR phosphorylation in three databases, and one putative tyrosine residue in the amino acid 87 of PR was found. Our results showed that P4 induces the activation of cSrc protein through its PR. The latter and cSrc could interact in a bidirectional mode for regulating the activity of proteins involved in migration and invasion of glioblastomas.
Collapse
Affiliation(s)
- Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Aylin Del Moral-Morales
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Ignacio Camacho-Arroyo,
| |
Collapse
|
17
|
Zamora-Sánchez CJ, Hernández-Vega AM, Gaona-Domínguez S, Rodríguez-Dorantes M, Camacho-Arroyo I. 5alpha-dihydroprogesterone promotes proliferation and migration of human glioblastoma cells. Steroids 2020; 163:108708. [PMID: 32730775 DOI: 10.1016/j.steroids.2020.108708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/12/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Glioblastomas (GBMs) are the most common and deadliest intracranial tumors. Steroid hormones, such as progesterone (P4), at physiological concentrations, promote proliferation, and migration of human GBM cells in vivo and in vitro. Neuronal and glial cells, but also GBMs, metabolize P4 and synthesize different active metabolites such as 5α-dihydroprogesterone (5α-DHP). However, their contribution to GBM malignancy remains unknown. Here, we determined the 5α-DHP effects on the number of cells, proliferation, and migration of the U87 and U251 human GBM-derived cell lines. Of the tested concentrations (1 nM-1 µM), 5α-DHP 10 nM significantly increased the number of U87 and U251 cells from day 2 of treatment, and proliferation (at day 3) in a similar manner as P4 (10 nM). The treatment with the progesterone receptor (PR) antagonist RU486 (mifepristone), blocked the effects of 5α-DHP on the number of cells and proliferation. Besides, in U251 and LN229 GBM cells, 5α-DHP promoted cell migration (from 12 to 24 h). We also determined that GBM cells expressed the 3α-hydroxysteroid oxidoreductases (3α-HSOR), which reversibly reduce 5α-DHP to allopregnanolone (3α-THP). These data indicate that 5α-DHP induces proliferation and migration of human GBM through the activation of PR.
Collapse
Affiliation(s)
- Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Ana M Hernández-Vega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Saúl Gaona-Domínguez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Mauricio Rodríguez-Dorantes
- Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, C.P. 14610 Ciudad de Mexico, Mexico.
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
18
|
Li X, Tao Z, Wang H, Deng Z, Zhou Y, Du Z. Dual inhibition of Src and PLK1 regulate stemness and induce apoptosis through Notch1-SOX2 signaling in EGFRvIII positive glioma stem cells (GSCs). Exp Cell Res 2020; 396:112261. [PMID: 32896567 DOI: 10.1016/j.yexcr.2020.112261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 01/24/2023]
Abstract
Glioma stem cells (GSCs) have been implicated in the promotion of malignant progression. Epidermal growth factor receptor variant (EGFRv) has been associated with glioma "stemness". However, the molecular mechanism is not clear. In this study, we were committed to investigate the role of EGFRv in GSCs and presented a new therapeutic target in EGFRvIII positive GSCs. The results showed that EGFRvIII could induce the expression of p-Src and PLK1, and both could induce the Notch1-SOX2 signaling pathway to promote self-renewal and tumor progression of GSCs. Mechanistically, both p-Src and PLK1 can induce Notch1, and the intracellular domain of Notch1 (NICD) can directly bind to SOX2, thereby promoting the maintenance of glioma stem cells. Furthermore, Saracatinib (Src inhibition) and BI2536 (PLK1 inhibition) diminished GSC self-renewal in vitro, and combining the two inhibitors increased survival of orthotopic tumor-bearing mice. Taken together, these data indicate that p-Src and PLK1 contribute to cancer stemness in EGFRvIII-positive GSCs by driving Notch1-SOX2 signaling, a finding that has important clinical implications.
Collapse
Affiliation(s)
- Xuetao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhennan Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhitong Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Ziwei Du
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Cantonero C, Salido GM, Rosado JA, Redondo PC. PGRMC1 Inhibits Progesterone-Evoked Proliferation and Ca 2+ Entry Via STIM2 in MDA-MB-231 Cells. Int J Mol Sci 2020; 21:ijms21207641. [PMID: 33076541 PMCID: PMC7589959 DOI: 10.3390/ijms21207641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) has been shown to regulate some cancer hallmarks. Progesterone (P4) evokes intracellular calcium (Ca2+) changes in the triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and BT-20) and in other breast cancer cell lines like the luminal MCF7 cells. PGRMC1 expression is elevated in MDA-MB-231 and MCF7 cells as compared to non-tumoral MCF10A cell line, and PGRMC1 silencing enhances P4-evoked Ca2+ mobilization. Here, we found a new P4-dependent Ca2+ mobilization pathway in MDA-MB-231 cells and other triple-negative breast cancer cells, as well as in MCF7 cells that involved Stromal interaction molecule 2 (STIM2), Calcium release-activated calcium channel protein 1 (Orai1), and Transient Receptor Potential Channel 1 (TRPC1). Stromal interaction molecule 1 (STIM1) was not involved in this novel Ca2+ pathway, as evidenced by using siRNA STIM1. PGRMC1 silencing reduced the negative effect of P4 on cell proliferation and cell death in MDA-MB-231 cells. In line with the latter observation, Nuclear Factor of Activated T-Cells 1 (NFAT1) nuclear accumulation due to P4 incubation for 48 h was enhanced in cells transfected with the small hairpin siRNA against PGRMC1 (shPGRMC1). These results provide evidence for a novel P4-evoked Ca2+ entry pathway that is downregulated by PGRMC1.
Collapse
|
20
|
The Role of mPRδ and mPRε in Human Glioblastoma Cells: Expression, Hormonal Regulation, and Possible Clinical Outcome. Discov Oncol 2020; 11:117-127. [PMID: 32077034 DOI: 10.1007/s12672-020-00381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioblastomas (GBM) are the most frequent and aggressive primary tumor of the central nervous system. In recent years, it has been proposed that sex hormones such as progesterone play an essential role in GBM biology. Membrane progesterone receptors (mPRs) are a group of G protein-coupled receptors with a wide distribution and multiple functions in the organism. There are five mPRs subtypes described in humans: mPRα, mPRβ, mPRγ, mPRδ, and mPRε. It has been reported that human-derived GBM cells express the mPRα, mPRβ, and mPRγ subtypes, and that progesterone promotes GBM progression in part by mPRα specific activation; however, it is still unknown if mPRδ and mPRε are also expressed in this type of tumor cells. In this study, we characterized the expression and hormonal regulation of mPRδ and mPRε in human GBM cells. We also analyzed a set of biopsies from TCGA. We found that the expression of these receptors is dependent on the tumor's grade and that mPRδ expression is directly correlated to patients' survival while the opposite is observed for mPRε. By RT-qPCR, Western blot, and immunofluorescence, the expression of mPRδ and mPRε was detected for the first time in human GBM cells. An in silico analysis showed possible progesterone response elements in the promoter regions of mPRδ and mPRε, and progesterone treatments downregulated the expression of these receptors. Our results suggest that mPRδ and mPRε are expressed in human GBM cells and that they are relevant to GBM biology.
Collapse
|
21
|
Lima MA, Silva SV, Jaeger RG, Freitas VM. Progesterone decreases ovarian cancer cells migration and invasion. Steroids 2020; 161:108680. [PMID: 32562708 DOI: 10.1016/j.steroids.2020.108680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/28/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022]
Abstract
The progression of cancer depends on the interaction between the cells and their microenvironment. Progesterone is a steroid and progestogen sex hormone produced by the corpus luteum, which is a transitory endocrine gland in female mammals and prepares the endometrium for implantation. Also, progesterone is involved in antitumorigenic process in different types of cancer. Our goal is to investigate the role of progesterone in cell invasion and migration. Ovarian cells were treated with different concentrations of progesterone. 500 nM or 1 μM progesterone decreased the migration of the cells in 24 h or less without affecting the viability. Immunoblot showed that treatment with 1 μM progesterone decreased the phosphorylated forms of Src and FAK, and the cells were less polarized. Our results suggest that progesterone interferes with migration and invasion of ovarian cells. Inhibitory experiments inferred the progesterone receptor playing a role in migration and invasion. Decreased phosphorylation of molecules involved in these processes was also found.
Collapse
Affiliation(s)
- Maíra A Lima
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1 sala 428, São Paulo, SP 05508-000, Brazil
| | - Suély V Silva
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1 sala 428, São Paulo, SP 05508-000, Brazil
| | - Ruy G Jaeger
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1 sala 428, São Paulo, SP 05508-000, Brazil
| | - Vanessa M Freitas
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1 sala 428, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
22
|
Expression of Membrane Progesterone Receptors in Eutopic and Ectopic Endometrium of Women with Endometriosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2196024. [PMID: 32733932 PMCID: PMC7376402 DOI: 10.1155/2020/2196024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/23/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022]
Abstract
Endometriosis is one of the most frequent gynecological diseases in reproductive age women, but its etiology is not completely understood. Endometriosis is characterized by progesterone resistance, which has been explained in part by a decrease in the expression of the intracellular progesterone receptor in the ectopic endometrium. Progesterone action is also mediated by nongenomic mechanisms via membrane progesterone receptors (mPRs) that belong to the class II members of the progesterone and adipoQ receptor (PAQR) family. The aim of the present study was to evaluate the expression at mRNA and protein levels of mPR members in the eutopic and ectopic endometrium of women with endometriosis. Total RNA and total protein were isolated from control endometrium (17 samples), eutopic endometrium (17 samples), and ectopic endometrium (9 samples). The expression of PAQR7 (mPRα), PAQR8 (mPRβ), and PAQR6 (mPRδ) at mRNA and protein levels was evaluated by RT-qPCR and Western blot, whereas PAQR5 (mPRγ) gene expression was evaluated by RT-qPCR. Statistical analysis between comparable groups was performed using one-way ANOVA followed by Tukey's multiple comparisons test with a confidence interval of 95 %. The analysis of gene expression showed that PAQR7 and PAQR5 expression was lower in both eutopic and ectopic endometrium as compared to the endometrium of women without endometriosis, whereas the expression of PAQR8 and PAQR6 was only reduced in eutopic endometrium. Furthermore, mPRα and mPRβ protein content was decreased in the ectopic endometrium of women with endometriosis. Our results demonstrate a decrease in the expression and protein content of mPRs in eutopic and ectopic endometrium of patients with endometriosis, which could contribute to the progesterone resistance observed in patients with this disease.
Collapse
|
23
|
An agonist for membrane progestin receptor (mPR) induces oocyte maturation and ovulation in zebrafish in vivo. Biochem Biophys Res Commun 2020; 529:347-352. [PMID: 32703434 DOI: 10.1016/j.bbrc.2020.05.208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
The maturation and ovulation of fish oocytes are well-characterized biological processes induced by progestins via coordination of nongenomic actions and genomic actions. Previously, we established a procedure that enables the induction of oocyte maturation and ovulation in live zebrafish by simple administration of the natural teleost maturation-inducing hormone 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17,20β-DHP) into the surrounding water. By this in vivo assay, the potencies of chemicals in inducing or preventing oocyte maturation and ovulation can be evaluated. The potencies of compounds in inducing ovulation of zebrafish oocytes also can be evaluated in vivo with improved in vitro assays. Here, we attempted to evaluate the effect of Org OD 02-0 (Org OD 02), a selective agonist for membrane progestin receptor (mPR), on fish oocyte maturation and ovulation with in vitro and in vivo assays. As reported previously, Org OD 02 triggered oocyte maturation in vitro. The same Org OD 02 triggered oocyte maturation within several hours in vivo. Surprisingly, Org OD 02 even induced ovulation both in in vivo and in vitro. Eggs from Org OD 02-induced ovulation could be fertilized by artificial insemination. The juveniles developed normally. These results indicated that Org OD 02 triggered physiological ovulation in live zebrafish. In summary, we have demonstrated the effect of Org OD 02 on fish oocyte maturation and ovulation in vitro and in vivo. The results suggested that Org OD 02 acted as an agonist not only of mPR but also of nuclear progesterone receptor (nPR).
Collapse
|
24
|
Vaillant C, Gueguen MM, Feat J, Charlier TD, Coumailleau P, Kah O, Brion F, Pellegrini E. Neurodevelopmental effects of natural and synthetic ligands of estrogen and progesterone receptors in zebrafish eleutheroembryos. Gen Comp Endocrinol 2020; 288:113345. [PMID: 31812531 DOI: 10.1016/j.ygcen.2019.113345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/03/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
Natural and synthetic estrogens and progestins are widely used in human and veterinary medicine and are detected in waste and surface waters. Our previous studies have clearly shown that a number of these substances targets the brain to induce the estrogen-regulated brain aromatase expression but the consequences on brain development remain virtually unexplored. The aim of the present study was therefore to investigate the effect of estradiol (E2), progesterone (P4) and norethindrone (NOR), a 19-nortestosterone progestin, on zebrafish larval neurogenesis. We first demonstrated using real-time quantitative PCR that nuclear estrogen and progesterone receptor brain expression is impacted by E2, P4 and NOR. We brought evidence that brain proliferative and apoptotic activities were differentially affected depending on the steroidal hormone studied, the concentration of steroids and the region investigated. Our findings demonstrate for the first time that steroid compounds released in aquatic environment have the capacity to disrupt key cellular events involved in brain development in zebrafish embryos further questioning the short- and long-term consequences of this disruption on the physiology and behavior of organisms.
Collapse
Affiliation(s)
- Colette Vaillant
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie-Madeleine Gueguen
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Justyne Feat
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Pascal Coumailleau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
25
|
Zhang S, Sun C, Zhao S, Wang B, Wang H, Zhang J, Wang Y, Cheng H, Zhu L, Shen R, Sun M, Xu T, Zhao L. Exposure to DEHP or its metabolite MEHP promotes progesterone secretion and inhibits proliferation in mouse placenta or JEG-3 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113593. [PMID: 31771930 DOI: 10.1016/j.envpol.2019.113593] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/20/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Di (2-ethyl-hexyl)phthalate (DEHP) is an environmental endocrine disruptor and commonly used as plasticizer. Maternal DEHP exposure during pregnancy reduces placental size and destroys placental structure. However, the underlying mechanisms were unclear. In this study, we supposed that DEHP disturbs endocrine function of placenta to inhibit the proliferation of placental cell. Using radioimmunoassay and ELISA, we found that DEHP and its active metabolite mono (2-ethyl-hexyl) phthalate (MEHP) promoted progesterone secretion in pregnant mouse and in JEG-3 cells, respectively. Therefore, placental endocrine function was altered by DEHP. The mRNA and protein level of progesterone synthetase 3β-HSD1 was elevated by DEHP, which is conducive to the synthesis of progesterone. The level of progesterone receptor was down-regulated by DEHP and MEHP in mouse placenta and in JEG-3 cells, respectively. PR deficiency further promoted the level of 3β-HSD1, which leads to a higher progesterone level. In turn, higher concentration of progesterone further inhibited the expression of PGR (PR gene). Therefore, higher progesterone down-regulated the level of its receptor PR. Meanwhile, decreased PR induced more progesterone secretion. There is a feedback loop between progesterone and PR. PR deficiency down-regulated the protein level of Cyclin D1 which plays an important role in cell proliferation. Accordingly, DEHP and its active metabolite MEHP can restrain proliferation of placental cell and disturb the progesterone secretion via decreasing the level of PR.
Collapse
Affiliation(s)
- Shanyu Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Department of Biological and Environmental Engineering, Hefei University, Hefei, 230601, China
| | - Congcong Sun
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Department of Biological and Environmental Engineering, Hefei University, Hefei, 230601, China
| | - Shuai Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Department of Biological and Environmental Engineering, Hefei University, Hefei, 230601, China
| | - Bo Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jun Zhang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Anhui Medical University, China
| | - Yang Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, China
| | - Hanchao Cheng
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Liya Zhu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Ru Shen
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Meifang Sun
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Tao Xu
- Department of Biological and Environmental Engineering, Hefei University, Hefei, 230601, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Lingli Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
26
|
Mayorquín-Torres MC, González-Orozco JC, Flores-Álamo M, Camacho-Arroyo I, Iglesias-Arteaga MA. Palladium catalyzed synthesis of benzannulated steroid spiroketals. Org Biomol Chem 2020; 18:725-737. [DOI: 10.1039/c9ob02255d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nine cytotoxic [5/7] and [6/6] benzannulated steroid spiroketals were synthesized by palladium catalyzed spiroketalization of 5α and 5β-alkynediols derived from testosterone, diosgenin and cholesterol.
Collapse
Affiliation(s)
- Martha C. Mayorquín-Torres
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- 04510 Ciudad de México
- Mexico
| | - Juan Carlos González-Orozco
- Unidad de Investigación en Reproducción Humana
- Instituto Nacional de Perinatología-Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- 04510 Ciudad de México
| | - Marcos Flores-Álamo
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- 04510 Ciudad de México
- Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana
- Instituto Nacional de Perinatología-Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- 04510 Ciudad de México
| | - Martín A. Iglesias-Arteaga
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- 04510 Ciudad de México
- Mexico
| |
Collapse
|
27
|
Thomas P, Pang Y. Anti-apoptotic Actions of Allopregnanolone and Ganaxolone Mediated Through Membrane Progesterone Receptors (PAQRs) in Neuronal Cells. Front Endocrinol (Lausanne) 2020; 11:417. [PMID: 32670200 PMCID: PMC7331777 DOI: 10.3389/fendo.2020.00417] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
The neurosteroids progesterone and allopregnanolone regulate numerous neuroprotective functions in neural tissues including inhibition of epileptic seizures and cell death. Many of progesterone's actions are mediated through the nuclear progesterone receptor (PR), while allopregnanolone is widely considered to be devoid of hormonal activity and instead acts through modulation of GABA-A receptor activity. However, allopregnanolone can also exert hormonal actions in neuronal cells through binding and activating membrane progesterone receptors (mPRs) belonging to the progestin and adipoQ receptor (PAQR) family. The distribution and functions of the five mPR subtypes (α, β, γ, δ, ε) in neural tissues are briefly reviewed. mPRδ has the highest binding affinity for allopregnanolone and is highly expressed throughout the human brain. Low concentrations (20 nM) of allopregnanolone act through mPRδ to stimulate G protein (Gs)-dependent signaling pathways resulting in reduced cell death and apoptosis in mPRδ-transfected cells. The 3-methylated synthetic analog of allopregnanolone, ganaxolone, is currently undergoing clinical trials as a promising GABA-A receptor-selective antiepileptic drug (AED). New data show that low concentrations (20 nM) of ganaxolone also activate mPRδ signaling and exert anti-apoptotic actions through this receptor. Preliminary evidence suggests that ganaxolone can also exert neuroprotective effects by activating inhibitory G protein (Gi)-dependent signaling through mPRα and/or mPRβ in neuronal cells. The results indicate that mPRs are likely intermediaries in multiple actions of natural and synthetic neurosteroids in the brain. Potential off-target effects of ganaxolone through activation of mPRs in patients receiving long-term treatment for epilepsy and other disorders should be considered and warrant further investigation.
Collapse
|
28
|
Membrane Progesterone Receptors (mPRs/PAQRs) Differently Regulate Migration, Proliferation, and Differentiation in Rat Schwann Cells. J Mol Neurosci 2019; 70:433-448. [DOI: 10.1007/s12031-019-01433-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/03/2019] [Indexed: 12/01/2022]
|
29
|
González-Orozco JC, Camacho-Arroyo I. Progesterone Actions During Central Nervous System Development. Front Neurosci 2019; 13:503. [PMID: 31156378 PMCID: PMC6533804 DOI: 10.3389/fnins.2019.00503] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Although progesterone is a steroid hormone mainly associated with female reproductive functions, such as uterine receptivity and maintenance of pregnancy, accumulating data have shown its physiological actions to extend to several non-reproductive functions in the central nervous system (CNS) both in males and females. In fact, progesterone is de novo synthesized in specific brain regions by neurons and glial cells and is involved in the regulation of various molecular and cellular processes underlying myelination, neuroprotection, neuromodulation, learning and memory, and mood. Furthermore, progesterone has been reported to be implicated in critical developmental events, such as cell differentiation and neural circuits formation. This view is supported by the increase in progesterone synthesis observed during pregnancy in both the placenta and the fetal brain. In the present review, we will focus on progesterone actions during CNS development.
Collapse
Affiliation(s)
- Juan Carlos González-Orozco
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
30
|
Li B, Lin Z, Liang Q, Hu Y, Xu WF. PAQR6 Expression Enhancement Suggests a Worse Prognosis in Prostate Cancer Patients. Open Life Sci 2018; 13:511-517. [PMID: 33817121 PMCID: PMC7874734 DOI: 10.1515/biol-2018-0061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/01/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the expression of progestin and adipoQ receptor family member VI (PAQR6, mPRδ) in prostate cancer and to explore its role in prostate cancer progression. METHODS PAQR6 mRNA expression was evaluated based on the data obtained from the TCGA database and the GEO database. The prognostic value of PAQR6 was explored by Kaplan-Meier analysis. To investigate the role of PAQR6, it was depleted by siRNA in DU145 cells. The effects of depleting PAQR6 on DU145 cell viability and migration were determined by CCK8 assay, colony formation assay, and wound healing assay, respectively. The activation of MEK and ERK were analyzed by western blot. RESULTS PAQR6 mRNA expression was significantly up-regulated in prostate cancer tissues and correlated with lower survival rates (p=0.014). Furthermore, qPCR revealed that PAQR6 expression was elevated in DU145 and LNCaP cells compared with RWPE-2 cells. Depleting PAQR6 obviously suppressed DU145 cell proliferation and migration (p<0.01). In addition, the ratio of p-MEK/MEK and p-ERK/ERK was significantly reduced after silencing PAQR6 (p<0.01). CONCLUSION PAQR6 might play a facilitating role in prostate cancer development by regulating the MAPK signaling pathway. Moreover, it might serve as a potential predictor and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Bin Li
- Department of Urology Surgery, The First People’s Hospital of Foshan, No.81 LingNan Road, Foshan, GuangDong 528000, P.R. China
| | - Zhe Lin
- Department of Urology Surgery, The First People’s Hospital of Foshan, No.81 LingNan Road, Foshan, GuangDong 528000, P.R. China
| | - Quan Liang
- Department of Urology Surgery, The First People’s Hospital of Foshan, No.81 LingNan Road, Foshan, GuangDong 528000, P.R. China
| | - Yuan Hu
- Department of Urology Surgery, The First People’s Hospital of Foshan, No.81 LingNan Road, Foshan, GuangDong 528000, P.R. China
| | - Wen-Feng Xu
- Department of Urology Surgery, The First People’s Hospital of Foshan, No.81 LingNan Road, Foshan, GuangDong 528000, P.R. China
| |
Collapse
|