1
|
Leonard EM, Porteus CS, Brink D, Milsom WK. Fish gill chemosensing: knowledge gaps and inconsistencies. J Comp Physiol B 2024; 194:1-33. [PMID: 38758303 DOI: 10.1007/s00360-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Deidre Brink
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Pan YK. Structure and function of the larval teleost fish gill. J Comp Physiol B 2024; 194:569-581. [PMID: 38584182 DOI: 10.1007/s00360-024-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The fish gill is a multifunctional organ that is important in multiple physiological processes such as gas transfer, ionoregulation, and chemoreception. This characteristic organ of fishes has received much attention, yet an often-overlooked point is that larval fishes in most cases do not have a fully developed gill, and thus larval gills do not function identically as adult gills. In addition, large changes associated with gas exchange and ionoregulation happen in gills during the larval phase, leading to the oxygen and ionoregulatory hypotheses examining the environmental constraint that resulted in the evolution of gills. This review thus focuses exclusively on the larval fish gill of teleosts, summarizing the development of teleost larval fish gills and its function in gas transfer, ionoregulation, and chemoreception, and comparing and contrasting it to adult gills where applicable, while providing some insight into the oxygen vs ionoregulatory hypotheses debate.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Kämmer N, Reimann T, Braunbeck T. Neurotoxic pesticides change respiratory parameters in early gill-breathing, but not in skin-breathing life-stages of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106831. [PMID: 38244448 DOI: 10.1016/j.aquatox.2024.106831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
Neurotoxic compounds can interfere with active gill ventilation in fish, which might lead to premature death in adult fish, but not in skin-breathing embryos of zebrafish, since these exclusively rely on passive diffusion across the skin. Regarding lethality, this respiratory failure syndrome (RFS) has been discussed as one of the main reasons for the higher sensitivity of adult fish in the acute fish toxicity test (AFT), if compared to embryos in the fish embryo toxicity test (FET). To further elucidate the relationship between the onset of gill respiration and death by a neurotoxic mode of action, a comparative study into oxygen consumption (MO2), breathing frequency (fv) and amplitude (fampl) was performed with 4 d old skin-breathing and 12 d old early gill-breathing zebrafish. Neurotoxic model substances with an LC50 FET/AFT ratio of > 10 were used: chlorpyrifos, permethrin, aldicarb, ziram, and fluoxetine. Exposure to hypoxia served as a positive control, whereas aniline was tested as an example of a narcotic substance interfering non-specifically with gill membranes. In 12 d old larvae, all substances caused an increase in MO2, fv and partly fampl, whereas effects were minor in 4 d old embryos. An increase of fv in 4 d old embryos following exposure to chlorpyrifos, aldicarb and hypoxia could not be correlated with an increased MO2 and might be attributed either to (1) to the successfully postponed decrease of arterial partial pressure of oxygen (PO2) through support of skin respiration by increased fv, (2) to an unspecific stimulation of the sphincter muscles at the base of the gill filaments, or (3) to the establishment of oxygen sensing for later stages. In gill-breathing 12 d old zebrafish, a concentration-dependent increase of fv was detected for aniline and chlorpyrifos, whereas for aldicarb, fluoxetine and permethrin, a decline of fv at higher substance concentrations was measured, most likely due to the onset of paralysis and/or fatigue of the gill filament sphincter muscles. Since alterations of fv serve to postpone the decrease in arterial PO2 and MO2 increased with decreasing fv, the respiratory failure syndrome could clearly be demonstrated in 12 d old zebrafish larvae. Passive respiration across the skin in zebrafish embryos could thus be confirmed as a probable reason for the lower sensitivity of early life-stages to neurotoxicants. Integration of respiratory markers into existing testing protocols with non-protected developmental stages such as embryos might help to not underestimate the toxicity of early life-stages of fish.
Collapse
Affiliation(s)
- Nadine Kämmer
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69210, Heidelberg, Germany.
| | - Tanja Reimann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69210, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69210, Heidelberg, Germany.
| |
Collapse
|
4
|
Pan YK, Perry SF. The control of breathing in fishes - historical perspectives and the path ahead. J Exp Biol 2023; 226:307288. [PMID: 37097020 DOI: 10.1242/jeb.245529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The study of breathing in fishes has featured prominently in Journal of Experimental Biology (JEB), particularly during the latter half of the past century. Indeed, many of the seminal discoveries in this important sub-field of comparative respiratory physiology were reported first in JEB. The period spanning 1960-1990 (the 'golden age of comparative respiratory physiology') witnessed intense innovation in the development of methods to study the control of breathing. Many of the guiding principles of piscine ventilatory control originated during this period, including our understanding of the dominance of O2 as the driver of ventilation in fish. However, a critical issue - the identity of the peripheral O2 chemoreceptors - remained unanswered until methods for cell isolation, culture and patch-clamp recording established that gill neuroepithelial cells (NECs) respond to hypoxia in vitro. Yet, the role of the NECs and other putative peripheral or central chemoreceptors in the control of ventilation in vivo remains poorly understood. Further progress will be driven by the implementation of genetic tools, most of which can be used in zebrafish (Danio rerio). These tools include CRISPR/Cas9 for selective gene knockout, and Tol2 systems for transgenesis, the latter of which enables optogenetic stimulation of cellular pathways, cellular ablation and in vivo cell-specific biosensing. Using these methods, the next period of discovery will see the identification of the peripheral sensory pathways that initiate ventilatory responses, and will elucidate the nature of their integration within the central nervous system and their link to the efferent motor neurons that control breathing.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
5
|
Perry SF, Pan YK, Gilmour KM. Insights into the control and consequences of breathing adjustments in fishes-from larvae to adults. Front Physiol 2023; 14:1065573. [PMID: 36793421 PMCID: PMC9923008 DOI: 10.3389/fphys.2023.1065573] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Adjustments of ventilation in fishes to regulate the volume of water flowing over the gills are critically important responses to match branchial gas transfer with metabolic needs and to defend homeostasis during environmental fluctuations in O2 and/or CO2 levels. In this focused review, we discuss the control and consequences of ventilatory adjustments in fish, briefly summarizing ventilatory responses to hypoxia and hypercapnia before describing the current state of knowledge of the chemoreceptor cells and molecular mechanisms involved in sensing O2 and CO2. We emphasize, where possible, insights gained from studies on early developmental stages. In particular, zebrafish (Danio rerio) larvae have emerged as an important model for investigating the molecular mechanisms of O2 and CO2 chemosensing as well as the central integration of chemosensory information. Their value stems, in part, from their amenability to genetic manipulation, which enables the creation of loss-of-function mutants, optogenetic manipulation, and the production of transgenic fish with specific genes linked to fluorescent reporters or biosensors.
Collapse
|
6
|
Kevin Pan Y, Julian T, Garvey K, Perry SF. Catecholamines modulate the hypoxic ventilatory response of larval zebrafish (Danio rerio). J Exp Biol 2023; 226:286267. [PMID: 36484145 DOI: 10.1242/jeb.245051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
The hypoxic ventilatory response (HVR) in fish is an important reflex that aids O2 uptake when low environmental O2 levels constrain diffusion. In developing zebrafish (Danio rerio), the acute HVR is multiphasic, consisting of a rapid increase in ventilation frequency (fV) during hypoxia onset, followed by a decline to a stable plateau phase above fV under normoxic conditions. In this study, we examined the potential role of catecholamines in contributing to each of these phases of the dynamic HVR in zebrafish larvae. We showed that adrenaline elicits a dose-dependent β-adrenoreceptor (AR)-mediated increase in fV that does not require expression of β1-ARs, as the hyperventilatory response to β-AR stimulation was unaltered in adrb1-/- mutants, generated by CRISPR/Cas9 knockout. In response to hypoxia and propranolol co-treatment, the magnitude of the rapidly occurring peak increase in fV during hypoxia onset was attenuated (112±14 breaths min-1 without propranolol to 68±17 breaths min-1 with propranolol), whereas the increased fV during the stable phase of the HVR was prevented in both wild type and adrb1-/- mutants. Thus, β1-AR is not required for the HVR and other β-ARs, although not required for initiation of the HVR, are involved in setting the maximal increase in fV and in maintaining hyperventilation during continued hypoxia. This adrenergic modulation of the HVR may arise from centrally released catecholamines because adrenaline exposure failed to activate (based on intracellular Ca2+ levels) cranial nerves IX and X, which transmit O2 signals from the pharyngeal arch to the central nervous system.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Biology, University of Ottawa, ON, Canada, K1N 9A7
| | - Tess Julian
- Department of Biology, University of Ottawa, ON, Canada, K1N 9A7
| | - Kayla Garvey
- Department of Biology, University of Ottawa, ON, Canada, K1N 9A7
| | - Steve F Perry
- Department of Biology, University of Ottawa, ON, Canada, K1N 9A7
| |
Collapse
|
7
|
Reed M, Jonz MG. Neurochemical Signalling Associated With Gill Oxygen Sensing and Ventilation: A Receptor Focused Mini-Review. Front Physiol 2022; 13:940020. [PMID: 35910553 PMCID: PMC9325958 DOI: 10.3389/fphys.2022.940020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the large body of work describing vertebrate ventilatory responses to hypoxia, remarkably little is known about the receptors and afferent pathways mediating these responses in fishes. In this review, we aim to summarize all receptor types to date implicated in the neurotransmission or neuromodulation associated with O2 sensing in the gills of fish. This includes serotonergic, cholinergic, purinergic, and dopaminergic receptor subtypes. Recent transcriptomic analysis of the gills of zebrafish using single-cell RNA sequencing has begun to elucidate specific receptor targets in the gill; however, the absence of receptor characterization at the cellular level in the gill remains a major limitation in understanding the neurochemical control of hypoxia signalling.
Collapse
Affiliation(s)
- Maddison Reed
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Michael G. Jonz
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, ON, Ottawa, Canada
- *Correspondence: Michael G. Jonz,
| |
Collapse
|
8
|
Sandra I, Verri T, Filice M, Barca A, Schiavone R, Gattuso A, Cerra MC. Shaping the cardiac response to hypoxia: NO and its partners in teleost fish. Curr Res Physiol 2022; 5:193-202. [PMID: 35434651 PMCID: PMC9010694 DOI: 10.1016/j.crphys.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
The reduced availability of dissolved oxygen is a common stressor in aquatic habitats that affects the ability of the heart to ensure tissue oxygen supply. Among key signalling molecules activated during cardiac hypoxic stress, nitric oxide (NO) has emerged as a central player involved in the related adaptive responses. Here, we outline the role of the nitrergic control in modulating tolerance and adaptation of teleost heart to hypoxia, as well as major molecular players that participate in the complex NO network. The purpose is to provide a framework in which to depict how the heart deals with limitations in oxygen supply. In this perspective, defining the relational interplay between the multiple (sets of) proteins that, due to the gene duplication events that occurred during the teleost fish evolutive radiation, do operate in parallel with similar functions in the (different) heart (districts) and other body districts under low levels of oxygen supply, represents a next goal of the comparative research in teleost fish cardiac physiology. The flexibility of the teleost heart to O2 limitations is illustrated by using cyprinids as hypoxia tolerance models. Major molecular mediators of the teleost cardiac response are discussed with a focus on the nitrergic system. A comparative analysis of gene duplication highlights conserved targets which may orchestrate the cardiac response to hypoxia.
Collapse
|
9
|
Mandic M, Flear K, Qiu P, Pan YK, Perry SF, Gilmour KM. Aquatic surface respiration improves survival during hypoxia in zebrafish ( Danio rerio) lacking hypoxia-inducible factor 1-α. Proc Biol Sci 2022; 289:20211863. [PMID: 35016541 PMCID: PMC8753152 DOI: 10.1098/rspb.2021.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 01/14/2023] Open
Abstract
Hypoxia-inducible factor 1-α (Hif-1α), an important transcription factor regulating cellular responses to reductions in O2, previously was shown to improve hypoxia tolerance in zebrafish (Danio rerio). Here, we examined the contribution of Hif-1α to hypoxic survival, focusing on the benefit of aquatic surface respiration (ASR). Wild-type and Hif-1α knockout lines of adult zebrafish were exposed to two levels (moderate or severe) of intermittent hypoxia. Survival was significantly compromised in Hif-1α knockout zebrafish prevented from accessing the surface during severe (16 mmHg) but not moderate (23 mmHg) hypoxia. When allowed access to the surface in severe hypoxia, survival times did not differ between wild-type and Hif-1α knockouts. Performing ASR mitigated the negative effects of the loss of Hif-1α with the knockouts initiating ASR at a higher PO2 threshold and performing ASR for longer than wild-types. The loss of Hif-1α had little impact on survival in fish between 1 and 5 days post-fertilization, but as the larvae aged, their reliance on Hif-1α increased. Similar to adult fish, ASR compensated for the loss of Hif-1α on survival. Together, these results demonstrate that age, hypoxia severity and, in particular, the ability to perform ASR significantly modulate the impact of Hif-1α on survival in hypoxic zebrafish.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, Davis, CA 95616, USA
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Kaitlyn Flear
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Pearl Qiu
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Yihang K. Pan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Steve F. Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| |
Collapse
|
10
|
Jia Y, Gao Y, Wan J, Gao Y, Li J, Guan C. Altered physiological response and gill histology in black rockfish, Sebastes schlegelii, during progressive hypoxia and reoxygenation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1133-1147. [PMID: 34059979 DOI: 10.1007/s10695-021-00970-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Hypoxia has gradually become common in aquatic ecosystems and imposes a significant challenge for fish farming. The loss of equilibrium (LOE), 50% lethal time (LT50), plasma cortisol, glucose, red blood cells (RBC), hemoglobin (Hb), gill histological alteration, and related parameters (lamellar length [SLL] and width [SLW], interlamellar distance [ID], basal epithelial thickness [BET], lamellar surface area [LA], and gill surface area [GSA]); respiratory rate; the proportion of the secondary lamellae available for gas exchange (PAGE); and hypoxia-inducible factor (hif-1α, hif-2α) mRNA expression were determined during progressive hypoxia and reoxygenation (R-0, R-12, R-24 h) to illustrate the underlying physiological response mechanisms in black rockfish Sebastes schlegelii. Results showed that the DO concentration significantly decreased during progressive hypoxia, while DO at LOE and LT50 were 2.42 ± 0.10 mg L-1 and 1.67 ± 0.38 mg L-1, respectively. Cortisol and glucose were significantly increased at LOE and LT50, with the highest levels observed at LT50, and then gradually recovered to normal within reoxygenation 24 h. RBC number and Hb results were like those of glucose. Hypoxia stress resulted in lamellar clubbing, hypertrophy, and hyperplasia. Respiratory frequency significantly increased at LOE and decreased at LT50. Lamellar perimeters, SLL, ID, LA, GSA, and PAGE, significantly increased at LOE and LT50, with the highest values observed at LT50. However, SLW and BET significantly decreased at LOE, LT50, and R-0. These parameters recovered to nearly normal levels at R-24 h. hif-1α mRNAs in gill and liver were significantly upregulated at LOE and LT50, and recovery to normal after reoxygenation 24 h. hif-2α mRNAs in gill was similar to that of hif-1α, whereas hepatic hif-2α mRNAs remained unchanged during hypoxia-reoxygenation. These results indicated that progressive hypoxia stress elevated RBC number, Hb, cortisol, and glucose levels, induced the alteration of gill morphology, increased LA and GSA, stimulated respiratory frequency and PAGE, and upregulated the transcription of hif-1α and hif-2α in gill and liver. Reoxygenation treatment for 24 h alleviated the stress mentioned above effects. These findings expand current knowledge on hypoxia tolerance in black rockfish Sebastes schlegelii.
Collapse
Affiliation(s)
- Yudong Jia
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Yuntao Gao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinming Wan
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Yunhong Gao
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Juan Li
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Changtao Guan
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
11
|
Gibert Y, Chung BC. Fish as a model for endocrine systems. Mol Cell Endocrinol 2021; 531:111316. [PMID: 33974942 DOI: 10.1016/j.mce.2021.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yann Gibert
- University of Mississippi Medical Center, Department of Cell and Molecular Biology, Jackson, MS, USA.
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
12
|
Hughes MC, Perry SF. Does blood flow limit acute hypoxia performance in larval zebrafish (Danio rerio)? J Comp Physiol B 2021; 191:469-478. [PMID: 33580284 DOI: 10.1007/s00360-020-01331-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023]
Abstract
Oxygen uptake (ṀO2) in larval zebrafish prior to maturation of the gill relies on cutaneous O2 transfer. Under normoxic conditions, rates of cutaneous O2 transfer are unaffected by haemoglobin availability but are diminished in fish lacking a functional circulatory system, suggesting that internal convection is critically involved in setting the resting ṀO2 in zebrafish larvae, even when relying on cutaneous O2 transfer. The reliance of ṀO2 on blood circulation led to the first objective of the current study, to determine whether loss of internal convection would reduce acute hypoxia performance (as determined by measuring critical PO2; Pcrit) in larval zebrafish under conditions of moderate hypoxia (PO2 = 55 mmHg) at 28.5 and 34 °C. Internal convection was eliminated by preventing development of blood vessels using morpholino knockdown of vascular endothelial growth factor (VEGF); these fish are termed VEGF morphants. Breathing frequency (fV) and heart rate (fH) also were measured (at 28.5 °C) to determine whether any detriment in performance might be linked to cardiorespiratory dysfunction. Although ṀO2 was reduced in the VEGF morphants, there was no significant effect on Pcrit at 28.5 °C. Raising temperature to 34 °C resulted in the VEGF morphants exhibiting a higher Pcrit than the shams, suggesting an impairment of hypoxia tolerance in the morphants at the higher temperature. The usual robust increase in fV during hypoxia was absent or attenuated in VEGF morphants at 4 and 5 days post fertilization (dpf), respectively. Resting fH was reduced in the VEGF morphants and unlike the sham fish, the morphants did not exhibit hypoxic tachycardia at 4 or 5 dpf. The number of cutaneous neuroepithelial cells (presumptive O2 chemoreceptors) was significantly higher in the VEGF morphants and thus the cardiorespiratory impairment in the morphants during hypoxia was unlikely related to inadequate peripheral O2 sensing.
Collapse
Affiliation(s)
- M C Hughes
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N6N5, Canada
| | - S F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N6N5, Canada.
| |
Collapse
|