1
|
Liu P, Liu X, Qi B. UPR ER-immunity axis acts as physiological food evaluation system that promotes aversion behavior in sensing low-quality food. eLife 2024; 13:RP94181. [PMID: 39235964 PMCID: PMC11377039 DOI: 10.7554/elife.94181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
To survive in challenging environments, animals must develop a system to assess food quality and adjust their feeding behavior accordingly. However, the mechanisms that regulate this chronic physiological food evaluation system, which monitors specific nutrients from ingested food and influences food-response behavior, are still not fully understood. Here, we established a low-quality food evaluation assay system and found that heat-killed E. coli (HK-E. coli), a low-sugar food, triggers cellular UPRER and immune response. This encourages animals to avoid low-quality food. The physiological system for evaluating low-quality food depends on the UPRER (IRE-1/XBP-1) - Innate immunity (PMK-1/p38 MAPK) axis, particularly its neuronal function, which subsequently regulates feeding behaviors. Moreover, animals can adapt to a low-quality food environment through sugar supplementation, which inhibits the UPRER -PMK-1 regulated stress response by increasing vitamin C biosynthesis. This study reveals the role of the cellular stress response pathway as physiological food evaluation system for assessing nutritional deficiencies in food, thereby enhancing survival in natural environments.
Collapse
Affiliation(s)
- Pengfei Liu
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xinyi Liu
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
2
|
Su X, Patel N, Chen J, Chen Y, Zhou X, Mo X, Zhu S. Association between serum vitamin C and body mass index in adolescents aged 12-19 years. BMC Public Health 2024; 24:2067. [PMID: 39085802 PMCID: PMC11293171 DOI: 10.1186/s12889-024-19588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Evidence on the association between serum vitamin C (sVC) levels and obesity is limited. This study aimed to explore the relationship between sVC and body mass index (BMI) in adolescents aged 12 to 19 years. METHODS We analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2003-2006, with 3952 participants. sVC and BMI were independent variables and dependent variables, respectively. The associations of sVC with BMI were examined using multivariable linear regression models. Age, sex, and race/ethnicity were analyzed as subgroups. Then, we devised smooth curve fittings and saturation threshold analysis to address the nonlinear relationship. RESULTS sVC had a negative correlation with BMI after adjusting for all covariates (β: -1.020, 95% CI: -1.359, -0.680). In the subgroup analysis by age, sex, and race/ethnicity, there was still a negative correlation between sVC and BMI (p < 0.05). The analysis of saturation effects of sVC and BMI showed the relationship between sVC and BMI in female adolescents followed an N-shaped curve, whereas the relationship between sVC and BMI in adolescents aged 12-15 years and Mexican Americans followed a U-shaped curve. CONCLUSION Based on the results, proper vitamin C supplementation may be beneficial to weight loss. However, considering the threshold effect, large-scale and good-quality randomized controlled trials are required to obtain the optimal vitamin C level for weight control.
Collapse
Affiliation(s)
- Xiaoqi Su
- Department of Ultrasound, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Nishant Patel
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- School of Public Health, Nanjing Medical University, Nanjing, 211666, China
| | - Jun Chen
- Department of Ultrasound, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Ye Chen
- Department of Ultrasound, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xin Zhou
- Department of Ultrasound, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Shanliang Zhu
- Department of Ultrasound, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
3
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Sharebiani H, Mokaram M, Mirghani M, Fazeli B, Stanek A. The Effects of Antioxidant Supplementation on the Pathologic Mechanisms of Metabolic Syndrome and Cardiovascular Disease Development. Nutrients 2024; 16:1641. [PMID: 38892574 PMCID: PMC11175159 DOI: 10.3390/nu16111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
In people with obesity, diabetes, and hypertension, lipid and glucose metabolism and oxidative stress generation interact. This condition, known as a "metabolic syndrome" (MetS), presents a global challenge and appears to be the underlying mechanism for the development of cardiovascular diseases (CVDs). This review is designed based on evidence indicating the pathogenic mechanisms of MetS. In detail, we will look at the mechanisms of oxidative stress induction in MetS, the effects of elevated oxidative stress levels on the condition's pathophysiology, and matters related to endothelial function. According to different components of the MetS pathophysiological network, the effects of antioxidants and endothelial dysfunction are reviewed. After considering the strategic role of oxidative stress in the pathophysiology of MetS and its associated CVDs, oxidative stress management by antioxidant supplementation seems an appropriate therapeutic approach.
Collapse
Affiliation(s)
- Hiva Sharebiani
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy; (H.S.); (M.M.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran;
| | - Mina Mokaram
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran;
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Melika Mirghani
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy; (H.S.); (M.M.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran;
| | - Bahare Fazeli
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy; (H.S.); (M.M.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran;
| | - Agata Stanek
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy; (H.S.); (M.M.); (B.F.)
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland
| |
Collapse
|
5
|
Fu X, Murakami M, Hashimoto O, Matsui T, Funaba M. Regulatory mechanisms underlying interleukin-6 expression in murine brown adipocytes. Cell Biochem Funct 2024; 42:e3915. [PMID: 38269513 DOI: 10.1002/cbf.3915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
Three types of adipocytes, white, brown, and beige, regulate the systemic energy balance through the storage and expenditure of chemical energy. In addition, adipocytes produce various bioactive molecules known as adipokines. In contrast to white adipocyte-derived molecules, less information is available on the adipokines produced by brown adipocytes (batokine). This study explored the regulatory expression of interleukin (IL)-6 in cell culture studies. Norepinephrine or a nonselective β-adrenergic receptor agonist increased the expression of IL-6 in primary brown adipocytes and HB2 brown adipocytes. Treatment with forskolin (Fsk), an activator of the cAMP-dependent protein kinase (PKA) pathway (downstream signaling of the β-adrenergic receptor), efficiently stimulated IL-6 expression in brown adipocytes and myotubes. Phosphorylated CREB and phosphorylated p38 MAP kinase levels were increased in Fsk-treated brown adipocytes within 5 min. In contrast, a long-term (∼60 min and ∼4 h) treatment with Fsk was required for increase in STAT3 phosphorylation and C/EBPβ expression, respectively. The PKA, p38 MAP kinase, STAT3, and C/EBPβ pathways are required for the maximal IL-6 expression induced by Fsk, which were verified by use of various inhibitors of these signal pathways. Vitamin C enhanced Fsk-induced IL-6 expression through the extracellular signal-regulated kinase activity. The present study provides basic information on the regulatory expression of IL-6 in activated brown adipocytes.
Collapse
Affiliation(s)
- Xiajie Fu
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Osamu Hashimoto
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Sandeep, Subba R, Mondal AC. Does COVID-19 Trigger the Risk for the Development of Parkinson's Disease? Therapeutic Potential of Vitamin C. Mol Neurobiol 2023:10.1007/s12035-023-03756-3. [PMID: 37957424 DOI: 10.1007/s12035-023-03756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which was proclaimed a pandemic by the World Health Organization (WHO) in March 2020. There is mounting evidence that older patients with multimorbidity are more susceptible to COVID-19 complications than are younger, healthy people. Having neuroinvasive potential, SARS-CoV-2 infection may increase susceptibility toward the development of Parkinson's disease (PD), a progressive neurodegenerative disorder with extensive motor deficits. PD is characterized by the aggregation of α-synuclein in the form of Lewy bodies and the loss of dopaminergic neurons in the dorsal striatum and substantia nigra pars compacta (SNpc) of the nigrostriatal pathway in the brain. Increasing reports suggest that SARS-CoV-2 infection is linked with the worsening of motor and non-motor symptoms with high rates of hospitalization and mortality in PD patients. Common pathological changes in both diseases involve oxidative stress, mitochondrial dysfunction, neuroinflammation, and neurodegeneration. COVID-19 exacerbates the damage ensuing from the dysregulation of those processes, furthering neurological complications, and increasing the severity of PD symptomatology. Phytochemicals have antioxidant, anti-inflammatory, and anti-apoptotic properties. Vitamin C supplementation is found to ameliorate the common pathological changes in both diseases to some extent. This review aims to present the available evidence on the association between COVID-19 and PD, and discusses the therapeutic potential of vitamin C for its better management.
Collapse
Affiliation(s)
- Sandeep
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rhea Subba
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Xu S, Xi J, Wu T, Wang Z. The Role of Adipocyte Endoplasmic Reticulum Stress in Obese Adipose Tissue Dysfunction: A Review. Int J Gen Med 2023; 16:4405-4418. [PMID: 37789878 PMCID: PMC10543758 DOI: 10.2147/ijgm.s428482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Adipose tissue dysfunction plays an important role in metabolic diseases associated with chronic inflammation, insulin resistance and lipid ectopic deposition in obese patients. In recent years, it has been found that under the stimulation of adipocyte endoplasmic reticulum stress (ERS), the over-activated ER unfolded protein response (UPR) exacerbates the inflammatory response of adipose tissue by interfering with the normal metabolism of adipose tissue, promotes the secretion of adipokines, and affects the browning and thermogenic pathways of adipose tissue, ultimately leading to the manifestation of metabolic syndrome such as ectopic lipid deposition and disorders of glucolipid metabolism in obese patients. This paper mainly summarizes the relationship between adipocyte ERS and obese adipose tissue dysfunction and provides an overview of the mechanisms by which ERS induces metabolic disorders such as catabolism, thermogenesis and inflammation in obese adipose tissue through the regulation of molecules and pathways such as NF-κB, ADPN, STAMP2, LPIN1, TRIP-Br2, NF-Y and SIRT2 and briefly describes the current mechanisms targeting adipocyte endoplasmic reticulum stress to improve obesity and provide ideas for intervention and treatment of obese adipose tissue dysfunction.
Collapse
Affiliation(s)
- Shengjie Xu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Jiaqiu Xi
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Tao Wu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Zhonglin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| |
Collapse
|
8
|
Bae CS, Lee Y, Ahn T. Therapeutic treatments for diabetes mellitus-induced liver injury by regulating oxidative stress and inflammation. Appl Microsc 2023; 53:4. [PMID: 37428327 PMCID: PMC10333167 DOI: 10.1186/s42649-023-00089-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that affects all systems in the body, including the liver. Numerous studies have reported that chronic DM etiology and pathogenesis complications implicate oxidative stress, generating reactive oxygen species, such as superoxide anions and free radicals. In addition, pro-inflammatory reactions are also underlying functions closely related to oxidative stress that further exacerbate pathological DM states. The liver is especially susceptible to hyperglycemia-induced oxidative stress and the related inflammation. Thus, anti-oxidation and anti-inflammation therapies are promising strategies for treating liver damage. This review summarizes therapeutic treatments attenuating the generation of oxidative stress and pro-inflammation, which also cause DM-induced liver injury. Although the treatments have several impediments to be solved, these remedies may have clinically important implications under the absence of effective drugs for the damaged liver in DM patients.
Collapse
Affiliation(s)
- Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Youngchan Lee
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
9
|
Sharebiani H, Keramat S, Chavoshan A, Fazeli B, Stanek A. The Influence of Antioxidants on Oxidative Stress-Induced Vascular Aging in Obesity. Antioxidants (Basel) 2023; 12:1295. [PMID: 37372025 PMCID: PMC10295268 DOI: 10.3390/antiox12061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a worldwide trend that is growing in incidence very fast. Adipose tissue dysfunction caused by obesity is associated with the generation of oxidative stress. Obesity-induced oxidative stress and inflammation play a key role in the pathogenesis of vascular diseases. Vascular aging is one of the main pathogenesis mechanisms. The aim of this study is to review the effect of antioxidants on vascular aging caused by oxidative stress in obesity. In order to achieve this aim, this paper is designed to review obesity-caused adipose tissue remodeling, vascular aging generated by high levels of oxidative stress, and the effects of antioxidants on obesity, redox balance, and vascular aging. It seems that vascular diseases in obese individuals are complex networks of pathological mechanisms. In order to develop a proper therapeutic tool, first, there is a need for a better understanding of interactions between obesity, oxidative stress, and aging. Based on these interactions, this review suggests different lines of strategies that include change in lifestyle to prevent and control obesity, strategies for adipose tissue remodelling, oxidant-antioxidant balance, inflammation suppression, and strategies against vascular aging. Some antioxidants support different lines of these strategies, making them appropriate for complex conditions such as oxidative stress-induced vascular diseases in obese individuals.
Collapse
Affiliation(s)
- Hiva Sharebiani
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Shayan Keramat
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Abdolali Chavoshan
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Bahar Fazeli
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|