1
|
Farrer RG, Kartje GL. Overexpression of Nogo-A changes nerve growth factor signaling dynamics in PC12 cells. Cell Signal 2024; 127:111569. [PMID: 39675688 DOI: 10.1016/j.cellsig.2024.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
The nerve growth factor (NGF) receptor TrkA is a tightly regulated receptor tyrosine kinase that activates neuronal signaling pathways promoting cell survival in addition to axonal and dendritic outgrowth. Previously, we showed that NGF and TrkA signaling is altered in neuron-like PC12 cells that overexpress Nogo-A, a protein known to influence axonal outgrowth and dendritic arborization associated with neuronal plasticity. In the present report, we provide evidence for changes in NGF-mediated receptor-level and downstream signaling that occur in cells overexpressing Nogo-A. NGF stimulation increased the association of Nogo-A with TrkA, which corresponded to a decrease in sustained phosphorylation of TrkA and its downstream effectors Erk1/2, indicating that Nogo-A plays a role in the temporal regulation of this pathway. Furthermore, co-immunoprecipitation of the p75 neurotrophin receptor (p75NTR) with TrkA was significantly reduced in cells overexpressing Nogo-A, suggesting that Nogo-A blocked this interaction. Analysis of calcium and calmodulin involvement in NGF-induced activation of Erk1/2 revealed a calcium and calmodulin-dependent inhibition of sustained phosphorylation in Nogo-A-overexpressing cells but not in wild type cells, suggesting that Nogo-A facilitated the activation of calcium/calmodulin to alter NGF signaling. Taken together, these results provide evidence for Nogo-A regulation of NGF signaling, in part by modifying calcium and calmodulin-dependent mechanisms.
Collapse
Affiliation(s)
- Robert G Farrer
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL, USA.
| | - Gwendolyn L Kartje
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL, USA; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| |
Collapse
|
2
|
Elmalky MI, Alvarez-Bolado G, Younsi A, Skutella T. Axonal Regeneration after Spinal Cord Injury: Molecular Mechanisms, Regulatory Pathways, and Novel Strategies. BIOLOGY 2024; 13:703. [PMID: 39336130 PMCID: PMC11428726 DOI: 10.3390/biology13090703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Axonal regeneration in the spinal cord after traumatic injuries presents a challenge for researchers, primarily due to the nature of adult neurons and the inhibitory environment that obstructs neuronal regrowth. Here, we review current knowledge of the intricate network of molecular and cellular mechanisms that hinder axonal regeneration, with a focus on myelin-associated inhibitors (MAIs) and other inhibitory guidance molecules, as well as the pivotal pathways implicated in both inhibiting and facilitating axonal regrowth, such as PKA/AMP, PI3K/Akt/mTOR, and Trk, alongside the regulatory roles of neurotrophins and axonal guidance cues. We also examine current insights into gene therapy, tissue engineering, and pharmacological interventions that show promise in overcoming barriers to axonal regrowth.
Collapse
Affiliation(s)
- Mohammed Ibrahim Elmalky
- Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Group for Regeneration and Reprogramming, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Gonzalo Alvarez-Bolado
- Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Group for Regeneration and Reprogramming, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Group for Regeneration and Reprogramming, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
López-Mengual A, Segura-Feliu M, Sunyer R, Sanz-Fraile H, Otero J, Mesquida-Veny F, Gil V, Hervera A, Ferrer I, Soriano J, Trepat X, Farré R, Navajas D, Del Río JA. Involvement of Mechanical Cues in the Migration of Cajal-Retzius Cells in the Marginal Zone During Neocortical Development. Front Cell Dev Biol 2022; 10:886110. [PMID: 35652101 PMCID: PMC9150848 DOI: 10.3389/fcell.2022.886110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the developing cortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.
Collapse
Affiliation(s)
- Ana López-Mengual
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Miriam Segura-Feliu
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Raimon Sunyer
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Sanz-Fraile
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain
| | - Francina Mesquida-Veny
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de La Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.,University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Xavier Trepat
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Institució Catalana de Recerca I Estudis Avançats, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Institut D'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Cellular and Respiratory Biomechanics, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Jiang J, Yu Y, Zhang Z, Ji Y, Guo H, Wang X, Yu S. Effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. ACTA ACUST UNITED AC 2021; 54:e10842. [PMID: 34076142 PMCID: PMC8186374 DOI: 10.1590/1414-431x2020e10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
Regeneration of injured peripheral nerves is an extremely complex process. Nogo-A (neurite outgrowth inhibitor-A) inhibits axonal regeneration by interacting with Nogo receptor in the myelin sheath of the central nervous system (CNS). The aim of this study was to investigate the effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. Sprague-Dawley rats (n=96) were randomly divided into 4 groups: control group (control), sciatic nerve transection group (model), immediate repair group (immediate repair), and delayed repair group (delayed repair). The rats were euthanized 1 week and 6 weeks after operation. The injured end tissues of the spinal cord and sciatic nerve were obtained. The protein expressions of Nogo-A and Nogo-66 receptor (NgR) were detected by immunohistochemistry. The protein expressions of Nogo-A, NgR, and Ras homolog family member A (RhoA) were detected by western blot. At 1 week after operation, the pathological changes in the immediate repaired group were less, and the protein expressions of Nogo-A, NgR, and RhoA in the spinal cord and sciatic nerve tissues were decreased (P<0.05) compared with the model group. After 6 weeks, the pathological changes in the immediate repair group and the delayed repair group were alleviated and the protein expressions decreased (P<0.05). The situation of the immediate repair group was better than that of the delayed repair group. Our data suggest that the expression of Nogo-A and its receptor increased after sciatic nerve injury, indicating that Nogo-A and its receptor play an inhibitory role in the repair process of sciatic nerve injury in rats.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Yuanchen Yu
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Zhiwu Zhang
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Yuan Ji
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Hong Guo
- Yantai City Municipal Government Hospital, Yantai, China
| | - Xiaohua Wang
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Shengjun Yu
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| |
Collapse
|
5
|
Liu LR, Wang YX, He L, Xu YX, Huang JY, Peng TT, Yang XB, Pan J, Tang HM, Xu KS. Constraint-Induced Movement Therapy Promotes Neural Remodeling and Functional Reorganization by Overcoming Nogo-A/NgR/RhoA/ROCK Signals in Hemiplegic Cerebral Palsy Mice. Neurorehabil Neural Repair 2021; 35:145-157. [PMID: 33410385 DOI: 10.1177/1545968320981962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Little is known about the induction of functional and brain structural reorganization in hemiplegic cerebral palsy (HCP) by constraint-induced movement therapy (CIMT). Objective. We aimed to explore the specific molecular mechanism of functional and structural plasticity related to CIMT in HCP. Methods. The mice were divided into a control group and HCP groups with different interventions (unconstraint-induced movement therapy [UNCIMT], CIMT or siRNA-Nogo-A [SN] treatment): the HCP, HCP+UNCIMT, HCP+CIMT, HCP+SN, and HCP+SN+CIMT groups. Rotarod and front-limb suspension tests, immunohistochemistry, Golgi-Cox staining, transmission electron microscopy, and Western blot analyses were applied to measure motor function, neurons and neurofilament density, dendrites/axon areas, myelin integrity, and Nogo-A/NgR/RhoA/ROCK expression in the motor cortex. Results. The mice in the HCP+CIMT group had better motor function, greater neurons and neurofilament density, dendrites/axon areas, myelin integrity, and lower Nogo-A/NgR/RhoA/ROCK expression in the motor cortex than the HCP and HCP+UNCIMT groups (P < .05). Moreover, the expression of Nogo-A/NgR/RhoA/ROCK, the improvement of neural remodeling and motor function of mice in the HCP+SN group were similar to those in the HCP+CIMT group (P > .05). The neural remodeling and motor function of the HCP+SN+CIMT group were significantly greater than those in the HCP+SN and HCP+CIMT groups (P < .05). Motor function were positively correlated with the density of neurons (r = 0.450 and 0.309, respectively; P < .05) and neurofilament (r = 0.717 and 0.567, respectively; P < .05). Conclusions. CIMT might promote the remodeling of neurons, neurofilament, dendrites/axon areas, and myelin in the motor cortex by partially inhibiting the Nogo-A/NgR/RhoA/ROCK pathway, thereby promoting the improvement of motor function in HCP mice.
Collapse
Affiliation(s)
- Li-Ru Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu-Xin Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lu He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun-Xian Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing-Yu Huang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting-Ting Peng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xu-Bo Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Pan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong-Mei Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai-Shou Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Smedfors G, Olson L, Karlsson TE. A Nogo-Like Signaling Perspective from Birth to Adulthood and in Old Age: Brain Expression Patterns of Ligands, Receptors and Modulators. Front Mol Neurosci 2018. [PMID: 29520216 PMCID: PMC5827527 DOI: 10.3389/fnmol.2018.00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An appropriate strength of Nogo-like signaling is important to maintain synaptic homeostasis in the CNS. Disturbances have been associated with schizophrenia, MS and other diseases. Blocking Nogo-like signaling may improve recovery after spinal cord injury, stroke and traumatic brain injury. To understand the interacting roles of an increasing number of ligands, receptors and modulators engaged in Nogo-like signaling, the transcriptional activity of these genes in the same brain areas from birth to old age in the normal brain is needed. Thus, we have quantitatively mapped the innate expression of 11 important genes engaged in Nogo-like signaling. Using in situ hybridization, we located and measured the amount of mRNA encoding Nogo-A, OMgp, NgR1, NgR2, NgR3, Lingo-1, Troy, Olfactomedin, LgI1, ADAM22, and MAG, in 18 different brain areas at six different ages (P0, 1, 2, 4, 14, and 104 weeks). We show gene- and area-specific activities and how the genes undergo dynamic regulation during postnatal development and become stable during adulthood. Hippocampal areas underwent the largest changes over time. We only found differences between individual cortical areas in Troy and MAG. Subcortical areas presented the largest inter-regional differences; lateral and basolateral amygdala had markedly higher expression than other subcortical areas. The widespread differences and unique expression patterns of the different genes involved in Nogo-like signaling suggest that the functional complexes could look vastly different in different areas.
Collapse
Affiliation(s)
| | - Lars Olson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
7
|
Nogo-A interacts with TrkA to alter nerve growth factor signaling in Nogo-A-overexpressing PC12 cells. Cell Signal 2018; 44:20-27. [PMID: 29325876 DOI: 10.1016/j.cellsig.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/11/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
The Nogo-A protein, originally discovered as a potent myelin-associated inhibitor of neurite outgrowth, is also expressed by certain neurons, especially during development and after injury, but its role in neuronal function is not completely known. In this report, we overexpressed Nogo-A in PC12 cells to use as a model to identify potential neuronal signaling pathways affected by endogenously expressed Nogo-A. Unexpectedly, our results show that viability of Nogo-A-overexpressing cells was reduced progressively due to apoptotic cell death following NGF treatment, but only after 24 h. Inhibitors of neutral sphingomyelinase prevented this loss of viability, suggesting that NGF induced the activation of a ceramide-dependent cell death pathway. Nogo-A over-expression also changed NGF-induced phosphorylation of TrkA at tyrosines 490 and 674/675 from sustained to transient, and prevented the regulated intramembrane proteolysis of p75NTR, indicating that Nogo-A was altering the function of the two neurotrophin receptors. Co-immunoprecipitation studies revealed that there was a physical association between TrkA and Nogo-A which appeared to be dependent on interactions in the Nogo-A-specific region of the protein. Taken together, our results indicate that Nogo-A influences NGF-mediated mechanisms involving the activation of TrkA and its interaction with p75NTR.
Collapse
|
8
|
Mercer A, Thomson AM. Cornu Ammonis Regions-Antecedents of Cortical Layers? Front Neuroanat 2017; 11:83. [PMID: 29018334 PMCID: PMC5622992 DOI: 10.3389/fnana.2017.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions-which might be seen as hippocampal antecedents of neocortical layers-lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the "cells that fire and wire together" into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five "pyramidal layers." If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Alex M. Thomson
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
9
|
Genetic variation is associated with RTN4R expression and working memory processing in healthy humans. Brain Res Bull 2017; 134:162-167. [PMID: 28755979 DOI: 10.1016/j.brainresbull.2017.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 02/01/2023]
Abstract
The Nogo receptor (NgR) is implicated in neurodevelopmental processes and it participates in inhibiting axonal growth. Consistent with its high levels of expression in the prefrontal cortex, animal studies indicate that NgR is relevant for prefrontal-related cognitive processing. Given that genetic variation may alter mechanisms of gene expression impacting molecular and systems-level phenotypes, we investigated the association of genetic variation with the expression of the NgR coding gene (RTN4R), as well as with prefrontal correlates at progressively greater biological distance from gene effects. First, we studied the association of single nucleotide polymorphisms (SNPs) with RTN4R mRNA expression in postmortem prefrontal cortex of humans without psychiatric illnesses. Then, we probed in peripheral blood mononuclear cells (PBMCs) the association that we found in prefrontal tissue. Thus, we investigated whether functional genetic variation affecting RTN4R expression is also associated with prefrontal activity during working memory. We found that rs696884 (A/G) predicted these phenotypes. Specifically, the AA genotype was associated with lower RTN4R mRNA expression levels in the prefrontal cortex and PBMCs and inefficient prefrontal activity during working memory compared to the GG genotype. These results suggest that genetic variation associated with RTN4R mRNA expression influences prefrontal physiology in healthy individuals. Furthermore, they highlight the need for further investigations of the role of NgR in the pathophysiology of brain disorders associated with prefrontal dysfunction.
Collapse
|
10
|
Boghdadi AG, Teo L, Bourne JA. The Involvement of the Myelin-Associated Inhibitors and Their Receptors in CNS Plasticity and Injury. Mol Neurobiol 2017; 55:1831-1846. [PMID: 28229330 DOI: 10.1007/s12035-017-0433-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022]
Abstract
The limited capacity for the central nervous system (CNS) to repair itself was first described over 100 years ago by Spanish neuroscientist Ramon Y. Cajal. However, the exact mechanisms underlying this failure in neuronal regeneration remain unclear and, as such, no effective therapeutics yet exist. Numerous studies have attempted to elucidate the biochemical and molecular mechanisms that inhibit neuronal repair with increasing evidence suggesting that several inhibitory factors and repulsive guidance cues active during development actually persist into adulthood and may be contributing to the inhibition of repair. For example, in the injured adult CNS, there are various inhibitory factors that impede the outgrowth of neurites from damaged neurons. One of the most potent of these neurite outgrowth inhibitors is the group of proteins known as the myelin-associated inhibitors (MAIs), present mainly on the membranes of oligodendroglia. Several studies have shown that interfering with these proteins can have positive outcomes in CNS injury models by promoting neurite outgrowth and improving functional recovery. As such, the MAIs, their receptors, and downstream effectors are valid drug targets for the treatment of CNS injury. This review will discuss the current literature on MAIs in the context of CNS development, plasticity, and injury. Molecules that interfere with the MAIs and their receptors as potential candidates for the treatment of CNS injury will additionally be introduced in the context of preclinical and clinical trials.
Collapse
Affiliation(s)
- Anthony G Boghdadi
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia
| | - Leon Teo
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia.
| |
Collapse
|
11
|
Nogo-A regulates spatial learning as well as memory formation and modulates structural plasticity in the adult mouse hippocampus. Neurobiol Learn Mem 2017; 138:154-163. [DOI: 10.1016/j.nlm.2016.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/21/2022]
|
12
|
Mata A, Urrea L, Vilches S, Llorens F, Thüne K, Espinosa JC, Andréoletti O, Sevillano AM, Torres JM, Requena JR, Zerr I, Ferrer I, Gavín R, Del Río JA. Reelin Expression in Creutzfeldt-Jakob Disease and Experimental Models of Transmissible Spongiform Encephalopathies. Mol Neurobiol 2016; 54:6412-6425. [PMID: 27726110 DOI: 10.1007/s12035-016-0177-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Reelin is an extracellular glycoprotein involved in key cellular processes in developing and adult nervous system, including regulation of neuronal migration, synapse formation, and plasticity. Most of these roles are mediated by the intracellular phosphorylation of disabled-1 (Dab1), an intracellular adaptor molecule, in turn mediated by binding Reelin to its receptors. Altered expression and glycosylation patterns of Reelin in cerebrospinal and cortical extracts have been reported in Alzheimer's disease. However, putative changes in Reelin are not described in natural prionopathies or experimental models of prion infection or toxicity. With this is mind, in the present study, we determined that Reelin protein and mRNA levels increased in CJD human samples and in mouse models of human prion disease in contrast to murine models of prion infection. However, changes in Reelin expression appeared only at late terminal stages of the disease, which prevent their use as an efficient diagnostic biomarker. In addition, increased Reelin in CJD and in in vitro models does not correlate with Dab1 phosphorylation, indicating failure in its intracellular signaling. Overall, these findings widen our understanding of the putative changes of Reelin in neurodegeneration.
Collapse
Affiliation(s)
- Agata Mata
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Laura Urrea
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Silvia Vilches
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Franc Llorens
- Department of Neurology, German Center for Neurodegenerative Diseases - DZNE, Universitätsmedizin Göttingen, Bonn, Germany
| | - Katrin Thüne
- Department of Neurology, German Center for Neurodegenerative Diseases - DZNE, Universitätsmedizin Göttingen, Bonn, Germany
| | - Juan-Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Valdeolmos, Spain
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alejandro M Sevillano
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
- Department of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Valdeolmos, Spain
| | - Jesús Rodríguez Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
- Department of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Inga Zerr
- Department of Neurology, German Center for Neurodegenerative Diseases - DZNE, Universitätsmedizin Göttingen, Bonn, Germany
| | - Isidro Ferrer
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Semaphorin 7A as a Potential Therapeutic Target for Multiple Sclerosis. Mol Neurobiol 2016; 54:4820-4831. [DOI: 10.1007/s12035-016-0154-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
|
14
|
Tomas-Roig J, Piscitelli F, Gil V, del Río J, Moore T, Agbemenyah H, Salinas-Riester G, Pommerenke C, Lorenzen S, Beißbarth T, Hoyer-Fender S, Di Marzo V, Havemann-Reinecke U. Social defeat leads to changes in the endocannabinoid system: An overexpression of calreticulin and motor impairment in mice. Behav Brain Res 2016; 303:34-43. [DOI: 10.1016/j.bbr.2016.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 12/12/2022]
|
15
|
Kellner Y, Fricke S, Kramer S, Iobbi C, Wierenga CJ, Schwab ME, Korte M, Zagrebelsky M. Nogo-A controls structural plasticity at dendritic spines by rapidly modulating actin dynamics. Hippocampus 2016; 26:816-31. [DOI: 10.1002/hipo.22565] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Yves Kellner
- Division of Cellular Neurobiology; Zoological Institute; Braunschweig Germany
| | - Steffen Fricke
- Division of Cellular Neurobiology; Zoological Institute; Braunschweig Germany
| | - Stella Kramer
- Brain Research Institute, University of Zurich; Zurich Switzerland
- Department of Health Sciences and Technology; ETH Zurich; Zurich Switzerland
| | - Cristina Iobbi
- Division of Cellular Neurobiology; Zoological Institute; Braunschweig Germany
| | - Corette J. Wierenga
- Division of Cell Biology, Faculty of Science; Utrecht University Utrecht; Netherlands
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich; Zurich Switzerland
- Department of Health Sciences and Technology; ETH Zurich; Zurich Switzerland
| | - Martin Korte
- Division of Cellular Neurobiology; Zoological Institute; Braunschweig Germany
- Helmholtz Centre for Infection Research, AG NIND; Braunschweig Germany
| | - Marta Zagrebelsky
- Division of Cellular Neurobiology; Zoological Institute; Braunschweig Germany
| |
Collapse
|
16
|
Khan MZ, He L, Zhuang X. The emerging role of GPR50 receptor in brain. Biomed Pharmacother 2016; 78:121-128. [PMID: 26898433 DOI: 10.1016/j.biopha.2016.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023] Open
Abstract
GPR50 receptor one of the member of G protein-coupled receptors (GPCRs) is extensively expressed in the pituitary, hypothalamus,cortex, midbrain, pons, amygdala, and in several brainstem nuclei. The exact function of this receptor in brain is remains unclear. This review presents current knowledge regarding the function of GPR50 receptor in brain, with a focus on role of this receptor in the hypothalamus-pituitary-adrenal (HPA) axis and the glucocorticoid receptor (GR) signaling, leptin signaling, adaptive thermogenesis, torpor, neurite outgrowth, and self-renewal and neuronal differentiation of neural progenitor cells NPCs. Although the results are encouraging, further research is needed to clarify GPR50 role in neurobiology of mood disorders, adaptive thermogenesis, torpor, and in the pathophysiology of neurological disorders.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| | - Ling He
- China Pharmaceutical University, Department of Pharmacology, No. 24 Tong Jia Xiang, Nanjing,Jiang Su Province 210009, China
| | - Xuxu Zhuang
- China Pharmaceutical University, Department of Pharmacology, No. 24 Tong Jia Xiang, Nanjing,Jiang Su Province 210009, China
| |
Collapse
|
17
|
Liu G, Ni J, Mao L, Yan M, Pang T, Liao H. Expression of Nogo receptor 1 in microglia during development and following traumatic brain injury. Brain Res 2015; 1627:41-51. [PMID: 26367446 DOI: 10.1016/j.brainres.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/26/2015] [Accepted: 09/05/2015] [Indexed: 01/18/2023]
Abstract
As the receptor of myelin associated inhibitory factors Nogo receptor 1 (NgR1) plays an important role in central nervous system (CNS) injury and regeneration. It is found that NgR1 complex acts in neurons to transduce the signals intracelluarly including induction of growth cone collapse, inhibition of axonal regeneration and regulation of nerve inflammation. In recent studies, NgR1 has also been found to be expressed in the microglia. However, NgR1 expressed in microglia in the developing nervous systems and following CNS injury have not been widely investigated. In this study, we detected the expression and cellular localization of NgR1 in microglia during development and following traumatic brain injury (TBI) in mice. The results showed that NgR1 was mainly expressed in microglia during embryonic and postnatal periods. The expression levels peaked at P4 and decreased thereafter into adulthood, while increased significantly with aging representatively at 17 mo. On the other hand, there was no significant difference in the number of double positive NgR1(+)Iba1(+) cells between normal and TBI group. In summary, we first detected the expression of NgR1 in microglia during development and found that NgR1 protein expression increased significantly in microglia with aging. These findings will contribute to make a foundation for subsequent study about the role of NgR1 expressed in microglia on the CNS disorders.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/cytology
- Brain/embryology
- Brain/growth & development
- Brain Injuries/pathology
- Calcium-Binding Proteins/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Functional Laterality
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation, Developmental/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Microfilament Proteins/metabolism
- Microglia/metabolism
- Myelin Proteins/genetics
- Myelin Proteins/metabolism
- Nogo Receptor 1
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
Collapse
Affiliation(s)
- Gaoxiang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Ni
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, Nanjing 210000, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Liao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
18
|
Reginensi D, Carulla P, Nocentini S, Seira O, Serra-Picamal X, Torres-Espín A, Matamoros-Angles A, Gavín R, Moreno-Flores MT, Wandosell F, Samitier J, Trepat X, Navarro X, del Río JA. Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cell Mol Life Sci 2015; 72:2719-37. [PMID: 25708702 PMCID: PMC11113838 DOI: 10.1007/s00018-015-1869-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 11/29/2022]
Abstract
Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.
Collapse
Affiliation(s)
- Diego Reginensi
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Patricia Carulla
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Sara Nocentini
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Oscar Seira
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Blusson Spinal Cord Centre and Department of Zoology, Faculty of Science, International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Xavier Serra-Picamal
- Integrative cell and tissue dynamics, Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Abel Torres-Espín
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Edif. M, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
- Grupo de Neurobiología, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Pozuelo de Alarcón 28223, Madrid, Spain
| | - Andreu Matamoros-Angles
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Francisco Wandosell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), CBM-UAM, Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Laboratory, . Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
- Department of Electronics, University of Barcelona, Centro de Investigaciòn Médica en Red, Biomecánica, Biomateriales y Nanotecnologìa (CIBERBBN), Barcelona, Spain
| | - Xavier Trepat
- University of Barcelona, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Edif. M, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
- Grupo de Neurobiología, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Pozuelo de Alarcón 28223, Madrid, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
19
|
Arsenault J, Nagy A, Henderson JT, O'Brien JA. Regioselective biolistic targeting in organotypic brain slices using a modified gene gun. J Vis Exp 2014:e52148. [PMID: 25407047 PMCID: PMC4249736 DOI: 10.3791/52148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transfection of DNA has been invaluable for biological sciences and with recent advances to organotypic brain slice preparations, the effect of various heterologous genes could thus be investigated easily while maintaining many aspects of in vivo biology. There has been increasing interest to transfect terminally differentiated neurons for which conventional transfection methods have been fraught with difficulties such as low yields and significant losses in viability. Biolistic transfection can circumvent many of these difficulties yet only recently has this technique been modified so that it is amenable for use in mammalian tissues. New modifications to the accelerator chamber have enhanced the gene gun's firing accuracy and increased its depths of penetration while also allowing the use of lower gas pressure (50 psi) without loss of transfection efficiency as well as permitting a focused regioselective spread of the particles to within 3 mm. In addition, this technique is straight forward and faster to perform than tedious microinjections. Both transient and stable expression are possible with nanoparticle bombardment where episomal expression can be detected within 24 hr and the cell survival was shown to be better than, or at least equal to, conventional methods. This technique has however one crucial advantage: it permits the transfection to be localized within a single restrained radius thus enabling the user to anatomically isolate the heterologous gene's effects. Here we present an in-depth protocol to prepare viable adult organotypic slices and submit them to regioselective transfection using an improved gene gun.
Collapse
Affiliation(s)
- Jason Arsenault
- Leslie Dan Faculty of Pharmacy, University of Toronto; MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Andras Nagy
- Leslie Dan Faculty of Pharmacy, University of Toronto
| | | | | |
Collapse
|
20
|
Kim JH, Kim JH, Cho YE, Baek MC, Jung JY, Lee MG, Jang IS, Lee HW, Suk K. Chronic Sleep Deprivation-Induced Proteome Changes in Astrocytes of the Rat Hypothalamus. J Proteome Res 2014; 13:4047-61. [DOI: 10.1021/pr500431j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | | | | | | | - Il-Sung Jang
- Department
of Pharmacology, Brain Science and Engineering Institute, Kyungpook National University School of Dentistry, Daegu 700-422, Republic of Korea
| | | | | |
Collapse
|
21
|
Sema3E/PlexinD1 regulates the migration of hem-derived Cajal-Retzius cells in developing cerebral cortex. Nat Commun 2014; 5:4265. [PMID: 24969029 DOI: 10.1038/ncomms5265] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/31/2014] [Indexed: 02/06/2023] Open
Abstract
During the development of the cerebral cortex, Cajal-Retzius (CR) cells settle in the preplate and coordinate the precise growth of the neocortex. Indeed, CR cells migrate tangentially from specific proliferative regions of the telencephalon (for example, the cortical hem (CH)) to populate the entire cortical surface. This is a very finely tuned process regulated by an emerging number of factors that has been sequentially revealed in recent years. However, the putative participation of one of the major families of axon guidance molecules in this process, the Semaphorins, was not explored. Here we show that Semaphorin-3E (Sema3E) is a natural negative regulator of the migration of PlexinD1-positive CR cells originating in the CH. Our results also indicate that Sema3E/PlexinD1 signalling controls the motogenic potential of CR cells in vitro and in vivo. Indeed, absence of Sema3E/PlexinD1 signalling increased the migratory properties of CR cells. This modulation implies negative effects on CXCL12/CXCR4 signalling and increased ADF/Cofilin activity.
Collapse
|
22
|
Borrie SC, Sartori SB, Lehmann J, Sah A, Singewald N, Bandtlow CE. Loss of Nogo receptor homolog NgR2 alters spine morphology of CA1 neurons and emotionality in adult mice. Front Behav Neurosci 2014; 8:175. [PMID: 24860456 PMCID: PMC4030173 DOI: 10.3389/fnbeh.2014.00175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/25/2014] [Indexed: 01/08/2023] Open
Abstract
Molecular mechanisms which stabilize dendrites and dendritic spines are essential for regulation of neuronal plasticity in development and adulthood. The class of Nogo receptor proteins, which are critical for restricting neurite outgrowth inhibition signaling, have been shown to have roles in developmental, experience and activity induced plasticity. Here we investigated the role of the Nogo receptor homolog NgR2 in structural plasticity in a transgenic null mutant for NgR2. Using Golgi-Cox staining to analyze morphology, we show that loss of NgR2 alters spine morphology in adult CA1 pyramidal neurons of the hippocampus, significantly increasing mushroom-type spines, without altering dendritic tree complexity. Furthermore, this shift is specific to apical dendrites in distal CA1 stratum radiatum (SR). Behavioral alterations in NgR2(-/-) mice were investigated using a battery of standardized tests and showed that whilst there were no alterations in learning and memory in NgR2(-/-) mice compared to littermate controls, NgR2(-/-) displayed reduced fear expression in the contextual conditioned fear test, and exhibited reduced anxiety- and depression-related behaviors. This suggests that the loss of NgR2 results in a specific phenotype of reduced emotionality. We conclude that NgR2 has role in maintenance of mature spines and may also regulate fear and anxiety-like behaviors.
Collapse
Affiliation(s)
- Sarah C Borrie
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University Innsbruck, Austria
| | - Simone B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences Innsbruck, University of Innsbruck Innsbruck, Austria
| | - Julian Lehmann
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University Innsbruck, Austria
| | - Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences Innsbruck, University of Innsbruck Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences Innsbruck, University of Innsbruck Innsbruck, Austria
| | - Christine E Bandtlow
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University Innsbruck, Austria
| |
Collapse
|
23
|
Petrasek T, Prokopova I, Sladek M, Weissova K, Vojtechova I, Bahnik S, Zemanova A, Schönig K, Berger S, Tews B, Bartsch D, Schwab ME, Sumova A, Stuchlik A. Nogo-A-deficient Transgenic Rats Show Deficits in Higher Cognitive Functions, Decreased Anxiety, and Altered Circadian Activity Patterns. Front Behav Neurosci 2014; 8:90. [PMID: 24672453 PMCID: PMC3957197 DOI: 10.3389/fnbeh.2014.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/02/2014] [Indexed: 11/19/2022] Open
Abstract
Decreased levels of Nogo-A-dependent signaling have been shown to affect behavior and cognitive functions. In Nogo-A knockout and knockdown laboratory rodents, behavioral alterations were observed, possibly corresponding with human neuropsychiatric diseases of neurodevelopmental origin, particularly schizophrenia. This study offers further insight into behavioral manifestations of Nogo-A knockdown in laboratory rats, focusing on spatial and non-spatial cognition, anxiety levels, circadian rhythmicity, and activity patterns. Demonstrated is an impairment of cognitive functions and behavioral flexibility in a spatial active avoidance task, while non-spatial memory in a step-through avoidance task was spared. No signs of anhedonia, typical for schizophrenic patients, were observed in the animals. Some measures indicated lower anxiety levels in the Nogo-A-deficient group. Circadian rhythmicity in locomotor activity was preserved in the Nogo-A knockout rats and their circadian period (tau) did not differ from controls. However, daily activity patterns were slightly altered in the knockdown animals. We conclude that a reduction of Nogo-A levels induces changes in CNS development, manifested as subtle alterations in cognitive functions, emotionality, and activity patterns.
Collapse
Affiliation(s)
- Tomas Petrasek
- Department of Neurophysiology of Memory, Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic ; First Faculty of Medicine, Charles University in Prague , Prague , Czech Republic
| | - Iva Prokopova
- Department of Neurophysiology of Memory, Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Martin Sladek
- Department of Neurohumoral Regulations, Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Kamila Weissova
- Department of Neurohumoral Regulations, Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Iveta Vojtechova
- Department of Neurophysiology of Memory, Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Stepan Bahnik
- Department of Neurophysiology of Memory, Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic ; Social Psychology, Department of Psychology II, University of Würzburg , Würzburg , Germany
| | - Anna Zemanova
- Department of Neurophysiology of Memory, Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Kai Schönig
- Department of Molecular Biology, Central Institute of Mental Health , Mannheim , Germany
| | - Stefan Berger
- Department of Molecular Biology, Central Institute of Mental Health , Mannheim , Germany
| | - Björn Tews
- Brain Research Institute, University of Zurich , Zurich , Switzerland ; Neurosciences, Department of Biology, Swiss Federal Institute of Technology Zurich , Zurich , Switzerland ; Division of Molecular Mechanisms of Tumor Invasion, German Cancer Research Center , Heidelberg , Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health , Mannheim , Germany
| | - Martin E Schwab
- Brain Research Institute, University of Zurich , Zurich , Switzerland ; Neurosciences, Department of Biology, Swiss Federal Institute of Technology Zurich , Zurich , Switzerland
| | - Alena Sumova
- Department of Neurohumoral Regulations, Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Ales Stuchlik
- Department of Neurophysiology of Memory, Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| |
Collapse
|
24
|
Espinosa-García C, Aguilar-Hernández A, Cervantes M, Moralí G. Effects of progesterone on neurite growth inhibitors in the hippocampus following global cerebral ischemia. Brain Res 2014; 1545:23-34. [DOI: 10.1016/j.brainres.2013.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/19/2013] [Accepted: 11/28/2013] [Indexed: 01/17/2023]
|
25
|
Petrasek T, Prokopova I, Bahnik S, Schonig K, Berger S, Vales K, Tews B, Schwab ME, Bartsch D, Stuchlik A. Nogo-A downregulation impairs place avoidance in the Carousel maze but not spatial memory in the Morris water maze. Neurobiol Learn Mem 2014; 107:42-9. [DOI: 10.1016/j.nlm.2013.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022]
|
26
|
Optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun. BMC Res Notes 2013; 6:544. [PMID: 24354851 PMCID: PMC3878247 DOI: 10.1186/1756-0500-6-544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/16/2013] [Indexed: 12/24/2022] Open
Abstract
Background Organotypic brain slices (OTBS) are an excellent experimental compromise between the facility of working with cell cultures and the biological relevance of using animal models where anatomical, morphological, and cellular function of specific brain regions can be maintained. The biological characteristics of OTBS can subsequently be examined under well-defined conditions. They do, however, have a number of limitations; most brain slices are derived from neonatal animals, as it is difficult to properly prepare and maintain adult OTBS. There are ample problems with tissue integrity as OTBS are delicate and frequently become damaged during the preparative stages. Notwithstanding these obstacles, the introduced exogenous proteins into both neuronal cells, and cells imbedded within tissues, have been consistently difficult to achieve. Results Following the ex vivo extraction of adult mouse brains, mounted inside a medium-agarose matrix, we have exploited a precise slicing procedure using a custom built vibroslicer. To transfect these slices we used an improved biolistic transfection method using a custom made low-pressure barrel and novel DNA-coated nanoparticles (40 nm), which are drastically smaller than traditional microparticles. These nanoparticles also minimize tissue damage as seen by a significant reduction in lactate dehydrogenase activity as well as propidium iodide (PI) and dUTP labelling compared to larger traditional gold particles used on these OTBS. Furthermore, following EYFP exogene delivery by gene gun, the 40 nm treated OTBS displayed a significantly larger number of viable NeuN and EYFP positive cells. These OTBS expressed the exogenous proteins for many weeks. Conclusions Our described methodology of producing OTBS, which results in better reproducibility with less tissue damage, permits the exploitation of mature fully formed adult brains for advanced neurobiological studies. The novel 40 nm particles are ideal for the viable biolistic transfection of OTBS by reducing tissue stress while maintaining long term exogene expression.
Collapse
|
27
|
Craveiro LM, Weinmann O, Roschitzki B, Gonzenbach RR, Zörner B, Montani L, Yee BK, Feldon J, Willi R, Schwab ME. Infusion of anti-Nogo-A antibodies in adult rats increases growth and synapse related proteins in the absence of behavioral alterations. Exp Neurol 2013; 250:52-68. [DOI: 10.1016/j.expneurol.2013.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
|
28
|
Seira O, Del Río JA. Glycogen synthase kinase 3 beta (GSK3β) at the tip of neuronal development and regeneration. Mol Neurobiol 2013; 49:931-44. [PMID: 24158777 DOI: 10.1007/s12035-013-8571-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/10/2013] [Indexed: 12/31/2022]
Abstract
Gaining a basic understanding of the inhibitory molecules and the intracellular signaling involved in axon development and repulsion after neural lesions is of clear biomedical interest. In recent years, numerous studies have described new molecules and intracellular mechanisms that impair axonal outgrowth after injury. In this scenario, the role of glycogen synthase kinase 3 beta (GSK3β) in the axonal responses that occur after central nervous system (CNS) lesions began to be elucidated. GSK3β function in the nervous tissue is associated with neural development, neuron polarization, and, more recently, neurodegeneration. In fact, GSK3β has been considered as a putative therapeutic target for promoting functional recovery in injured or degenerative CNS. In this review, we summarize current understanding of the role of GSK3β during neuronal development and regeneration. In particular, we discuss GSK3β activity levels and their possible impact on cytoskeleton dynamics during both processes.
Collapse
Affiliation(s)
- Oscar Seira
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), University of Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain,
| | | |
Collapse
|
29
|
Kempf A, Schwab ME. Nogo-A Represses Anatomical and Synaptic Plasticity in the Central Nervous System. Physiology (Bethesda) 2013; 28:151-63. [DOI: 10.1152/physiol.00052.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nogo-A was initially discovered as a myelin-associated growth inhibitory protein limiting axonal regeneration after central nervous system (CNS) injury. This review summarizes current knowledge on how myelin and neuronal Nogo-A and its receptors exert physiological functions ranging from the regulation of growth suppression to synaptic plasticity in the developing and adult intact CNS.
Collapse
Affiliation(s)
- Anissa Kempf
- Brain Research Institute, University of Zurich, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Abstract
Nogo-A is an important axonal growth inhibitor in the adult and developing CNS. In vitro, Nogo-A has been shown to inhibit migration and cell spreading of neuronal and nonneuronal cell types. Here, we studied in vivo and in vitro effects of Nogo-A on vascular endothelial cells during angiogenesis of the early postnatal brain and retina in which Nogo-A is expressed by many types of neurons. Genetic ablation or virus-mediated knock down of Nogo-A or neutralization of Nogo-A with an antibody caused a marked increase in the blood vessel density in vivo. In culture, Nogo-A inhibited spreading, migration, and sprouting of primary brain microvascular endothelial cells (MVECs) in a dose-dependent manner and induced the retraction of MVEC lamellipodia and filopodia. Mechanistically, we show that only the Nogo-A-specific Delta 20 domain exerts inhibitory effects on MVECs, but the Nogo-66 fragment, an inhibitory domain common to Nogo-A, -B, and -C, does not. Furthermore, the action of Nogo-A Delta 20 on MVECs required the intracellular activation of the Ras homolog gene family, member A (Rho-A)-associated, coiled-coil containing protein kinase (ROCK)-Myosin II pathway. The inhibitory effects of early postnatal brain membranes or cultured neurons on MVECs were relieved significantly by anti-Nogo-A antibodies. These findings identify Nogo-A as an important negative regulator of developmental angiogenesis in the CNS. They may have important implications in CNS pathologies involving angiogenesis such as stroke, brain tumors, and retinopathies.
Collapse
|
31
|
Inhibition of retinal ganglion cell axonal outgrowth through the Amino-Nogo-A signaling pathway. Neurochem Res 2013; 38:1365-74. [PMID: 23579387 DOI: 10.1007/s11064-013-1032-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/03/2013] [Accepted: 03/26/2013] [Indexed: 01/10/2023]
Abstract
Nogo-A is a myelin-derived inhibitor playing a pivotal role in the prevention of axonal regeneration. A functional domain of Nogo-A, Amino-Nogo, exerts an inhibitory effect on axonal regeneration, although the mechanism is unclear. The present study investigated the role of the Amino-Nogo-integrin signaling pathway in primary retinal ganglion cells (RGCs) with respect to axonal outgrowth, which is required for axonal regeneration. Immunohistochemistry showed that integrin αv, integrin α5 and FAK were widely expressed in the visual system. Thy-1 and GAP-43 immunofluorescence showed that axonal outgrowth of RGCs was promoted by Nogo-A siRNA and a peptide antagonist of the Nogo-66 functional domain of Nogo-A (Nep1-40), and inhibited by a recombinant rat Nogo-A-Fc chimeric protein (Δ20). Western blotting revealed increased integrin αv and p-FAK expression in Nogo-A siRNA group, decreased integrin αv expression in Δ20 group and decreased p-FAK expression in Nep1-40 group. Integrin α5 expression was not changed in any group. RhoA G-LISA showed that RhoA activation was inhibited by Nogo-A siRNA and Δ20, but increased by Nep1-40 treatment. These results suggest that Amino-Nogo inhibits RGC axonal outgrowth primarily through the integrin αv signaling pathway.
Collapse
|
32
|
Distinct roles of Nogo-a and Nogo receptor 1 in the homeostatic regulation of adult neural stem cell function and neuroblast migration. J Neurosci 2013; 32:17788-99. [PMID: 23223298 DOI: 10.1523/jneurosci.3142-12.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the adult mammalian subventricular zone (SVZ), GFAP-positive neural stem cells (NSCs) generate neuroblasts that migrate tangentially along the rostral migratory stream (RMS) toward the olfactory bulb (OB). In the mouse brain, we found that the plasticity inhibitors Nogo-A and Nogo receptor 1 (NgR1) are differentially expressed in the SVZ-OB system, in which Nogo-A identifies immature neuroblasts and NgR1 germinal astrocytes. We therefore examined the role of Nogo-A and NgR1 in the regulation of neurogenesis. Pharmacological experiments show that Nogo-66/NgR1 interaction reduces the proliferation of NSCs. This is consistent with a negative-feedback loop, in which newly generated neurons modulate cell division of SVZ stem cells. Moreover, the Nogo-A-Δ20 domain promotes neuroblast migration toward the OB through activation of the Rho/ROCK (Rho-associated, coiled-coil containing protein kinase) pathway, without the participation of NgR1. Our findings reveal a new unprecedented function for Nogo-A and NgR1 in the homeostatic regulation of the pace of neurogenesis in the adult mouse SVZ and in the migration of neuroblasts along the RMS.
Collapse
|
33
|
Changes in expression of Nogo receptor 1 in hippocampus and cortex after cardiopulmonary resuscitation in rats. Am J Emerg Med 2012; 31:353-9. [PMID: 23158614 DOI: 10.1016/j.ajem.2012.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/17/2012] [Accepted: 08/29/2012] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate changes in Nogo receptor 1 (NgR(1)) expression in the cerebrum after cardiopulmonary resuscitation (CPR) in rats. Cardiac arrest was induced by alternating current in 50 SD rats through transcutaneous electrical epicardium stimulation, and CPR was performed with the Utstein mode 6 minutes after cardiac arrest. Rats were killed 1, 3, and 7 days after CPR. We performed immunofluorescence with antibodies against NgR(1) to map the distribution of NgR(1) in the rat cerebrum, whereas quantitative polymerase chain reaction was performed for quantitative analysis of NgR(1) messenger RNA (mRNA). There was a striking transient up-regulation of the NgR(1) protein and mRNA in both the hippocampus and cortex in response to CPR. Nogo receptor 1 proteins were strongly expressed in hippocampal neurons 1 and 3 days after CPR (P < .001 for 1 day and P < .05 for 3 days, vs the control group, respectively), which returned to the basal level 7 days after CPR. In the cortex, staining moderately increased 1 day after CPR and got the peak level after 3 days (P < .001), returning to normal expression levels on day 7. The levels of NgR(1) mRNA in the hippocampus and cerebral cortical cortex showed the same trend with staining. The changes were significantly different between day 3 and baseline in both the hippocampus and cortex (P < .05, respectively). Furthermore, there were significant differences between the hippocampus and cerebral cortical cortex at 1 day and 3 days after the CPR (P < .05, respectively). There was a transient increase in NgR(1) in the vulnerable areas of the rat brain after CPR. Blockade of NgR(1) may be important in maintaining the high regenerative capacity of neurons during the time window when NgR(1) expression increases.
Collapse
|
34
|
Haybaeck J, Llenos IC, Dulay RJ, Bettermann K, Miller CL, Wälchli T, Frei K, Virgintino D, Rizzi M, Weis S. Expression of nogo-a is decreased with increasing gestational age in the human fetal brain. Dev Neurosci 2012; 34:402-16. [PMID: 23146900 DOI: 10.1159/000343143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/04/2012] [Indexed: 12/16/2022] Open
Abstract
Nogo is a member of the reticulon family. Our understanding of the physiological functions of the Nogo-A protein has grown over the last few years, and this molecule is now recognized as one of the most important axonal regrowth inhibitors present in central nervous system (CNS) myelin. Nogo-A plays other important roles in nervous system development, epilepsy, vascular physiology, muscle pathology, stroke, inflammation, and CNS tumors. Since the exact role of Nogo-A protein in human brain development is still poorly understood, we studied its cellular and regional distribution by immunohistochemistry in the frontal lobe of 30 human fetal brains. Nogo-A was expressed in the following cortical zones: ependyma, ventricular zone, subventricular zone, intermediate zone, subplate, cortical plate, and marginal zone. The number of positive cells decreased significantly with increasing gestational age in the subplate and marginal zone. Using different antibodies, changes in isoform expression and dimerization states could be shown between various cortical zones. The results demonstrate a significant change in the expression of Nogo-A during the development of the human brain. The effects of its time- and region-specific regulation have to be further studied in detail.
Collapse
Affiliation(s)
- J Haybaeck
- Department of Neuropathology, Institute of Pathology, Medical University Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pérez-Álvarez MJ, Maza MDC, Anton M, Ordoñez L, Wandosell F. Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia. J Neuroinflammation 2012; 9:157. [PMID: 22747981 PMCID: PMC3414748 DOI: 10.1186/1742-2094-9-157] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/29/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Estradiol has been shown to exert neuroprotective effects in several neurodegenerative conditions, including cerebral ischemia. The presence of this hormone prior to ischemia attenuates the damage associated with such events in a rodent model (middle cerebral artery occlusion (MCAO)), although its therapeutic value when administered post-ischemia has not been assessed. Hence, we evaluated the effects of estradiol treatment after permanent MCAO (pMCAO) was induced in rats, studying the PI3K/AKT/GSK3/β-catenin survival pathway and the activation of SAPK-JNK in two brain areas differently affected by pMCAO: the cortex and hippocampus. In addition, we analyzed the effect of estradiol on the glial response to injury. METHODS Male rats were subjected to pMCAO and estradiol (0.04 mg/kg) was administered 6, 24, and 48 h after surgery. The animals were sacrificed 6 h after the last treatment, and brain damage was evaluated by immunohistochemical quantification of 'reactive gliosis' using antibodies against GFAP and Iba1. In addition, Akt, phospho-Akt(Ser473), phospho-Akt(Thr308), GSK3, phospho-GSK3(Ser21/9), β-catenin, SAPK-JNK, and pSAPK-JNK(Thr183/Tyr185) levels were determined in western blots of the ipsilateral cerebral cortex and hippocampus, and regional differences in neuronal phospho-Akt expression were determined by immunohistochemistry. RESULTS The increases in the percentage of GFAP- (5.25-fold) and Iba1- (1.8-fold) labeled cells in the cortex and hippocampus indicate that pMCAO induced 'reactive gliosis'. This effect was prevented by post-ischemic estradiol treatment; diminished the number of these cells to those comparable with control animals. pMCAO down-regulated the PI3K/AkT/GSK3/β-catenin survival pathway to different extents in the cortex and hippocampus, the activity of which was restored by estradiol treatment more efficiently in the cerebral cortex (the most affected region) than in the hippocampus. No changes in the phosphorylation of SAPK-JNK were observed 54 h after inducing pMCAO, whereas pMCAO did significantly decrease the phospho-Akt(Ser473) in neurons, an effect that was reversed by estradiol. CONCLUSION The present study demonstrates that post-pMCAO estradiol treatment attenuates ischemic injury in both neurons and glia, events in which the PI3K/AKT/GSK3/β-catenin pathway is at least partly involved. These findings indicate that estradiol is a potentially useful treatment to enhance recovery after human ischemic stroke.
Collapse
Affiliation(s)
- Maria Jose Pérez-Álvarez
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Maria del Carmen Maza
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Anton
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lara Ordoñez
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa", CIBERNED-CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, C/Nicolás Cabrera n° 1, Madrid, 28049, Spain
| |
Collapse
|
36
|
VanGuilder HD, Bixler GV, Sonntag WE, Freeman WM. Hippocampal expression of myelin-associated inhibitors is induced with age-related cognitive decline and correlates with deficits of spatial learning and memory. J Neurochem 2012; 121:77-98. [PMID: 22269040 PMCID: PMC3341628 DOI: 10.1111/j.1471-4159.2012.07671.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Impairment of cognitive functions including hippocampus-dependent spatial learning and memory affects nearly half of the aged population. Age-related cognitive decline is associated with synaptic dysfunction that occurs in the absence of neuronal cell loss, suggesting that impaired neuronal signaling and plasticity may underlie age-related deficits of cognitive function. Expression of myelin-associated inhibitors (MAIs) of synaptic plasticity, including the ligands myelin-associated glycoprotein, neurite outgrowth inhibitor A, and oligodendrocyte myelin glycoprotein, and their common receptor, Nogo-66 receptor, was examined in hippocampal synaptosomes and Cornu ammonis area (CA)1, CA3 and dentate gyrus subregions derived from adult (12-13 months) and aged (26-28 months) Fischer 344 × Brown Norway rats. Rats were behaviorally phenotyped by Morris water maze testing and classified as aged cognitively intact (n = 7-8) or aged cognitively impaired (n = 7-10) relative to adults (n = 5-7). MAI protein expression was induced in cognitively impaired, but not cognitively intact, aged rats and correlated with cognitive performance in individual rats. Immunohistochemical experiments demonstrated that up-regulation of MAIs occurs, in part, in hippocampal neuronal axons and somata. While a number of pathways and processes are altered with brain aging, we report a coordinated induction of myelin-associated inhibitors of functional and structural plasticity only in cognitively impaired aged rats. Induction of MAIs may decrease stimulus-induced synaptic strengthening and structural remodeling, ultimately impairing synaptic mechanisms of spatial learning and memory and resulting in cognitive decline.
Collapse
Affiliation(s)
- Heather D. VanGuilder
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - Georgina V. Bixler
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - William E. Sonntag
- Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Science Center, 975 NE 10th Street, BRC-1303, Oklahoma City OK 73104 USA
| | - Willard M. Freeman
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| |
Collapse
|
37
|
The Nogo-66 receptor family in the intact and diseased CNS. Cell Tissue Res 2012; 349:105-17. [PMID: 22311207 DOI: 10.1007/s00441-012-1332-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The Nogo-66 receptor family (NgR) consists in three glycophosphatidylinositol (GPI)-anchored receptors (NgR1, NgR2 and NgR3), which are primarily expressed by neurons in the central and peripheral mammalian nervous system. NgR1 was identified as serving as a high affinity binding protein for the three classical myelin-associated inhibitors (MAIs) Nogo-A, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), which limit axon regeneration and sprouting in the injured brain. Recent studies suggest that NgR signaling may also play an essential role in the intact adult CNS in restricting axonal and synaptic plasticity and are involved in neurodegenerative diseases, particularly in Alzheimer's disease pathology through modulation of β-secretase cleavage. Here, we outline the biochemical properties of NgRs and their functional roles in the intact and diseased CNS.
Collapse
|
38
|
Expression of PirB protein in intact and injured optic nerve and retina of mice. Neurochem Res 2011; 37:647-54. [PMID: 22102155 DOI: 10.1007/s11064-011-0656-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
The aim of this study was to investigate the expression of PirB protein in intact mice ON (optic nerve) and retina, and to evaluate its change after ON injury. The mouse ON crush model was established. The immunohistochemistry and western blot were used to detect PirB expression. We discovered PirB signals were located as beaded arrangement along the ON long axis in intact ON, disordered in injured ON, and distributed mainly in ganglion cell layer in intact and injured retina. Both PirB expression in injured ON and retina were significantly increased at 1-day post injury (1-dpi), nearly peaked at 7-dpi, but thereafter there was no significant change of them till at least 28-dpi. We concluded the expression of PirB was positive in intact ON and retina, and significantly increased after ON injury. These findings, coupled with previous studies, may imply that PirB is probably a critical molecule in inhibition of axonal regeneration by myelin inhibitors after ON injury.
Collapse
|
39
|
Li X, Su H, Fu QL, Guo J, Lee DHS, So KF, Wu W. Soluble NgR fusion protein modulates the proliferation of neural progenitor cells via the Notch pathway. Neurochem Res 2011; 36:2363-72. [PMID: 21822922 PMCID: PMC3207133 DOI: 10.1007/s11064-011-0562-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/14/2011] [Accepted: 07/22/2011] [Indexed: 10/31/2022]
Abstract
NogoA, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein are CNS myelin molecules that bind to the neuronal Nogo-66 receptor (NgR) and inhibit axon growth. The NgR antagonist, soluble NgR1-Fc protein (sNgR-Fc), facilitates axon regeneration by neutralizing the inhibitory effects of myelin proteins in experimental models of CNS injury. Here we aim to investigate the effect of sNgR-Fc on the proliferation of neural progenitor cells (NPCs). The hippocampus cells of embryonic rats were isolated and cultured in vitro. The expression of nestin, βIII-Tubulin, GFAP and Nogo-A on these cells was observed using immunocytochemistry. In order to investigate the effect on proliferation of NPCs, sNgR-Fc, MAG-Fc chimera and Notch1 blocker were added respectively. The total cell number for the proliferated NPCs was counted. BrdU was applied and the rate of proliferating cells was examined. The level of Notch1 was analyzed using Western blotting. We identified that NogoA is expressed in NPCs. sNgR-Fc significantly enhanced the proliferation of NPCs in vitro as indicated by BrdU labeling and total cell count. This proliferation effect was abolished by the administration of MAG suggesting specificity. In addition, we demonstrate that sNgR-Fc is a potent activator for Notch1 and Notch1 antagonist reversed the effect of sNgR-Fc on NPC proliferation. Our results suggest that sNgR-Fc may modulate Nogo activity to induce NPC proliferation via the Notch pathway.
Collapse
Affiliation(s)
- Xin Li
- Department of Emergency, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan II, Guangzhou, 510080 Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Jitoku D, Hattori E, Iwayama Y, Yamada K, Toyota T, Kikuchi M, Maekawa M, Nishikawa T, Yoshikawa T. Association study of Nogo-related genes with schizophrenia in a Japanese case-control sample. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:581-92. [PMID: 21563301 DOI: 10.1002/ajmg.b.31199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/25/2011] [Indexed: 11/11/2022]
Abstract
Many studies have suggested that myelin dysfunction may be causally involved in the pathogenesis of schizophrenia. Nogo (RTN4), myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMG) all bind to the common receptor, Nogo-66 receptor 1 (RTN4R). We examined 68 single nucleotide polymorphisms (SNPs) (51 with genotyping and 17 with imputation analysis) from these four genes for genetic association with schizophrenia, using a 2,120 case-control sample from the Japanese population. Allelic tests showed nominally significant association of two RTN4 SNPs (P = 0.047 and 0.037 for rs11894868 and rs2968804, respectively) and two MAG SNPs (P = 0.034 and 0.029 for rs7249617 and rs16970218, respectively) with schizophrenia. The MAG SNP rs7249617 also showed nominal significance in a genotypic test (P = 0.017). In haplotype analysis, the MAG haplotype block including rs7249617 and rs16970218 showed nominal significance (P = 0.008). These associations did not remain significant after correction for multiple testing, possibly due to their small genetic effect. In the imputation analysis of RTN4, the untyped SNP rs2972090 showed nominally significant association (P = 0.032) and several imputed SNPs showed marginal associations. Moreover, in silico analysis (PolyPhen) of a missense variant (rs11677099: Asp357Val), which is in strong linkage disequilibrium with rs11894868, predicted a deleterious effect on Nogo protein function. Despite a failure to detect robust associations in this Japanese cohort, our nominally positive signals, taken together with previously reported biological and genetic findings, add further support to the "disturbed myelin system theory of schizophrenia" across different populations.
Collapse
Affiliation(s)
- Daisuke Jitoku
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hånell A, Clausen F, Björk M, Jansson K, Philipson O, Nilsson LNG, Hillered L, Weinreb PH, Lee D, McIntosh TK, Gimbel DA, Strittmatter SM, Marklund N. Genetic deletion and pharmacological inhibition of Nogo-66 receptor impairs cognitive outcome after traumatic brain injury in mice. J Neurotrauma 2011; 27:1297-309. [PMID: 20486800 DOI: 10.1089/neu.2009.1255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Functional recovery is markedly restricted following traumatic brain injury (TBI), partly due to myelin-associated inhibitors including Nogo-A, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), that all bind to the Nogo-66 receptor-1 (NgR1). In previous studies, pharmacological neutralization of both Nogo-A and MAG improved outcome following TBI in the rat, and neutralization of NgR1 improved outcome following spinal cord injury and stroke in rodent models. However, the behavioral and histological effects of NgR1 inhibition have not previously been evaluated in TBI. We hypothesized that NgR1 negatively influences behavioral recovery following TBI, and evaluated NgR1(-/-) mice (NgR1(-/-) study) and, in a separate study, soluble NgR1 infused intracerebroventricularly immediately post-injury to neutralize NgR1 (sNgR1 study) following TBI in mice using a controlled cortical impact (CCI) injury model. In both studies, motor function, TBI-induced loss of tissue, and hippocampal beta-amyloid immunohistochemistry were not altered up to 5 weeks post-injury. Surprisingly, cognitive function (as evaluated with the Morris water maze at 4 weeks post-injury) was significantly impaired both in NgR1(-/-) mice and in mice treated with soluble NgR1. In the sNgR1 study, we evaluated hippocampal mossy fiber sprouting using the Timm stain and found it to be increased at 5 weeks following TBI. Neutralization of NgR1 significantly increased mossy fiber sprouting in sham-injured animals, but not in brain-injured animals. Our data suggest a complex role for myelin-associated inhibitors in the behavioral recovery process following TBI, and urge caution when inhibiting NgR1 in the early post-injury period.
Collapse
Affiliation(s)
- Anders Hånell
- Department of Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Llorens F, Gil V, del Río JA. Emerging functions of myelin-associated proteins during development, neuronal plasticity, and neurodegeneration. FASEB J 2010; 25:463-75. [PMID: 21059749 DOI: 10.1096/fj.10-162792] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult mammalian central nervous system (CNS) axons have a limited regrowth capacity following injury. Myelin-associated inhibitors (MAIs) limit axonal outgrowth, and their blockage improves the regeneration of damaged fiber tracts. Three of these proteins, Nogo-A, MAG, and OMgp, share two common neuronal receptors: NgR1, together with its coreceptors [p75(NTR), TROY, and Lingo-1]; and the recently described paired immunoglobulin-like receptor B (PirB). These proteins impair neuronal regeneration by limiting axonal sprouting. Some of the elements involved in the myelin inhibitory pathways may still be unknown, but the discovery that blocking both PirB and NgR1 activities leads to near-complete release from myelin inhibition, sheds light on one of the most competitive and intense fields of neuroregeneration study in recent decades. In parallel with the identification and characterization of the roles and functions of these inhibitory molecules in axonal regeneration, data gathered in the field strongly suggest that most of these proteins have roles other than axonal growth inhibition. The discovery of a new group of interacting partners for myelin-associated receptors and ligands, as well as functional studies within or outside the CNS environment, highlights the potential new physiological roles for these proteins in processes, such as development, neuronal homeostasis, plasticity, and neurodegeneration.
Collapse
Affiliation(s)
- Franc Llorens
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
43
|
Schwab ME. Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci 2010; 11:799-811. [PMID: 21045861 DOI: 10.1038/nrn2936] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The membrane protein Nogo-A was initially characterized as a CNS-specific inhibitor of axonal regeneration. Recent studies have uncovered regulatory roles of Nogo proteins and their receptors--in precursor migration, neurite growth and branching in the developing nervous system--as well as a growth-restricting function during CNS maturation. The function of Nogo in the adult CNS is now understood to be that of a negative regulator of neuronal growth, leading to stabilization of the CNS wiring at the expense of extensive plastic rearrangements and regeneration after injury. In addition, Nogo proteins interact with various intracellular components and may have roles in the regulation of endoplasmic reticulum (ER) structure, processing of amyloid precursor protein and cell survival.
Collapse
Affiliation(s)
- Martin E Schwab
- University of Zurich and ETH, Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
44
|
Abstract
Although the role of myelin-derived Nogo-A as an inhibitor of axonal regeneration after CNS injury has been thoroughly described, its physiological function in the adult, uninjured CNS is less well known. We address this question in the hippocampus, where Nogo-A is expressed by neurons as well as oligodendrocytes. We used 21 d in vitro slice cultures of neonatal hippocampus where we applied different approaches to interfere with Nogo-A signaling and expression and analyze their effects on the dendritic and axonal architecture of pyramidal cells. Neutralization of Nogo-A by function-blocking antibodies induced a major alteration in the dendrite structure of hippocampal pyramidal neurons. Although spine density was not influenced by Nogo-A neutralization, spine type distribution was shifted toward a more immature phenotype. Axonal complexity and length were greatly increased. Nogo-A KO mice revealed a weak dendritic phenotype resembling the effect of the antibody treatment. To discriminate a possible cell-autonomous role of Nogo-A from an environmental, receptor-mediated function, we studied the effects of short hairpin RNA-induced knockdown of Nogo-A or NgR1, a prominent Nogo-A receptor, within individual neurons. Knockdown of Nogo-A reproduced part of the dendritic and none of the spine or axon alterations. However, downregulation of NgR1 replicated the dendritic, the axonal, and the spine alterations observed after Nogo-A neutralization. Together, our results demonstrate that Nogo-A plays a major role in stabilizing and maintaining the architecture of hippocampal pyramidal neurons. Mechanistically, although the majority of the activity of Nogo-A relies on a receptor-mediated mechanism involving NgR1, its cell-autonomous function plays a minor role.
Collapse
|
45
|
Pradhan AD, Case AM, Farrer RG, Tsai SY, Cheatwood JL, Martin JL, Kartje GL. Dendritic spine alterations in neocortical pyramidal neurons following postnatal neuronal Nogo-A knockdown. Dev Neurosci 2010; 32:313-20. [PMID: 20938157 DOI: 10.1159/000309135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 03/17/2010] [Indexed: 11/19/2022] Open
Abstract
The myelin-associated protein Nogo-A is a well-known inhibitor of axonal regeneration and compensatory plasticity, yet functions of neuronal Nogo-A are not as clear. The present study examined the effects of decreased levels of neuronal Nogo-A on dendritic spines of developing neocortical neurons. Decreased Nogo-A levels in these neurons resulted in lowered spine density and an increase in filopodial type protrusions. These results suggest a role for neuronal Nogo-A in maintaining a spine phenotype in neocortical pyramidal cells.
Collapse
Affiliation(s)
- A D Pradhan
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Ill., USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Cho S, Wood A, Bowlby MR. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 2010; 5:19-33. [PMID: 18615151 DOI: 10.2174/157015907780077105] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/07/2006] [Accepted: 01/01/2007] [Indexed: 11/22/2022] Open
Abstract
Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.
Collapse
Affiliation(s)
- Seongeun Cho
- Discovery Neuroscience, Wyeth Research, CN8000, Princeton, NJ 08543, USA.
| | | | | |
Collapse
|
47
|
Gillani RL, Tsai SY, Wallace DG, O'Brien TE, Arhebamen E, Tole M, Schwab ME, Kartje GL. Cognitive recovery in the aged rat after stroke and anti-Nogo-A immunotherapy. Behav Brain Res 2010; 208:415-24. [PMID: 20035795 PMCID: PMC2831114 DOI: 10.1016/j.bbr.2009.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/08/2009] [Accepted: 12/12/2009] [Indexed: 01/09/2023]
Abstract
We have previously shown that immunotherapy directed against the protein Nogo-A leads to recovery on a skilled forelimb reaching task in rats after sensorimotor cortex stroke, which correlated with axonal and dendritic plasticity. Here we investigated anti-Nogo-A immunotherapy as an intervention to improve performance on a spatial memory task in aged rats after stroke, and whether cognitive recovery was correlated with structural plasticity. Aged rats underwent a unilateral distal permanent middle cerebral artery occlusion and one week later were treated with an anti-Nogo-A or control antibody. Nine weeks post-stroke, treated rats and normal aged rats were tested on the Morris water maze task. Following testing rats were sacrificed and brains processed for the Golgi-Cox method. Hippocampal CA3 and CA1 pyramidal and dentate gyrus granule cells were examined for dendritic length and number of branch segments, and CA3 and CA1 pyramidal cells were examined for spine density and morphology. Anti-Nogo-A immunotherapy given one week following stroke in aged rats improved performance on the reference memory portion of the Morris water maze task. However, this improved performance was not correlated with structural changes in the hippocampal neurons examined. Our finding of improved performance on the Morris water maze in aged rats after stroke and treatment with anti-Nogo-A immunotherapy demonstrates the promising therapeutic potential for anti-Nogo-A immunotherapy to treat cognitive deficits after stroke. The identification of sites of axonal and dendritic plasticity in the aged brain after stroke and treatment with anti-Nogo-A immunotherapy is still under investigation.
Collapse
Affiliation(s)
- Rebecca L Gillani
- Neuroscience Program, Loyola University Chicago, Maywood, IL 60153, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Seira O, Gavín R, Gil V, Llorens F, Rangel A, Soriano E, del Río JA. Neurites regrowth of cortical neurons by GSK3beta inhibition independently of Nogo receptor 1. J Neurochem 2010; 113:1644-58. [PMID: 20374426 DOI: 10.1111/j.1471-4159.2010.06726.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lesioned axons do not regenerate in the adult mammalian CNS, owing to the over-expression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3beta (GSK3beta) and extracellular-related kinase (ERK) 1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3beta and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: (i) cerebellar granule cells and (ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3beta inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Finally, these regenerative effects were corroborated in the lesioned entorhino-hippocampal pathway in NgR1-/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections.
Collapse
Affiliation(s)
- Oscar Seira
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Mathis C, Schröter A, Thallmair M, Schwab ME. Nogo-a regulates neural precursor migration in the embryonic mouse cortex. ACTA ACUST UNITED AC 2010; 20:2380-90. [PMID: 20093372 PMCID: PMC2936797 DOI: 10.1093/cercor/bhp307] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although Nogo-A has been intensively studied for its inhibitory effect on axonal regeneration in the adult central nervous system, little is known about its function during brain development. In the embryonic mouse cortex, Nogo-A is expressed by radial precursor/glial cells and by tangentially migrating as well as postmigratory neurons. We studied radially migrating neuroblasts in wild-type and Nogo-A knockout (KO) mouse embryos. In vitro analysis showed that Nogo-A and its receptor components NgR, Lingo-1, TROY, and p75 are expressed in cells emigrating from embryonic forebrain–derived neurospheres. Live imaging revealed an increased cell motility when Nogo-A was knocked out or blocked with antibodies. Antibodies blocking NgR or Lingo-1 showed the same motility-enhancing effect supporting a direct role of surface Nogo-A on migration. Bromodeoxyuridine (BrdU) labeling of embryonic day (E)15.5 embryos demonstrated that Nogo-A influences the radial migration of neuronal precursors. At E17.5, the normal transient accumulation of radially migrating precursors within the subventricular zone was not detectable in the Nogo-A KO mouse cortex. At E19, migration to the upper cortical layers was disturbed. These findings suggest that Nogo-A and its receptor complex play a role in the interplay of adhesive and repulsive cell interactions in radial migration during cortical development.
Collapse
Affiliation(s)
- Carole Mathis
- Brain Research Institute, University of Zurich and Department of Biology, ETH Zurich, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
50
|
Gil V, Bichler Z, Lee JK, Seira O, Llorens F, Bribian A, Morales R, Claverol-Tinture E, Soriano E, Sumoy L, Zheng B, Del Río JA. Developmental expression of the oligodendrocyte myelin glycoprotein in the mouse telencephalon. ACTA ACUST UNITED AC 2009; 20:1769-79. [PMID: 19892785 DOI: 10.1093/cercor/bhp246] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The oligodendrocyte myelin glycoprotein is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the central nervous system. Attempts have been made to identify the functions of the myelin-associated inhibitory proteins (MAIPs) after axonal lesion or in neurodegeneration. However, the developmental roles of some of these proteins and their receptors remain elusive. Recent studies indicate that NgR1 and the recently discovered receptor PirB restrict cortical synaptic plasticity. However, the putative factors that trigger these effects are unknown. Because Nogo-A is mostly associated with the endoplasmic reticulum and myelin associated glycoprotein appears late during development, the putative participation of OMgp should be considered. Here, we examine the pattern of development of OMgp immunoreactive elements during mouse telencephalic development. OMgp immunoreactivity in the developing cortex follows the establishment of the thalamo-cortical barrel field. At the cellular level, we located OMgp neuronal membranes in dendrites and axons as well as in brain synaptosome fractions and axon varicosities. Lastly, the analysis of the barrel field in OMgp-deficient mice revealed that although thalamo-cortical connections were formed, their targeting in layer IV was altered, and numerous axons ectopically invaded layers II-III. Our data support the idea that early expressed MAIPs play an active role during development and point to OMgp participating in thalamo-cortical connections.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology laboratory, Institute for Bioengineering of Catalonia (IBEC), Barcelona E-08028, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|