1
|
Schneider J, Mitschke J, Bhat M, Vogele D, Schilling O, Reinheckel T, Heß L. Cathepsin D inhibition during neuronal differentiation selectively affects individual proteins instead of overall protein turnover. Biochimie 2024; 226:35-48. [PMID: 38552867 DOI: 10.1016/j.biochi.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Cathepsin D (CTSD) is a lysosomal aspartic protease and its inherited deficiency causes a severe pediatric neurodegenerative disease called neuronal ceroid lipofuscinosis (NCL) type 10. The lysosomal dysfunction in the affected patients leads to accumulation of undigested lysosomal cargo especially in none-dividing cells, such as neurons, resulting in death shortly after birth. To explore which proteins are mainly affected by the lysosomal dysfunction due to CTSD deficiency, Lund human mesencephalic (LUHMES) cells, capable of inducible dopaminergic neuronal differentiation, were treated with Pepstatin A. This inhibitor of "acidic" aspartic proteases caused accumulation of acidic intracellular vesicles in differentiating LUHMES cells. Pulse-chase experiments involving stable isotope labelling with amino acids in cell culture (SILAC) with subsequent mass-spectrometric protein identification and quantification were performed. By this approach, we studied the degradation and synthesis rates of 695 and 680 proteins during early and late neuronal LUHMES differentiation, respectively. Interestingly, lysosomal bulk proteolysis was not altered upon Pepstatin A treatment. Instead, the protease inhibitor selectively changed the turnover of individual proteins. Especially proteins belonging to the mitochondrial energy supply system were differentially degraded during early and late neuronal differentiation indicating a high energy demand as well as stress level in LUHMES cells treated with Pepstatin A.
Collapse
Affiliation(s)
- Johannes Schneider
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Julia Mitschke
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, 79104, Freiburg, Germany; German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Mahima Bhat
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Daniel Vogele
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany; Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver Schilling
- German Cancer Consortium (DKTK), partner site Freiburg, 79104, Freiburg, Germany; German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany; Centre for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, 79104, Freiburg, Germany; German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Centre for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Lisa Heß
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
2
|
Kolter J, Henneke P, Groß O, Kierdorf K, Prinz M, Graf L, Schwemmle M. Paradoxical immunodeficiencies-When failures of innate immunity cause immunopathology. Eur J Immunol 2022; 52:1419-1430. [PMID: 35551651 DOI: 10.1002/eji.202149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Abstract
Innate immunity facilitates immediate defense against invading pathogens throughout all organs and tissues but also mediates tissue homeostasis and repair, thereby playing a key role in health and development. Recognition of pathogens is mediated by germline-encoded PRRs. Depending on the specific PRRs triggered, ligand binding leads to phagocytosis and pathogen killing and the controlled release of immune-modulatory factors such as IFNs, cytokines, or chemokines. PRR-mediated and other innate immune responses do not only prevent uncontrolled replication of intruding pathogens but also contribute to the tailoring of an effective adaptive immune response. Therefore, hereditary or acquired immunodeficiencies impairing innate responses may paradoxically cause severe immunopathology in patients. This can occur in the context of, but also independently of an increased microbial burden. It can include pathogen-dependent organ damage, autoinflammatory syndromes, and neurodevelopmental or neurodegenerative diseases. Here, we discuss the current state of research of several different such immune paradoxes. Understanding the underlying mechanisms causing immunopathology as a consequence of failures of innate immunity may help to prevent life-threatening disease.
Collapse
Affiliation(s)
- Julia Kolter
- Faculty of Medicine, Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Faculty of Medicine, Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Laura Graf
- Faculty of Medicine, Institute of Virology, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Faculty of Medicine, Institute of Virology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Liu J, Bassal M, Schlichting S, Braren I, Di Spiezio A, Saftig P, Bartsch U. Intravitreal gene therapy restores the autophagy-lysosomal pathway and attenuates retinal degeneration in cathepsin D-deficient mice. Neurobiol Dis 2022; 164:105628. [PMID: 35033660 DOI: 10.1016/j.nbd.2022.105628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Loss of vision due to progressive retinal degeneration is a hallmark of neuronal ceroid lipofuscinoses (NCL), a group of fatal neurodegenerative lysosomal storage diseases. Enzyme substitution therapies represent promising treatment options for NCLs caused by dysfunctions of soluble lysosomal enzymes. Here, we compared the efficacy of a cell-based enzyme substitution strategy and a gene therapy approach to attenuate the retinal pathology in cathepsin D- (CTSD) deficient mice, an animal model of CLN10 disease. Levels of enzymatically active CTSD in mutant retinas were significantly higher after an adeno-associated virus vector-mediated CTSD transfer to retinal glial cells and retinal pigment epithelial cells than after intravitreal transplantations of a CTSD overexpressing clonal neural stem cell line. In line with this finding, the gene therapy treatment restored the disrupted autophagy-lysosomal pathway more effectively than the cell-based approach, as indicated by a complete clearance of storage, significant attenuation of lysosomal hypertrophy, and normalized levels of the autophagy marker sequestosome 1/p62 and microtubule-associated protein 1 light chain 3-II. While the cell-based treatment did not prevent the rapidly progressing loss of various retinal cell types, the gene therapy approach markedly attenuated retinal degeneration as demonstrated by a pronounced rescue of photoreceptor cells and rod bipolar cells.
Collapse
Affiliation(s)
- Junling Liu
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mahmoud Bassal
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefanie Schlichting
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ingke Braren
- Vector Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
4
|
Bassal M, Liu J, Jankowiak W, Saftig P, Bartsch U. Rapid and Progressive Loss of Multiple Retinal Cell Types in Cathepsin D-Deficient Mice-An Animal Model of CLN10 Disease. Cells 2021; 10:696. [PMID: 33800998 PMCID: PMC8003850 DOI: 10.3390/cells10030696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Vision loss is among the characteristic symptoms of neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative lysosomal storage disorder. Here, we performed an in-depth analysis of retinal degeneration at the molecular and cellular levels in mice lacking the lysosomal aspartyl protease cathepsin D, an animal model of congenital CLN10 disease. We observed an early-onset accumulation of storage material as indicated by elevated levels of saposin D and subunit C of the mitochondrial ATP synthase. The accumulation of storage material was accompanied by reactive astrogliosis and microgliosis, elevated expression of the autophagy marker sequestosome 1/p62 and a dysregulated expression of several lysosomal proteins. The number of cone photoreceptor cells was reduced as early as at postnatal day 5. At the end stage of the disease, the outer nuclear layer was almost atrophied, and all cones were lost. A significant loss of rod and cone bipolar cells, amacrine cells and ganglion cells was found at advanced stages of the disease. Results demonstrate that cathepsin D deficiency results in an early-onset and rapidly progressing retinal dystrophy that involves all retinal cell types. Data of the present study will serve as a reference for studies aimed at developing treatments for retinal degeneration in CLN10 disease.
Collapse
Affiliation(s)
- Mahmoud Bassal
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Junling Liu
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Wanda Jankowiak
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany;
| | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| |
Collapse
|
5
|
Nakanishi H. Cathepsin regulation on microglial function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140465. [PMID: 32526473 DOI: 10.1016/j.bbapap.2020.140465] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Microglia, the resident mononuclear phagocyte population in the brain, have long been implicated in the pathology of neurodegenerative age-associated disorders. However, activated microglia have now been identified as homeostatic keepers in the brain, because they are involved in the initiation and resolution of neuropathology. The complex roles of activated microglia appear to be linked to change from inflammatory and neurotoxic to anti-inflammatory and neuroprotective phenotypes. Increased expression and secretion of various cathepsins support roles of activated microglia in chronic neuroinflammation, the neurotoxic M1-like polarization and neuronal death. Moreover, changes in expression and localization of microglial cathepsin B play a critical role in the acceleration of the brain aging. Beyond the role as brain-resident macrophages, many lines of evidence have shown that microglia have essential roles in the maturation and maintenance of neuronal circuits in the developing and adult brain. Cathepsin S secreted from microglia induces the diurnal variation of spine density of cortical neurons though proteolytic modification of peri-synaptic extracellular matrix molecules. In this review, I highlight the emerging roles of cathepsins that support the roles of microglia in both normal healthy and pathological brains. In addition, I discuss cathepsin inhibitors as potential therapeutic targets for brain disorders.
Collapse
Affiliation(s)
- Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan.
| |
Collapse
|
6
|
Moreno-García A, Kun A, Calero O, Medina M, Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci 2018; 12:464. [PMID: 30026686 PMCID: PMC6041410 DOI: 10.3389/fnins.2018.00464] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Despite aging being by far the greatest risk factor for highly prevalent neurodegenerative disorders, the molecular underpinnings of age-related brain changes are still not well understood, particularly the transition from normal healthy brain aging to neuropathological aging. Aging is an extremely complex, multifactorial process involving the simultaneous interplay of several processes operating at many levels of the functional organization. The buildup of potentially toxic protein aggregates and their spreading through various brain regions has been identified as a major contributor to these pathologies. One of the most striking morphologic changes in neurons during normal aging is the accumulation of lipofuscin (LF) aggregates, as well as, neuromelanin pigments. LF is an autofluorescent lipopigment formed by lipids, metals and misfolded proteins, which is especially abundant in nerve cells, cardiac muscle cells and skin. Within the Central Nervous System (CNS), LF accumulates as aggregates, delineating a specific senescence pattern in both physiological and pathological states, altering neuronal cytoskeleton and cellular trafficking and metabolism, and being associated with neuronal loss, and glial proliferation and activation. Traditionally, the accumulation of LF in the CNS has been considered a secondary consequence of the aging process, being a mere bystander of the pathological buildup associated with different neurodegenerative disorders. Here, we discuss recent evidence suggesting the possibility that LF aggregates may have an active role in neurodegeneration. We argue that LF is a relevant effector of aging that represents a risk factor or driver for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Alejandra Kun
- Biochemistry Section, Science School, Universidad de la República, Montevideo, Uruguay
- Protein and Nucleic Acids Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Olga Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Miguel Medina
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
7
|
Lowry JR, Klegeris A. Emerging roles of microglial cathepsins in neurodegenerative disease. Brain Res Bull 2018; 139:144-156. [DOI: 10.1016/j.brainresbull.2018.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/23/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023]
|
8
|
Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease. Free Radic Biol Med 2018; 114:40-51. [PMID: 28988799 PMCID: PMC5748263 DOI: 10.1016/j.freeradbiomed.2017.10.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS) have an increased risk of early-onset Alzheimer's Disease (AD), largely owing to a triplication of the APP gene, located on chromosome 21. In DS and AD, defects in endocytosis and lysosomal function appear at the earliest stages of disease development and progress to widespread failure of intraneuronal waste clearance, neuritic dystrophy and neuronal cell death. The same genetic factors that cause or increase AD risk are also direct causes of endosomal-lysosomal dysfunction, underscoring the essential partnership between this dysfunction and APP metabolites in AD pathogenesis. The appearance of APP-dependent endosome anomalies in DS beginning in infancy and evolving into the full range of AD-related endosomal-lysosomal deficits provides a unique opportunity to characterize the earliest pathobiology of AD preceding the classical neuropathological hallmarks. Facilitating this characterization is the authentic recapitulation of this endosomal pathobiology in peripheral cells from people with DS and in trisomy mouse models. Here, we review current research on endocytic-lysosomal dysfunction in DS and AD, the emerging importance of APP/βCTF in initiating this dysfunction, and the potential roles of additional trisomy 21 genes in accelerating endosomal-lysosomal impairment in DS. Collectively, these studies underscore the growing value of investigating DS to probe the biological origins of AD as well as to understand and ameliorate the developmental disability of DS.
Collapse
Affiliation(s)
- Daniel J Colacurcio
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anna Pensalfini
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
9
|
Allergic Inflammation Leads to Neuropathic Pain via Glial Cell Activation. J Neurosci 2017; 36:11929-11945. [PMID: 27881779 DOI: 10.1523/jneurosci.1981-16.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
Abstract
Allergic and atopic disorders have increased over the past few decades and have been associated with neuropsychiatric conditions, such as autism spectrum disorder and asthmatic amyotrophy. Myelitis presenting with neuropathic pain can occur in patients with atopic disorder; however, the relationship between allergic inflammation and neuropathic pain, and the underlying mechanism, remains to be established. We studied whether allergic inflammation affects the spinal nociceptive system. We found that mice with asthma, atopic dermatitis, or atopic diathesis had widespread and significantly more activated microglia and astroglia in the spinal cord than those without atopy, and displayed tactile allodynia. Microarray analysis of isolated microglia revealed a dysregulated phenotype showing upregulation of M1 macrophage markers and downregulation of M2 markers in atopic mice. Among the cell surface protein genes, endothelin receptor type B (EDNRB) was most upregulated. Immunohistochemical analysis revealed that EDNRB expression was enhanced in microglia and astroglia, whereas endothelin-1, an EDNRB ligand, was increased in serum, lungs, and epidermis of atopic mice. No EDNRA expression was found in the spinal cord. Expression of FBJ murine osteosarcoma viral oncogene homolog B was significantly higher in the dorsal horn neurons of asthma mice than nonatopic mice. The EDNRB antagonist BQ788 abolished glial and neural activation and allodynia. We found increased serum endothelin-1 in atopic patients with myelitis and neuropathic pain, and activation of spinal microglia and astroglia with EDNRB upregulation in an autopsied case. These results suggest that allergic inflammation induces diffuse glial activation, influencing the nociceptive system via the EDNRB pathway. SIGNIFICANCE STATEMENT The prevalence of allergic disorders has markedly increased over the past few decades. Allergic disorders are associated with neuropsychiatric conditions; however, the relationship between allergic inflammation and CNS complications is unknown. A peculiar myelitis presenting with persistent neuropathic pain has been reported in patients with allergic disorders. We studied how atopy exerts substantial influence on the nociceptive system. We found that mice with allergic disorders had severe allodynia with activated astroglia and microglia, and showed marked upregulation of endothelin-1 (ET-1) receptor type B (EDNRB) in the spinal cord. A selective EDNRB antagonist prevented allodynia and glial activation. Our findings suggest a novel mechanism whereby atopy induces glial activation and neuropathic pain via an ET-1/EDNRB pathway.
Collapse
|
10
|
Vidoni C, Follo C, Savino M, Melone MAB, Isidoro C. The Role of Cathepsin D in the Pathogenesis of Human Neurodegenerative Disorders. Med Res Rev 2016; 36:845-70. [DOI: 10.1002/med.21394] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Miriam Savino
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Mariarosa A. B. Melone
- Division of Neurology, Department of Clinic and Experimental Medicine and Surgery; Second University of Naples; Naples Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| |
Collapse
|
11
|
Redmann M, Darley-Usmar V, Zhang J. The Role of Autophagy, Mitophagy and Lysosomal Functions in Modulating Bioenergetics and Survival in the Context of Redox and Proteotoxic Damage: Implications for Neurodegenerative Diseases. Aging Dis 2016; 7:150-62. [PMID: 27114848 PMCID: PMC4809607 DOI: 10.14336/ad.2015.0820] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Redox and proteotoxic stress contributes to age-dependent accumulation of dysfunctional mitochondria and protein aggregates, and is associated with neurodegeneration. The free radical theory of aging inspired many studies using reactive species scavengers such as alpha-tocopherol, ascorbate and coenzyme Q to suppress the initiation of oxidative stress. However, clinical trials have had limited success in the treatment of neurodegenerative diseases. We ascribe this to the emerging literature which suggests that the oxidative stress hypothesis does not encompass the role of reactive species in cell signaling and therefore the interception with reactive species with antioxidant supplementation may result in disruption of redox signaling. In addition, the accumulation of redox modified proteins or organelles cannot be reversed by oxidant intercepting antioxidants and must then be removed by alternative mechanisms. We have proposed that autophagy serves this essential function in removing damaged or dysfunctional proteins and organelles thus preserving neuronal function and survival. In this review, we will highlight observations regarding the impact of autophagy regulation on cellular bioenergetics and survival in response to reactive species or reactive species generating compounds, and in response to proteotoxic stress.
Collapse
Affiliation(s)
- Matthew Redmann
- Center for Free Radical Biology,; Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology,; Department of Pathology, University of Alabama at Birmingham
| | - Jianhua Zhang
- Center for Free Radical Biology,; Department of Pathology, University of Alabama at Birmingham,; Department of Veterans Affairs, Birmingham VA Medical Center, Birmingham, Alabama 35294, USA
| |
Collapse
|
12
|
Ketscher A, Ketterer S, Dollwet-Mack S, Reif U, Reinheckel T. Neuroectoderm-specific deletion of cathepsin D in mice models human inherited neuronal ceroid lipofuscinosis type 10. Biochimie 2015; 122:219-26. [PMID: 26232697 DOI: 10.1016/j.biochi.2015.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/22/2015] [Indexed: 01/13/2023]
Abstract
Cathepsin D (Ctsd) is a ubiquitously expressed aspartic protease functioning primarily in the acidic endosomal/lysosomal cell compartment. At an age of 26 ± 1 days, mice with constitutive Ctsd deficiency (Ctsd(-/-)) die from a neurodegenerative lysosomal storage disease equivalent to the congenital neuronal ceroid lipofuscinosis (NCL) type 10 in humans. In addition to neurodegeneration, Ctsd(-/-) mice exhibit a loss of CD4(+)/CD8(+)-double-positive thymocytes and an atrophy of the intestinal mucosa. To date, it is not understood if and how these phenotypes are triggering each other. In addition, the cell type causing initiation of NCL in Ctsd(-/-) mice has not been identified yet. To investigate the tissue- and cell type-specific functions of Ctsd, we generated a novel conditional Ctsd allele by flanking the second exon with loxP sites. We compared a ubiquitous Ctsd deletion with a deletion of the protease by a Nestin-promoter controlled Cre-recombinase expression in cells of neuroectodermal origin, e.g. in neurons and astroglia, but not in microglia. First, we confirmed absence of Ctsd in the respective cell- and tissue types. The neuroectoderm specific knock-out mice survived about 5.5 days longer than the mice with ubiquitous Ctsd deletion, which was in line with the progress in brain histopathology. Atrophies of thymus and small intestine were delayed to similar extend. The conditional Ctsd knock-out mouse model established in this study not only demonstrates that this type of NCL is initiated by cells of neuroectodermal origin, but will also help to further study tissue-specific functions of Ctsd in vivo.
Collapse
Affiliation(s)
- Anett Ketscher
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Stephanie Ketterer
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; German Cancer Consortium (DKTK), D-79106 Freiburg, Germany; German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Susanne Dollwet-Mack
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Ulrike Reif
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; German Cancer Consortium (DKTK), D-79106 Freiburg, Germany; German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany.
| |
Collapse
|
13
|
Okada R, Wu Z, Zhu A, Ni J, Zhang J, Yoshimine Y, Peters C, Saftig P, Nakanishi H. Cathepsin D deficiency induces oxidative damage in brain pericytes and impairs the blood-brain barrier. Mol Cell Neurosci 2014; 64:51-60. [PMID: 25496868 DOI: 10.1016/j.mcn.2014.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 01/03/2023] Open
Abstract
Recent evidence suggests that peripheral blood mononuclear cells (PBMCs) contribute to the pathogenesis of neuropathological changes in patients with neuronal ceroid lipofuscinosis (NCL) and lysosomal storage diseases. In order to examine the possible increase in the permeability of the blood-brain-barrier (BBB) and resultant infiltration of PBMCs due to cathepsin D (CatD) deficiency, a process underlying the onset of congenital NCL, we examined structural changes in brain vessels in CatD-/- mice. Consequently, the mean diameter of the brain vessels in the cerebral cortex on postnatal day 24 (P24) was significantly larger in CatD-/- mice than in wild-type mice. Furthermore, the mean number of brain pericytes in CatD-/- mice began to decline significantly on P16 and almost disappeared on P24, and oxidative DNA damage was first detected in brain pericytes on P12. Examinations with electron microscopy revealed that brain pericytes were laden with dense granular bodies, cytoplasmic vacuoles and lipid droplets. The infiltration of PBMCs characterized by segmented nucleus laden with dense granular bodies was also noted in the cerebral cortex of CatD-/- mice. When primary cultured microglia prepared from enhanced green fluorescent protein (GFP)-expressing transgenic rats were injected into the common carotid artery, GFP-positive microglia were detected in the brain parenchyma of CatD-/-, but not wild-type, mice. Moreover, pepstatin A, a specific aspartic protease inhibitor, induced mitochondria-derived reactive oxygen species (ROS) production in the isolated brain pericytes, which decreased the cell viability. These observations suggest that increased lysosomal storage due to CatD deficiency causes oxidative damage in brain pericytes, subsequently resulting in an increased vessel diameter, enhanced permeability of the BBB and the infiltration of PBMCs. Therefore, protecting brain pericytes against lysosomal storage-induced oxidative stress may represent an alternative treatment strategy for congenital NCL.
Collapse
Affiliation(s)
- Ryo Okada
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Aiqin Zhu
- Institution of Geriatric Qinghai Provincial Hospital, Shining, 810007, China
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Jingqi Zhang
- Division of Oral Biological Sciences, Department of Molecular Cell Biology & Oral Anatomy, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshito Yoshimine
- Department of Endodontology and Operative Dentistry, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Christoph Peters
- Instutute für Molekuläre Medizin und Zellforschung, Albert-Ludwigs-Universität, Freiburg D-79104, Germany
| | - Paul Saftig
- Department of Biochemistry, University of Kiel, D-24098 Kiel, Germany
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
14
|
Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity. NANOMATERIALS 2014; 4:548-582. [PMID: 28344236 PMCID: PMC5304698 DOI: 10.3390/nano4030548] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/23/2014] [Accepted: 06/23/2014] [Indexed: 12/27/2022]
Abstract
The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s) still remain(s) unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.
Collapse
|
15
|
Loss of CB1 receptors leads to decreased cathepsin D levels and accelerated lipofuscin accumulation in the hippocampus. Mech Ageing Dev 2013; 134:391-9. [PMID: 23954857 DOI: 10.1016/j.mad.2013.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/10/2013] [Accepted: 08/03/2013] [Indexed: 02/08/2023]
Abstract
Early onset of age-related changes in the brain of cannabinoid 1 receptor knockout (Cnr1(-/-)) mice suggests that cannabinoid 1 (CB1) receptor activity significantly influences the progression of brain aging. In the present study we show that lack of CB1 receptors leads to a significant increase in lipofuscin accumulation and a reduced expression and activity of cathepsin D, lysosomal protease implicated in the degradation of damaged macromolecules, in the hippocampus of 12-month-old mice. The impaired clearance of damaged macromolecules due to the low cathepsin D levels and not enhanced oxidative stress may be responsible for the lipofuscin accumulation because macromolecule oxidation levels were comparable between the genotypes within the same age group. The altered levels of autophagy markers p62 and LC3-II suggest that autophagy is upregulated in CB1 knockout mice. Increased autophagic flux in the absence of CB1 receptors is probably a compensatory mechanism to partially counteract decreased lysosomal degradation capacity. Together, these results suggest that CB1 receptor activity affects lysosomal activity, degradation of damaged macromolecules and thus it may influence the course and onset of brain aging.
Collapse
|
16
|
Deng YN, Shi J, Liu J, Qu QM. Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction of autophagy. Neurochem Int 2013; 63:1-9. [DOI: 10.1016/j.neuint.2013.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 01/30/2023]
|
17
|
Huang Q, Huang C, Zhao Y, Wang B, Ren J, Li N, Li J. LPS-stimulated RAW264.7 macrophage CAT-2–mediated l-arginine uptake and nitric oxide biosynthesis is inhibited by omega fatty acid lipid emulsion. J Surg Res 2013; 179:e211-7. [DOI: 10.1016/j.jss.2012.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 12/01/2022]
|
18
|
Janda E, Isidoro C, Carresi C, Mollace V. Defective autophagy in Parkinson's disease: role of oxidative stress. Mol Neurobiol 2012; 46:639-61. [PMID: 22899187 DOI: 10.1007/s12035-012-8318-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a paradigmatic example of neurodegenerative disorder with a critical role of oxidative stress in its etiopathogenesis. Genetic susceptibility factors of PD, such as mutations in Parkin, PTEN-induced kinase 1, and DJ-1 as well as the exposure to pesticides and heavy metals, both contribute to altered redox balance and degeneration of dopaminergic neurons in the substantia nigra. Dysregulation of autophagy, a lysosomal-driven process of self degradation of cellular organelles and protein aggregates, is also implicated in PD and PD-related mutations, and environmental toxins deregulate autophagy. However, experimental evidence suggests a complex and ambiguous role of autophagy in PD since either impaired or abnormally upregulated autophagic flux has been shown to cause neuronal loss. Finally, it is generally believed that oxidative stress is a strong proautophagic stimulus. However, some evidence coming from neurobiology as well as from other fields indicate an inhibitory role of reactive oxygen species and reactive nitrogen species on the autophagic machinery. This review examines the scientific evidence supporting different concepts on how autophagy is dysregulated in PD and attempts to reconcile apparently contradictory views on the role of oxidative stress in autophagy regulation. The complex relationship between autophagy and oxidative stress is also considered in the context of the ongoing search for a novel PD therapy.
Collapse
Affiliation(s)
- Elzbieta Janda
- Department of Health Sciences, University Magna Graecia, Edificio Bioscienze, viale Europa, Campus Salvatore Venuta, Germaneto, 88100 Catanzaro, Italy.
| | | | | | | |
Collapse
|
19
|
Abstract
Reactive oxygen and nitrogen species change cellular responses through diverse mechanisms that are now being defined. At low levels, they are signalling molecules, and at high levels, they damage organelles, particularly the mitochondria. Oxidative damage and the associated mitochondrial dysfunction may result in energy depletion, accumulation of cytotoxic mediators and cell death. Understanding the interface between stress adaptation and cell death then is important for understanding redox biology and disease pathogenesis. Recent studies have found that one major sensor of redox signalling at this switch in cellular responses is autophagy. Autophagic activities are mediated by a complex molecular machinery including more than 30 Atg (AuTophaGy-related) proteins and 50 lysosomal hydrolases. Autophagosomes form membrane structures, sequester damaged, oxidized or dysfunctional intracellular components and organelles, and direct them to the lysosomes for degradation. This autophagic process is the sole known mechanism for mitochondrial turnover. It has been speculated that dysfunction of autophagy may result in abnormal mitochondrial function and oxidative or nitrative stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is controlled, and the impact of autophagic dysfunction on cellular oxidative stress. The present review highlights recent studies on redox signalling in the regulation of autophagy, in the context of the basic mechanisms of mitophagy. Furthermore, we discuss the impact of autophagy on mitochondrial function and accumulation of reactive species. This is particularly relevant to degenerative diseases in which oxidative stress occurs over time, and dysfunction in both the mitochondrial and autophagic pathways play a role.
Collapse
|
20
|
Mechanism mediating oligomeric Aβ clearance by naïve primary microglia. Neurobiol Dis 2011; 42:221-30. [DOI: 10.1016/j.nbd.2011.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 01/02/2011] [Indexed: 12/15/2022] Open
|
21
|
Yamasaki R, Tanaka M, Fukunaga M, Tateishi T, Kikuchi H, Motomura K, Matsushita T, Ohyagi Y, Kira JI. Restoration of microglial function by granulocyte-colony stimulating factor in ALS model mice. J Neuroimmunol 2010; 229:51-62. [PMID: 20659772 DOI: 10.1016/j.jneuroim.2010.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/14/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
Abstract
We studied the effects of G-CSF on microglial reactions in mutant SOD1 (mSOD1)-Tg (G93A) ALS model mice. Following hypoglossal axotomy, the numbers of neurons and microglia expressing GDNF were significantly lower in mSOD1-Tg mice than in non-transgenic (NTG) littermates. This decrease in the number of neurons after axotomy and a decrease in the number of large myelinated axons in mSOD1-Tg mice over the disease course were improved by G-CSF, which also increased microglial recruitment. Impaired migration of cultured mSOD1-Tg microglia to MCP-1 was recovered following G-CSF treatment. Restoration of microglial responses by G-CSF may contribute to its neuroprotective effects.
Collapse
Affiliation(s)
- Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shevtsova Z, Garrido M, Weishaupt J, Saftig P, Bähr M, Lühder F, Kügler S. CNS-expressed cathepsin D prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:271-9. [PMID: 20489146 DOI: 10.2353/ajpath.2010.091267] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deficiency in Cathepsin D (CtsD), the major cellular lysosomal aspartic proteinase, causes the congenital form of neuronal ceroid lipofuscinoses (NCLs). CtsD-deficient mice show severe visceral lesions like lymphopenia in addition to their central nervous system (CNS) phenotype of ceroid accumulation, microglia activation, and seizures. Here we demonstrate that re-expression of CtsD within the CNS but not re-expression of CtsD in visceral organs prevented both central and visceral pathologies of CtsD(-/-) mice. Our results suggest that CtsD was substantially secreted from CNS neurons and drained from CNS to periphery via lymphatic routes. Through this drainage, CNS-expressed CtsD acts as an important modulator of immune system maintenance and peripheral tissue homeostasis. These effects depended on enzymatic activity and not on proposed functions of CtsD as an extracellular ligand. Our results furthermore demonstrate that the prominent accumulation of ceroid/lipofuscin and activation of microglia in brains of CtsD(-/-) are not lethal factors but can be tolerated by the rodent CNS.
Collapse
Affiliation(s)
- Zinayida Shevtsova
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Nakanishi H, Wu Z. Microglia-aging: Roles of microglial lysosome- and mitochondria-derived reactive oxygen species in brain aging. Behav Brain Res 2009; 201:1-7. [DOI: 10.1016/j.bbr.2009.02.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/02/2009] [Indexed: 01/23/2023]
|
24
|
Pivtoraiko VN, Stone SL, Roth KA, Shacka JJ. Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death. Antioxid Redox Signal 2009; 11:481-96. [PMID: 18764739 PMCID: PMC2933567 DOI: 10.1089/ars.2008.2263] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lysosomes critically regulate the pH-dependent catabolism of extracellular and intracellular macromolecules delivered from the endocytic/heterophagy and autophagy pathways, respectively. The importance of lysosomes to cell survival is underscored not only by their unique ability effectively to degrade metalloproteins and oxidatively damaged macromolecules, but also by the distinct potential for induction of both caspase-dependent and -independent cell death with a compromise in the integrity of lysosome function. Oxidative stress and free radical damage play a principal role in cell death induced by lysosome dysfunction and may be linked to several upstream and downstream stimuli, including alterations in the autophagy degradation pathway, inhibition of lysosome enzyme function, and lysosome membrane damage. Neurons are sensitive to lysosome dysfunction, and the contribution of oxidative stress and free radical damage to lysosome dysfunction may contribute to the etiology of neurodegenerative disease. This review provides a broad overview of lysosome function and explores the contribution of oxidative stress and autophagy to lysosome dysfunction-induced neuron death. Putative signaling pathways that either induce lysosome dysfunction or result from lysosome dysfunction or both, and the role of oxidative stress, free radical damage, and lysosome dysfunction in pediatric lysosomal storage disorders (neuronal ceroid lipofuscinoses or NCL/Batten disease) and in Alzheimer's disease are emphasized.
Collapse
Affiliation(s)
- Violetta N Pivtoraiko
- Department of Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
25
|
Ding W, Hudson LG, Sun X, Feng C, Liu KJ. As(III) inhibits ultraviolet radiation-induced cyclobutane pyrimidine dimer repair via generation of nitric oxide in human keratinocytes. Free Radic Biol Med 2008; 45:1065-72. [PMID: 18621123 PMCID: PMC2583127 DOI: 10.1016/j.freeradbiomed.2008.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/17/2008] [Accepted: 06/18/2008] [Indexed: 11/26/2022]
Abstract
Inorganic arsenic enhances skin tumor formation when combined with other carcinogens including ultraviolet radiation (UVR). The inhibition of DNA damage repair by arsenic has been hypothesized to contribute to the cocarcinogenic activities of arsenic observed in vivo. Cyclobutane pyrimidine dimers (CPDs) are an important mutagenic UVR photoproduct and implicated in the genesis of nonmelanoma skin cancer. The current study demonstrates that low concentrations of arsenite (As(III)) inhibit UVR-induced CPD repair in a human keratinocyte cell line via nitric oxide (NO) and inducible nitric oxide synthase (iNOS). Following As(III) treatment, NO production and iNOS expression are elevated. Little is known about regulation of iNOS by As(III) and further investigations indicated that p38 mitogen-activated protein kinase (p38 MAPK) and NF-kappaB are required for As(III) induction of iNOS expression. This As(III)-stimulated signaling cascade was involved in inhibition of UVR-induced CPD repair as disruption of p38 MAPK activity and NF-kappaB nuclear translocation counteracted the effects of As(III) on CPD repair. Selective inhibition of iNOS ameliorated As(III) inhibition of CPD repair, thereby suggesting that iNOS is a downstream mediator of As(III) activity. These findings provide evidence that an As(III)-stimulated signal transduction cascade culminating in elevated iNOS expression and NO generation is an underlying mechanism for inhibition of UVR-induced DNA damage repair by arsenic.
Collapse
Affiliation(s)
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA, 87131
| | - Xi Sun
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA, 87131
| | - Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA, 87131
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA, 87131
| |
Collapse
|
26
|
Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. J Neurosci 2008; 28:8624-34. [PMID: 18716221 DOI: 10.1523/jneurosci.1957-08.2008] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is highly susceptible to injury induced by reactive oxygen species (ROS). During aging, mutations of mtDNA accumulate to induce dysfunction of the respiratory chain, resulting in the enhanced ROS production. Therefore, age-dependent memory impairment may result from oxidative stress derived from the respiratory chain. Mitochondrial transcription factor A (TFAM) is now known to have roles not only in the replication of mtDNA but also its maintenance. We herein report that an overexpression of TFAM in HeLa cells significantly inhibited rotenone-induced mitochondrial ROS generation and the subsequent NF-kappaB (nuclear factor-kappaB) nuclear translocation. Furthermore, TFAM transgenic (TG) mice exhibited a prominent amelioration of an age-dependent accumulation of lipid peroxidation products and a decline in the activities of complexes I and IV in the brain. In the aged TG mice, deficits of the motor learning memory, the working memory, and the hippocampal long-term potentiation (LTP) were also significantly improved. The expression level of interleukin-1beta (IL-1beta) and mtDNA damages, which were predominantly found in microglia, significantly decreased in the aged TG mice. The IL-1beta amount markedly increased in the brain of the TG mice after treatment with lipopolysaccharide (LPS), whereas its mean amount was significantly lower than that of the LPS-treated aged wild-type mice. At the same time, an increased mtDNA damage in microglia and an impaired hippocampal LTP were also observed in the LPS-treated aged TG mice. Together, an overexpression of TFAM is therefore considered to ameliorate age-dependent impairment of the brain functions through the prevention of oxidative stress and mitochondrial dysfunctions in microglia.
Collapse
|