1
|
Ren HL, Zhao XY, Di KQ, Li LH, Hao EY, Chen H, Zhou RY, Nie CS, Wang DH. Eggshell translucency in late-phase laying hens and its effect on egg quality and physiological indicators. Front Vet Sci 2023; 10:1133752. [PMID: 37275613 PMCID: PMC10233096 DOI: 10.3389/fvets.2023.1133752] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Eggshell translucency severely affects external egg quality, and variations in the eggshell or eggshell membrane are considered the structural basis of the trait. Research has shown that 1.85% additional mixed fatty acids in the diet would greatly decrease the occurrence of eggshell translucency. Only a few studies have examined the phenotypic regularity of eggshell translucency with the increasing age of hens. Therefore, two strains, 1139 Rhode Island Red-White (RIR-White) and 836 Dwarf Layer-White (DWL-White), were used, and from each strain, 30 hens each that consecutively laid translucent or opaque eggs at 67 wks of age were selected. Subsequently, eggshell translucency, internal quality and external quality of eggs, and total cholesterol, albumin, calcium binding protein and other physiological indicators related to lipid, lipoprotein, and calcium metabolisms at the 75th, 79th, and 83rd wks of age in the late phase of the laying cycle were determined. Results: (1) In terms of flocks, for both strains, the translucency scores of the translucent groups were significantly higher than those of the opaque groups (P < 0.05); in terms of individuals, 81.1% RIR-White and 82.8% DWL-White hens consecutively laid eggs of the same or similar translucency, indicating the stability of the trait with increasing hen age; (2) In RIR-White, the eggshell strength of the translucent group at 75 weeks was significantly higher than that of the opaque group (P < 0.05); in DWL-White, the eggshell membrane thickness of the translucent group at the 75th and 83rd weeks was significantly lower than that of the opaque group (P < 0.05); (3) Compared to the opaque groups, the translucent groups had lower total cholesterol content in both RIR-White and DWL-White, lower albumin content in DWL-White at the 79th weeks (P < 0.05), and higher calcium-binding protein (CALB1) in RIR-White at the 83rd weeks (P < 0.05). In summary, this study illustrates the stability of eggshell translucency in late-phase laying hens and provides a reference of physiological indicators for exploring the formation of translucent eggs.
Collapse
Affiliation(s)
- He-Ling Ren
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiao-Yu Zhao
- Baoding Xingrui Agriculture and Animal Husbandry Development Co., Ltd., Baoding, China
| | - Ke-Qian Di
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Lan-Hui Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Er-Ying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Rong-Yan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Chang-Sheng Nie
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - De-He Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
2
|
Yazdanpanah Moghadam E, Sonenberg N, Packirisamy M. Microfluidic Wound-Healing Assay for ECM and Microenvironment Properties on Microglia BV2 Cells Migration. BIOSENSORS 2023; 13:290. [PMID: 36832056 PMCID: PMC9954450 DOI: 10.3390/bios13020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Microglia cells, as the resident immune cells of the central nervous system (CNS), are highly motile and migratory in development and pathophysiological conditions. During their migration, microglia cells interact with their surroundings based on the various physical and chemical properties in the brain. Herein, a microfluidic wound-healing chip is developed to investigate microglial BV2 cell migration on the substrates coated with extracellular matrixes (ECMs) and substrates usually used for bio-applications on cell migration. In order to generate the cell-free space (wound), gravity was utilized as a driving force to flow the trypsin with the device. It was shown that, despite the scratch assay, the cell-free area was created without removing the extracellular matrix coating (fibronectin) using the microfluidic assay. It was found that the substrates coated with Poly-L-Lysine (PLL) and gelatin stimulated microglial BV2 migration, while collagen and fibronectin coatings had an inhibitory effect compared to the control conditions (uncoated glass substrate). In addition, the results showed that the polystyrene substrate induced higher cell migration than the PDMS and glass substrates. The microfluidic migration assay provides an in vitro microenvironment closer to in vivo conditions for further understanding the microglia migration mechanism in the brain, where the environment properties change under homeostatic and pathological conditions.
Collapse
Affiliation(s)
- Ehsan Yazdanpanah Moghadam
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
- Department of Biochemistry, Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
| | - Muthukumaran Packirisamy
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
3
|
Vaughan-Jackson A, Stodolak S, Ebrahimi KH, Johnson E, Reardon PK, Dupont M, Zhang S, McCullagh JSO, James WS. Density dependent regulation of inflammatory responses in macrophages. Front Immunol 2022; 13:895488. [PMID: 36591218 PMCID: PMC9800520 DOI: 10.3389/fimmu.2022.895488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophage distribution density is tightly regulated within the body, yet the importance of macrophage crowding during in vitro culture is largely unstudied. Using a human induced pluripotent stem cell (iPSC)-derived macrophage model of tissue resident macrophages, we characterize how increasing macrophage culture density changes their morphology and phenotype before and after inflammatory stimulation. In particular, density drives changes in macrophage inflammatory cytokine and chemokine secretion in both resting and activated states. This density regulated inflammatory state is also evident in blood monocyte derived-macrophages, the human monocytic THP-1 immortalized cell line, and iPSC-derived microglia. Density-dependent changes appear to be driven by a transferable soluble factor, yet the precise mechanism remains unknown. Our findings highlight cell plating density as an important but frequently overlooked consideration of in vitro macrophage research relevant to a variety of fields ranging from basic macrophage cell biology to disease studies.
Collapse
Affiliation(s)
- Alun Vaughan-Jackson
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Szymon Stodolak
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul K. Reardon
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Maeva Dupont
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Shengpan Zhang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Brain Bioenergetics in Chronic Hypertension: Risk Factor for Acute Ischemic Stroke. Biochem Pharmacol 2022; 205:115260. [PMID: 36179931 DOI: 10.1016/j.bcp.2022.115260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
Abstract
Chronic hypertension is one of the key modifiable risk factors for acute ischemic stroke, also contributing to determine greater neurological deficits and worse functional outcome when an acute cerebrovascular event would occur. A tight relationship exists between cerebrovascular autoregulation, neuronal activity and brain bioenergetics. In chronic hypertension, progressive adaptations of these processes occur as an attempt to cope with the demanding necessity of brain functions, creating a new steady-state homeostatic condition. However, these adaptive modifications are insufficient to grant an adequate response to possible pathological perturbations of the established fragile hemodynamic and metabolic homeostasis. In this narrative review, we will discuss the main mechanisms by which alterations in brain bioenergetics and mitochondrial function in chronic hypertension could lead to increased risk of acute ischemic stroke, stressing the interconnections between hemodynamic factors (i.e. cerebral autoregulation and neurovascular coupling) and metabolic processes. Both experimental and clinical pieces of evidence will be discussed. Moreover, the potential role of mitochondrial dysfunction in determining, or at least sustaining, the pathogenesis and progression of chronic neurogenic hypertension will be considered. In the perspective of novel therapeutic strategies aiming at improving brain bioenergetics, we propose some determinant factors to consider in future studies focused on the cause-effect relationships between chronic hypertension and brain bioenergetic abnormalities (and vice versa), so to help translational research in this so-far unfilled gap.
Collapse
|
5
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
6
|
Ali A, Zambrano R, Duncan MR, Chen S, Luo S, Yuan H, Chen P, Benny M, Schmidt A, Young K, Kerr N, de Rivero Vaccari JP, Keane RW, Dietrich WD, Wu S. Hyperoxia-activated circulating extracellular vesicles induce lung and brain injury in neonatal rats. Sci Rep 2021; 11:8791. [PMID: 33888735 PMCID: PMC8062626 DOI: 10.1038/s41598-021-87706-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
Hyperoxia-induced lung injury plays a key role in the development of bronchopulmonary dysplasia (BPD), characterized by inflammatory injury and impaired lung development in preterm infants. Although BPD is a predictor of poor neurodevelopmental outcomes, currently it is uncertain how lung injury contributes to brain injury in preterm infants. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that regulate intercellular and inter-organ communications. Gasdermin D (GSDMD) has emerged as a key executor of inflammasome-mediated cell death and inflammation. In this study, we utilized a neonatal rat model of BPD to assess if hyperoxia stimulates lung release of circulating EVs and if these EVs induce lung and brain injury. We found that hyperoxia-exposed rats had elevated numbers of plasma-derived EVs compared to rats maintained in room air. These EVs also had increased cargos of surfactant protein C, a marker of type II alveolar epithelial cells (AEC), and the active (p30) form of GSDMD. When these EVs were adoptively transferred into normal newborn rats via intravenous injection, they were taken up both by lung and brain tissues. Moreover, EVs from hyperoxic animals induced not only the pathological hallmarks of BPD, but also brain inflammatory injury in recipient rats, as well as inducing cell death in cultured pulmonary vascular endothelial cells and neural stem cells (NSC). Similarly, hyperoxia-exposed cultured AEC-like cells released EVs that also contained increased GSDMD-p30 and these EVs induced pyroptotic cell death in NSC. Overall, these data indicate that hyperoxia-activated circulating EVs mediate a lung to brain crosstalk resulting in brain injury and suggest a mechanism that links lung injury and neurodevelopmental impairment in BPD infants.
Collapse
Affiliation(s)
- Anum Ali
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Ronald Zambrano
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Matthew R Duncan
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Shaoyi Chen
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Shihua Luo
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Huijun Yuan
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Pingping Chen
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Merline Benny
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Augusto Schmidt
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Karen Young
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Nadine Kerr
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Keane
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - Shu Wu
- Division of Neonatology and Batchelor Children's Research Institute, Department of Pediatrics, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA.
| |
Collapse
|
7
|
Zhang K, Wu L, Lin K, Zhang M, Li W, Tong X, Zheng J. Integrin-dependent microgliosis mediates ketamine-induced neuronal apoptosis during postnatal rat retinal development. Exp Neurol 2021; 340:113659. [PMID: 33640375 DOI: 10.1016/j.expneurol.2021.113659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Remodeling of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a pivotal role for microglia in developing retina. We tested whether integrin-dependent microgliosis mediates ketamine-induced neuronal apoptosis in the developing rat retina. METHODS We performed immunofluorescence assays to investigate the role of integrin receptors expressed in the microglia in ketamine-induced neuronal apoptosis. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to investigate the protein and mRNA levels of cytokines (TNF-α, IL-1β) and/or chemokines (CCL2, CXCL6, CXCL10, and CXCL12). Experiments were performed using whole-mount retinas dissected from P7 Sprague-Dawley rats. RESULTS Integrin receptors expressed in microglia were upregulated in ketamine-induced neuronal apoptosis in the early developing rat retina. Downregulating integrin receptors with RGD peptide ameliorated ketamine-induced microgliosis through: 1) ameliorating the change in microglia morphology from immature ramified microglia to an amoeboid state; 2) decreasing the number of microglia and intensity of activated microglia in the retinal ganglion cell layer (GCL); and 3) decreasing cytokine (TNF-α and IL-1β) and chemokine (CCL2, CXCL10) levels in the retinal tissue. Inhibition of activated microglia with minocycline or the blockade of cytokines (TNF-α and IL-1β) with a receptor antagonist (RA) attenuated neuronal apoptosis after exposure to ketamine. CONCLUSIONS The upregulation of integrin β1 receptors in the microglia acts as a signaling molecule, triggering microgliosis to aggravate ketamine-induced neuronal apoptosis via the release of TNF-α and IL-1β in the early developing rat retina.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lei Wu
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Kana Lin
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Mazhong Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Weiguang Li
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
8
|
Sikkema AH, Stoffels JMJ, Wang P, Basedow FJ, Bulsink R, Bajramovic JJ, Baron W. Fibronectin aggregates promote features of a classically and alternatively activated phenotype in macrophages. J Neuroinflammation 2018; 15:218. [PMID: 30071854 PMCID: PMC6091019 DOI: 10.1186/s12974-018-1238-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Means to promote endogenous remyelination in multiple sclerosis (MS) benefit from insights into the role of inhibitory molecules that preclude remyelination. Fibronectin assembles into aggregates in MS, which impair oligodendrocyte differentiation and remyelination. Microglia and macrophages are required for complete remyelination and normally switch from a pro-inflammatory classical phenotype upon demyelination to a supportive alternative phenotype during remyelination. Here, we investigated the role of fibronectin aggregates in modulating microglia and macrophage behavior and phenotypes. METHODS Bone marrow-derived macrophages and microglia from newborn rats were exposed to (a) plasma fibronectin coatings; (b) coatings of deoxycholate-insoluble fibronectin aggregates; (c) interferon-γ (IFNγ) treatment, as an inducer of the pro-inflammatory classically activated phenotype; (d) interleukin-4 (IL-4) treatment, to promote the pro-regenerative anti-inflammatory alternatively activated phenotype; or (e) left unstimulated on uncoated plastic. To examine the in vitro effects of the different stimulations on cell behavior and phenotype, proliferation, phagocytosis, morphology, and pro- and anti-inflammatory features were assessed. RESULTS In line with a classically activated phenotype, exposure of microglia and macrophages to both plasma fibronectin and fibronectin aggregates induced an amoeboid morphology and stimulated phagocytosis by macrophages. Furthermore, as observed upon IFNγ treatment, coatings of aggregated, but not plasma fibronectin, promoted nitric oxide release by microglia and macrophages. Remarkably, fibronectin aggregates induced nitric oxide release in an integrin-independent manner. In addition, fibronectin aggregates, but not plasma fibronectin, increased the expression of arginase-1, similarly as observed upon treatment with IL-4. Proteomic analysis revealed that aggregates of fibronectin act as a scaffold for other proteins, including Hsp70 and thrombospondin-1, which may clarify the induction of both pro-inflammatory and anti-inflammatory features in macrophages cultured on fibronectin aggregate, but not plasma fibronectin coatings. CONCLUSIONS Macrophages and microglia grown on aggregated fibronectin coatings adopt a distinct phenotype compared to plasma fibronectin coatings, showing pro-inflammatory and anti-inflammatory features. Therefore, the pathological fibronectin aggregates in MS lesions may impair remyelination by promoting and/or retaining several classically activated phenotypic features in microglia and macrophages.
Collapse
Affiliation(s)
- Arend H Sikkema
- University of Groningen, University Medical Center Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Josephine M J Stoffels
- University of Groningen, University Medical Center Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Peng Wang
- University of Groningen, University Medical Center Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Frederike J Basedow
- University of Groningen, University Medical Center Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Robbert Bulsink
- University of Groningen, University Medical Center Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jeffrey J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
9
|
Thurgur H, Pinteaux E. Microglia in the Neurovascular Unit: Blood-Brain Barrier-microglia Interactions After Central Nervous System Disorders. Neuroscience 2018; 405:55-67. [PMID: 31007172 DOI: 10.1016/j.neuroscience.2018.06.046] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Over the past few decades, microglial cells have been regarded as the main executor of inflammation after acute and chronic central nervous system (CNS) disorders, responding rapidly to exogenous stimuli during acute trauma or infections, or signals released by cells undergoing cell death during conditions such as stroke, Alzheimer's disease (AD) and Parkinson's disease (PD). Barriers of the nervous system, and in particular the blood-brain barrier (BBB), play a key role in the normal physiological and cognitive functions of the brain. Being at the interface between the central and peripheral compartment, the BBB is regarded as a sensor of homeostasis, and any disruption within the brain or the systemic compartment triggers BBB dysfunction and neuroinflammation, both contributing to the pathogenesis of cerebrovascular disease. This involves a dynamic response mediated by all components of the neurovascular unit (NVU), and ongoing research suggests that BBB-microglia interaction is critical to dictate the microglial response to NVU injury. The present review aims to give an up-to-date account of the emerging critical role of BBB-microglia interactions during neuroinflammation, and how these could be targeted for the therapeutic treatment of major central inflammatory disease.
Collapse
Affiliation(s)
- Hannah Thurgur
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, United Kingdom
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, United Kingdom.
| |
Collapse
|
10
|
Pietrogrande G, Mabotuwana N, Zhao Z, Abdolhoseini M, Johnson SJ, Nilsson M, Walker FR. Chronic stress induced disturbances in Laminin: A significant contributor to modulating microglial pro-inflammatory tone? Brain Behav Immun 2018; 68:23-33. [PMID: 28943293 DOI: 10.1016/j.bbi.2017.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/10/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
Over the last decade, evidence supporting a link between microglia enhanced neuro-inflammatory signalling and mood disturbance has continued to build. One issue that has not been well addressed yet are the factors that drive microglia to enter into a higher pro-inflammatory state. The current study addressed the potential role of the extracellular matrix protein Laminin. C57BL6 adult mice were either exposed to chronic stress or handled for 6 consecutive weeks. Changes in Laminin, microglial morphology and pro-inflammatory cytokine expression were examined in tissue obtained from mice exposed to a chronic restraint stress procedure. These in vivo investigations were complemented by an extensive set of in vitro experiments utilising both a primary microglia and BV2 cell line to examine how Laminin influenced microglial pro-inflammatory tone. Chronic stress enhanced the expression of Laminin, microglial de-ramification and pro-inflammatory cytokine signalling. We further identified that microglia when cultured in the presence of Laminin produced and released significantly greater levels of pro-inflammatory cytokines; took longer to return to baseline following stimulation and exhibited enhanced phagocytic activity. These results suggest that chronic restraint stress is capable of modulating Laminin within the CNS, an effect that has implications for understanding environmental mediated disturbances of microglial function.
Collapse
Affiliation(s)
- Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia
| | | | - Zidan Zhao
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle Callaghan 2308, NSW, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle Callaghan 2308, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan 2308, NSW, Australia; Hunter Medical Research Institute, Newcastle 2305, NSW, Australia.
| |
Collapse
|
11
|
Ahn M, Moon C, Park C, Kim J, Sim KB, Shin T. Transient activation of an adaptor protein, disabled-2, in rat spinal cord injury. Acta Histochem 2015; 117:56-61. [PMID: 25432322 DOI: 10.1016/j.acthis.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/04/2014] [Indexed: 12/01/2022]
Abstract
We previously reported that disabled-2 (Dab-2), a cytosolic adaptor protein, was expressed in inflammatory and glial cells in the central nervous system (CNS) in experimental autoimmune encephalomyelitis and cerebral cryoinjury. Here, to determine the pattern of Dab-2 expression in a clip compression-induced rat spinal cord injury (SCI) model, the protein level and localization of Dab-2 in the spinal cord were investigated in rats with SCI using Western blotting and immunohistochemistry. Western blotting revealed that the expression of both the 75- and 100-kDa isoforms of Dab-2 peaked significantly in the spinal cord after clip compression injury 7 days post-injury compared to sham controls, and declined slightly thereafter. Immunohistochemistry revealed weak Dab-2 immunostaining in some neurons, glial cells, and ependymal cells in the spinal cords of the control animals, compared to staining in the macrophages and reactive astrocytes in lesions of the SCI animals. Overall, these findings suggest that both isoforms of Dab-2 are transiently upregulated in response to SCI and that the increased expression of Dab-2 is associated with the early activation of macrophages and astrogliosis in the course of CNS inflammation.
Collapse
|
12
|
Wang J, Yin L, Chen Z. Neuroprotective role of fibronectin in neuron-glial extrasynaptic transmission. Neural Regen Res 2014; 8:376-82. [PMID: 25206678 PMCID: PMC4107531 DOI: 10.3969/j.issn.1673-5374.2013.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/12/2012] [Indexed: 11/24/2022] Open
Abstract
Most hypotheses concerning the mechanisms underlying Parkinson's disease are based on altered synaptic transmission of the nigrostriatal system. However, extrasynaptic transmission was recently found to affect dopamine neurotransmitter delivery by anisotropic diffusion in the extracellular matrix, which is modulated by various extracellular matrix components such as fibronectin. The present study reviewed the neuroprotective effect of fibronectin in extrasynaptic transmission. Fibronectin can regulate neuroactive substance diffusion and receptor activation, and exert anti- neuroinflammatory, adhesive and neuroprotective roles. Fibronectin can bind to integrin and growth factor receptors to transactivate intracellular signaling events such as the phosphatidylinositol 3-kinase/protein kinase B pathway to regulate or amplify growth factor-like neuroprotective actions. Fibronectin is assembled into a fibrillar network around cells to facilitate cell migration, molecule and ion diffusion, and even drug delivery and treatment. In addition, the present study analyzed the neuroprotective mechanism of fibronectin in the pathogenesis of Parkinson's disease, involving integrin and growth factor receptor interactions, and discussed the possible therapeutic and diagnostic significance of fibronectin in Parkinson's disease.
Collapse
Affiliation(s)
- Jintang Wang
- Institute for Geriatric Clinic and Rehabilitation, Beijing Geriatric Hospital, Beijing 100095, China
| | - Ling Yin
- Institute of Medical Informatics, General Hospital of PLA, Beijing 100853, China
| | - Zheng Chen
- Institute for Geriatric Clinic and Rehabilitation, Beijing Geriatric Hospital, Beijing 100095, China
| |
Collapse
|
13
|
de Sousa APC, Gurgel CA, Ramos EAG, Trindade RF, de Faro Valverde L, Carneiro TS, Cangussú MCT, Pinheiro ALB, Dos Santos JN. Infrared LED light therapy influences the expression of fibronectin and tenascin in skin wounds of malnourished rats--a preliminary study. Acta Histochem 2014; 116:1185-91. [PMID: 25028133 DOI: 10.1016/j.acthis.2014.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/18/2022]
Abstract
The aim of this investigation was to evaluate the effect of infrared (λ 846±20nm) LED irradiation on the expression profile of the extracellular matrix protein components, tenascin and fibronectin on skin wounds induced in well nourished and malnourished rats. Eighteen albino rats (21 days old) were randomly divided into a well-nourished group (standard diet) and a malnourished group (regional basic diet). After receiving the diet for 70 days, skin wounds were created and the animals were subdivided into three groups: well-nourished control (n=6), malnourished control (n=6), and malnourished+LED irradiated (λ 846±20nm, 100mW, 4J/cm(2)) (n=6). The animals were sacrificed 3 and 7 days after injury and histological sections were immunostained for both proteins. They were examined for the presence, intensity, distribution and pattern of immunolabeling. At 3 days, the distribution of tenascin was shown to be greater in the wound bed of malnourished animals compared to the well-nourished group. The intensity and distribution of tenascin was shown to be lower in the malnourished LED irradiated group compared to the malnourished control. There was a significant difference regarding the presence of fibronectin in the malnourished and well-nourished groups after 7 days (p=0.03). The intensity of fibronectin was slight (100%) in the irradiated group and moderate to intense in the malnourished control group. The results of the present study indicate that infrared LED irradiation modulates positively the expression of tenascin and particularly fibronectin.
Collapse
Affiliation(s)
| | - Clarissa Araújo Gurgel
- Laboratory of Surgical Pathology, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Renan Ferreira Trindade
- Center of Biophotonics, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Tuânia Soares Carneiro
- Food Biochemistry Laboratory, School of Nutrition, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | - Jean Nunes Dos Santos
- Laboratory of Surgical Pathology, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil.
| |
Collapse
|
14
|
Stoffels JMJ, Zhao C, Baron W. Fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build. Cell Mol Life Sci 2013; 70:4243-53. [PMID: 23756580 PMCID: PMC11113129 DOI: 10.1007/s00018-013-1350-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 12/31/2022]
Abstract
Tissue injury initiates extracellular matrix molecule expression, including fibronectin production by local cells and fibronectin leakage from plasma. To benefit tissue regeneration, fibronectin promotes opsonization of tissue debris, migration, proliferation, and contraction of cells involved in the healing process, as well as angiogenesis. When regeneration proceeds, the fibronectin matrix is fully degraded. However, in a diseased environment, fibronectin clearance is often disturbed, allowing structural variants to persist and contribute to disease progression and failure of regeneration. Here, we discuss first how fibronectin helps tissue regeneration, with a focus on normal cutaneous wound healing as an example of complete tissue recovery. Then, we continue to argue that, although the fibronectin matrix generated following cartilage and central nervous system white matter (myelin) injury initially benefits regeneration, fibronectin clearance is incomplete in chronic wounds (skin), osteoarthritis (cartilage), and multiple sclerosis (myelin). Fibronectin fragments or aggregates persist, which impair tissue regeneration. The similarities in fibronectin-mediated mechanisms of frustrated regeneration indicate that complete fibronectin clearance is a prerequisite for recovery in any tissue. Also, they provide common targets for developing therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Josephine M. J. Stoffels
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chao Zhao
- Wellcome Trust—Medical Research Council Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
| | - Wia Baron
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
15
|
Summers L, Kangwantas K, Rodriguez-Grande B, Denes A, Penny J, Kielty C, Pinteaux E. Activation of brain endothelial cells by interleukin-1 is regulated by the extracellular matrix after acute brain injury. Mol Cell Neurosci 2013; 57:93-103. [DOI: 10.1016/j.mcn.2013.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/04/2013] [Accepted: 10/15/2013] [Indexed: 11/15/2022] Open
|
16
|
Kim H, Ahn M, Choi S, Kim M, Sim KB, Kim J, Moon C, Shin T. Potential role of fibronectin in microglia/macrophage activation following cryoinjury in the rat brain: An immunohistochemical study. Brain Res 2013; 1502:11-9. [DOI: 10.1016/j.brainres.2013.01.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/18/2012] [Accepted: 01/27/2013] [Indexed: 01/17/2023]
|
17
|
Spittau B, Wullkopf L, Zhou X, Rilka J, Pfeifer D, Krieglstein K. Endogenous transforming growth factor-beta promotes quiescence of primary microglia in vitro. Glia 2012; 61:287-300. [PMID: 23065670 DOI: 10.1002/glia.22435] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/11/2012] [Indexed: 11/12/2022]
Abstract
Microglia are the immune cells of the central nervous system (CNS) and play important roles under physiological and pathophysiological conditions. Activation of microglia has been reported for a variety of CNS diseases and is believed to be involved in inflammation-mediated neurodegeneration. Loss of TGFβ1 results in increased microgliosis and neurodegeneration in mice which indicates that TGFβ1 is an important regulator of microglial functions in vivo. Here, we addressed the role of endogenous TGFβ signaling for microglia in vitro. We clearly demonstrate active TGFβ signaling in primary microglia and further introduce Klf10 as a new TGFβ target gene in microglia. Moreover, we provide evidence that microglia express and release TGFβ1 that acts in an autocrine manner to activate microglial TGFβ/Smad signaling in vitro. Using microarrays, we identified TGFβ-regulated genes in microglia that are involved in TGFβ1 processing, its extracellular storage as well as activation of latent TGFβ. Finally, we demonstrate that pharmacological inhibition of microglial TGFβ signaling resulted in upregulation of the proinflammatory markers IL6 and iNOS and downregulation of the alternative activation markers Arg1 and Ym1 in vitro. Together, these data clearly show that endogenous TGFβ1 and autocrine TGFβ signaling is important for microglial quiescence in vitro and further suggest the upregulation of TGFβ1 in neurodegenerative diseases as a mechanism to regulate microglia functions and silence neuroinflammation.
Collapse
Affiliation(s)
- Björn Spittau
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Diskin S, Chen WS, Cao Z, Gyawali S, Gong H, Soza A, González A, Panjwani N. Galectin-8 promotes cytoskeletal rearrangement in trabecular meshwork cells through activation of Rho signaling. PLoS One 2012; 7:e44400. [PMID: 22973445 PMCID: PMC3433423 DOI: 10.1371/journal.pone.0044400] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/02/2012] [Indexed: 11/29/2022] Open
Abstract
Purpose The trabecular meshwork (TM) cell-matrix interactions and factors that influence Rho signaling in TM cells are thought to play a pivotal role in the regulation of aqueous outflow. The current study was designed to evaluate the role of a carbohydrate-binding protein, galectin-8 (Gal8), in TM cell adhesion and Rho signaling. Methods Normal human TM cells were assayed for Gal8 expression by immunohistochemistry and Western blot analysis. To assess the role of Gal8 in TM cell adhesion and Rho signaling, the cell adhesion and spreading assays were performed on Gal8-coated culture plates in the presence and the absence of anti-β1 integrin antibody and Rho and Rho-kinase inhibitors. In addition, the effect of Gal8-mediated cell-matrix interactions on TM cell cytoskeleton arrangement and myosin light chain 2 (MLC2) phosphorylation was examined. Principal Findings We demonstrate here that Gal8 is expressed in the TM and a function-blocking anti-β1 integrin antibody inhibits the adhesion and spreading of TM cells to Gal8-coated wells. Cell spreading on Gal8 substratum was associated with the accumulation of phosphorylated myosin light chain and the formation of stress fibers that was inhibited by the Rho inhibitor, C3 transferase, as well as by the Rho-kinase inhibitor, Y27632. Conclusions/Significance The above findings present a novel function for Gal8 in activating Rho signaling in TM cells. This function may allow Gal8 to participate in the regulation of aqueous outflow.
Collapse
Affiliation(s)
- Shiri Diskin
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR. Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex 2012; 23:1784-97. [PMID: 22710611 DOI: 10.1093/cercor/bhs151] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recently, it has been discovered that the working memory deficits induced by exposure to chronic stress can be prevented by treating stressed animals with minocycline, a putative inhibitor of microglial activity. One of the pressing issues that now requires clarification is exactly how exposure to chronic stress modifies microglial morphology, this being a significant issue as microglial morphology is tightly coupled with their function. To examine how chronic stress alters microglial morphology, we digitally reconstructed microglia within the rat medial prefrontal cortex. Our analysis revealed that stress increased the internal complexity of microglia, enhancing ramification (i.e. branching) without altering the overall area occupied by the cell and that this effect was more pronounced in larger cells. We subsequently determined that minocycline treatment largely abolished the pro-ramifying effects of stress. With respect to mechanisms, we could not find any evidence of increased inflammation or neurodegeneration (interleukin-1β, MHC-II, CD68, terminal deoxynucleotidyl transferase dUTP nick end labeling, and activated caspase-3). We did, however, find that chronic stress markedly increased the expression of β1-integrin (CD29), a protein previously implicated in microglial ramification. Together, these findings highlight that increased ramification of microglia may represent an important neurobiological mechanism through which microglia mediate the behavioral effects of chronic psychological stress.
Collapse
Affiliation(s)
- Madeleine Hinwood
- Laboratory of Affective Neuroscience and Neuroimmunology, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Lin CY, Lee YS, Lin VW, Silver J. Fibronectin inhibits chronic pain development after spinal cord injury. J Neurotrauma 2012; 29:589-99. [PMID: 22022865 DOI: 10.1089/neu.2011.2059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic pain following spinal cord injury (SCI) is a highly prevalent clinical condition that is difficult to treat. Using both von Frey filaments and radiant infrared heat to assess mechanical allodynia and thermal hyperalgesia, respectively, we have demonstrated that a one-time injection of fibronectin (50 μg/mL) into the spinal dorsal column (1 μL/min each injection for a total of 5 μL) immediately after SCI inhibits the development of mechanical allodynia (but not thermal hyperalgesia) over an 8-month observation period following spinal cord dorsal column crush (DCC). DCC will only induce mechanical Allodynia, but not thermal hyperalgesia or overt motor deficits. By applying various fibronectin fragments as well as competitive inhibitors, these effects were shown to be dependent on the connecting segment-1 (CS-1) motif of fibronectin. Furthermore, we found that acute fibronectin treatment diminished inflammation and blood-spinal cord barrier permeability, which in turn leads to enhanced fiber sparing and sprouting. In particular, the reduction of serotonin (5-HT) in the superficial dorsal horn, an important descending brainstem system in the modulation of pain, was blocked with fibronectin treatment. We conclude that treatment of SCI with fibronectin preserves sensory regulation and prevents the development of chronic allodynia, providing a potential therapeutic intervention to treat chronic pain following SCI.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Neuroscience, Lerner Research Institute, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
21
|
Ahn M, Oh H, Lee W, Kim H, Moon C, Shin T. Immunohistochemical studies on disabled-2 protein in the spinal cords of rats with experimental autoimmune encephalomyelitis. Brain Res 2011; 1416:51-60. [PMID: 21890121 DOI: 10.1016/j.brainres.2011.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/18/2011] [Accepted: 08/04/2011] [Indexed: 11/15/2022]
Abstract
Disabled-2 (Dab-2), an adaptor protein of transforming growth factor beta (TGF-β) signaling, was studied in the spinal cords of rats with experimental autoimmune encephalomyelitis (EAE) to evaluate the possible involvement of Dab-2 in the pathogenesis of EAE using Western blot and immunohistochemical analyses. Western blot analysis showed that two isoforms (p96 kDa and p67 kDa) of Dab-2 were detected in the spinal cords of rats used as controls. Both isoforms of Dab-2 were significantly elevated in the EAE spinal cord at the peak stage of EAE (P<0.05) and declined at the recovery stage. However, only the p96 kDa isoform was markedly phosphorylated in the EAE spinal cord. Immunohistochemistry showed that Dab-2 and p-Dab-2 were detected in some vascular endothelial cells, glial cells, and some neurons in the rat spinal cords of normal and immunized CFA-alone controls. In EAE lesions, Dab-2 and p-Dab-2 were immunodetected in some inflammatory cells (mainly in ED1-positive macrophages and R73-positive T cells), while the enhanced immunoreactivity of Dab-2 in spinal cord cells suggested constitutive expression. Additionally, TGF-β1 immunoreactivity showed a similar expression pattern of Dab-2 in EAE lesions. These findings suggest that Dab-2 is transiently upregulated and phosphorylated (particularly the p96 kDa isoform) in EAE, a CNS autoimmune disease, and may be involved in TGF-β signaling.
Collapse
Affiliation(s)
- Meejung Ahn
- Department of Anatomy, School of Medicine, Jeju National University, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
New insights into the altered fibronectin matrix and extrasynaptic transmission in the aging brain. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jcgg.2010.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Rodríguez-González R, Sobrino T, Rodríguez-Yáñez M, Millán M, Brea D, Miranda E, Moldes O, Pérez J, Lomas DA, Leira R, Dávalos A, Castillo J. Association between neuroserpin and molecular markers of brain damage in patients with acute ischemic stroke. J Transl Med 2011; 9:58. [PMID: 21569344 PMCID: PMC3113955 DOI: 10.1186/1479-5876-9-58] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 05/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroserpin has shown neuroprotective effects in animal models of cerebral ischemia and has been associated with functional outcome after ischemic stroke. Our aim was to study whether neuroserpin serum levels could be associated to biomarkers of excitotoxicity, inflammation and blood brain barrier disruption. METHODS We prospectively included 129 patients with ischemic stroke (58.1% male; mean age, 72.4 ± 9.6 years) not treated with tPA within 12 hours (h) of symptoms onset (mean time, 4.7 ± 2.1 h). Poor functional outcome at 3 months was considered as a modified Rankin scale score >2. Serum levels of neuroserpin, Interleukin 6 (IL-6), Intercellular adhesion molecule-1 (ICAM-1), active Matrix metalloproteinase 9 (MMP-9), and cellular fibronectin (cFn) (determined by ELISA) and glutamate (determined by HPLC) were measured on admission, 24 and 72 h. The main variable was considered the decrease of neuroserpin levels within the first 24 h. ROC analysis was used to select the best predictive value for neuroserpin to predict poor functional outcome due to a lack of linearity. RESULTS The decrease of neuroserpin levels within the first 24 h was negatively correlated with serum levels at 24 hours of glutamate (r = -0.642), IL-6 (r = -0.678), ICAM-1 (r = -0.345), MMP-9 (r = -0.554) and cFn (r = -0.703) (all P < 0.0001). In the multivariate analysis, serum levels of glutamate (OR, 1.04; CI95%, 1.01-1.06, p = 0.001); IL-6 (OR, 1.4; CI95%, 1.1-1.7, p = 0.001); and cFn (OR, 1.3; CI95%, 1.1-1.6, p = 0.002) were independently associated with a decrease of neuroserpin levels <70 ng/mL at 24 h after adjusting for confounding factors. CONCLUSIONS These findings suggest that neuroprotective properties of neuroserpin may be related to the inhibition of excitotoxicity, inflammation, as well as blood brain barrier disruption that occur after acute ischemic stroke.
Collapse
Affiliation(s)
- Raquel Rodríguez-González
- Clinical Neuroscience Research Laboratory, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neuroscience Research Laboratory, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Clinical Neuroscience Research Laboratory, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mónica Millán
- Department of Neurosciences, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - David Brea
- Clinical Neuroscience Research Laboratory, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Elena Miranda
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Octavio Moldes
- Clinical Neuroscience Research Laboratory, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Pérez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| | - David A Lomas
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Rogelio Leira
- Clinical Neuroscience Research Laboratory, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Antoni Dávalos
- Department of Neurosciences, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - José Castillo
- Clinical Neuroscience Research Laboratory, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
24
|
Bateman NW, Sun M, Hood BL, Flint MS, Conrads TP. Defining central themes in breast cancer biology by differential proteomics: conserved regulation of cell spreading and focal adhesion kinase. J Proteome Res 2010; 9:5311-24. [PMID: 20681588 DOI: 10.1021/pr100580e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Breast cancer is a highly heterogeneous disease, an observation that underscores the importance of elucidating conserved molecular characteristics, such as gene and protein expression, across breast cancer cell types toward providing a greater understanding of context-specific features central to this disease. Motivated by the goal of defining central biological themes across breast cancer cell subtypes, we conducted a global proteomic analysis of three breast cancer cell lines, MCF7, SK-BR-3, and MDA-MB-231, and compared these to a model of nontransformed mammary cells (MCF10A). Our results demonstrate modulation of proteins localized to the extracellular matrix, plasma membrane, and nucleus, along with coordinate decreases in proteins that regulate "cell spreading," a cellular event previously shown to be dysregulated in transformed cells. Protein interaction network analysis revealed the clustering of focal adhesion kinase (FAK), a fundamental regulator of cell spreading, with several proteins identified as mutually, differentially abundant across breast cancer cell lines that impact expression and activity of FAK, such as neprilysin and keratin 19. These analyses provide insights into conservation of protein expression across breast cancer cell subtypes, a subset of which warrants further investigation for their roles in the regulation of cell spreading and FAK in breast cancer.
Collapse
Affiliation(s)
- Nicholas W Bateman
- Department of Pharmacology & Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
25
|
Greenhalgh AD, Galea J, Dénes A, Tyrrell PJ, Rothwell NJ. Rapid brain penetration of interleukin-1 receptor antagonist in rat cerebral ischaemia: pharmacokinetics, distribution, protection. Br J Pharmacol 2010; 160:153-9. [PMID: 20412072 PMCID: PMC2860215 DOI: 10.1111/j.1476-5381.2010.00684.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/23/2009] [Accepted: 01/13/2010] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Limited data on the brain penetration of potential stroke treatments have been cited as a major weakness contributing to numerous failed clinical trials. Thus, we tested whether interleukin-1 receptor antagonist (IL-1RA), established as a potent inhibitor of brain injury in animals and currently in clinical development, reaches the brain via a clinically relevant administration route, in experimental stroke. EXPERIMENTAL APPROACH Male, Sprague-Dawley rats [either naïve or exposed to middle cerebral artery occlusion (MCAo)] were given a single s.c. dose of IL-1RA (100 mg*kg(-1)). The pharmacokinetic profile of IL-1RA was assessed in plasma and CSF up to 24 h post-administration. Brain tissue distribution of administered IL-1RA was assessed using immunohistochemistry. In a separate experiment, the neuroprotective effect of the single s.c. dose of IL-1RA in MCAo was assessed versus a placebo control group. KEY RESULTS A single s.c. dose of IL-1RA reduced damage caused by MCAo by 33%. This dose resulted in sustained, high concentrations in plasma and CSF, penetrated brain tissue exclusively in areas of blood-brain barrier breakdown and co-localized with morphologically viable neurones. CSF concentrations did not reflect massive parenchymal infiltration of IL-1RA in MCAo animals compared to naïve. CONCLUSIONS AND IMPLICATIONS These data are the first to show that a potential treatment for stroke, IL-1RA, rapidly reaches salvageable brain tissue via an administration route that is clinically relevant. This allows confidence that IL-1RA, as a candidate for further clinical development, is able to confer its protective actions both peripherally and centrally.
Collapse
Affiliation(s)
- A D Greenhalgh
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
26
|
Summers L, Kangwantas K, Nguyen L, Kielty C, Pinteaux E. Adhesion to the extracellular matrix is required for interleukin-1 beta actions leading to reactive phenotype in rat astrocytes. Mol Cell Neurosci 2010; 44:272-81. [PMID: 20380881 PMCID: PMC3507629 DOI: 10.1016/j.mcn.2010.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/12/2010] [Accepted: 03/30/2010] [Indexed: 01/13/2023] Open
Abstract
The extracellular matrix (ECM) of the brain is essential for homeostasis and normal functions, but is rapidly remodelled during acute brain injury alongside the development of an inflammatory response driven by the cytokine interleukin (IL)-1. Whether the ECM regulates IL-1 actions in astrocytes is completely unknown. The aim of this study was to test the hypothesis that cellular attachment to the ECM is a critical mediator of IL-1beta-induced signalling pathways and development of reactive phenotype in astrocytes. Primary rat astrocytes adhered to fibronectin, laminin and fibrillin-1 in an integrin-dependent manner. Attachment to these ECM molecules significantly increased IL-1beta-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and inhibition of RhoA and Rho kinase (ROCK), coincident with loss of focal adhesions and cellular morphological changes. Our data demonstrate that the ECM regulates IL-1 actions in astrocytes via cross-talk mechanisms between ERK1/2 and RhoA/ROCK, which could have important implications in brain inflammatory disorders.
Collapse
Affiliation(s)
- Lauren Summers
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|