1
|
Sireci S, Kocagöz Y, Alkiraz AS, Güler K, Dokuzluoglu Z, Balcioglu E, Meydanli S, Demirler MC, Erdogan NS, Fuss SH. HB-EGF promotes progenitor cell proliferation and sensory neuron regeneration in the zebrafish olfactory epithelium. FEBS J 2024; 291:2098-2133. [PMID: 38088047 DOI: 10.1111/febs.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Maintenance and regeneration of the zebrafish olfactory epithelium (OE) are supported by two distinct progenitor cell populations that occupy spatially discrete stem cell niches and respond to different tissue conditions. Globose basal cells (GBCs) reside at the inner and peripheral margins of the sensory OE and are constitutively active to replace sporadically dying olfactory sensory neurons (OSNs). In contrast, horizontal basal cells (HBCs) are uniformly distributed across the sensory tissue and are selectively activated by acute injury conditions. Here we show that expression of the heparin-binding epidermal growth factor-like growth factor (HB-EGF) is strongly and transiently upregulated in response to OE injury and signals through the EGF receptor (EGFR), which is expressed by HBCs. Exogenous stimulation of the OE with recombinant HB-EGF promotes HBC expansion and OSN neurogenesis in a pattern that resembles the tissue response to injury. In contrast, pharmacological inhibition of HB-EGF membrane shedding, HB-EGF availability, and EGFR signaling strongly attenuate or delay injury-induced HBC activity and OSN restoration without affecting maintenance neurogenesis by GBCs. Thus, HB-EGF/EGFR signaling appears to be a critical component of the signaling network that controls HBC activity and, consequently, repair neurogenesis in the zebrafish OE.
Collapse
Affiliation(s)
- Siran Sireci
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Yigit Kocagöz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Aysu Sevval Alkiraz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Kardelen Güler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Zeynep Dokuzluoglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Ecem Balcioglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Sinem Meydanli
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | | | - Stefan Herbert Fuss
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| |
Collapse
|
2
|
Hayoz S, Jia C, Hegg CC. Constitutive and evoked release of ATP in adult mouse olfactory epithelium. Open Life Sci 2024; 19:20220811. [PMID: 38250473 PMCID: PMC10795008 DOI: 10.1515/biol-2022-0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
In adult olfactory epithelium (OE), ATP plays a role in constant cell turnover and post-injury neuroregeneration. We previously demonstrated that constitutive and ATP-evoked ATP release are present in neonatal mouse OE and underlie continuous cell turn-over and post-injury neuroregeneration, and that activation of purinergic P2X7 receptors is involved in the evoked release. We hypothesized that both releases are present in adult mouse OE. To study the putative contribution of olfactory sensory neurons to ATP release, we used olfactory sensory neuronal-like OP6 cells derived from the embryonic olfactory placode cells. Calcium imaging showed that OP6 cells and primary adult OE cell cultures express functional purinergic receptors. We monitored ATP release from OP6 cells and whole adult OE turbinates using HEK cells as biosensors and luciferin-luciferase assays. Constitutive ATP release occurs in OP6 cells and whole adult mouse OE turbinates, and P2X7 receptors mediated evoked ATP release occurs only in turbinates. The mechanisms of ATP release described in the present study might underlie the constant cell turn-over and post-injury neuroregeneration present in adult OE and thus, further studies of these mechanisms are warranted as it will improve our knowledge of OE tissue homeostasis and post-injury regeneration.
Collapse
Affiliation(s)
- Sébastien Hayoz
- Department of Physiology, University of Arizona, Tucson, Arizona 85724, USA
| | - Cuihong Jia
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | - Colleen Cosgrove Hegg
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
3
|
Abstract
SARS-CoV-2, the virus that causes coronavirus disease (COVID)-19, has become a persistent global health threat. Individuals who are symptomatic for COVID-19 frequently exhibit respiratory illness, which is often accompanied by neurological symptoms of anosmia and fatigue. Mounting clinical data also indicate that many COVID-19 patients display long-term neurological disorders postinfection such as cognitive decline, which emphasizes the need to further elucidate the effects of COVID-19 on the central nervous system. In this review article, we summarize an emerging body of literature describing the impact of SARS-CoV-2 infection on central nervous system (CNS) health and highlight important areas of future investigation.
Collapse
Affiliation(s)
- Nick R. Natale
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
4
|
Joseph KB, Awadallah N, Delay ER, Delay RJ. Transient Effects of Cyclophosphamide on Basal Cell Proliferation of Olfactory Epithelia. Chem Senses 2021; 45:549-561. [PMID: 32531016 DOI: 10.1093/chemse/bjaa039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is often treated with broad-spectrum cytotoxic drugs that not only eradicate cancerous cells but also have detrimental side effects. One of these side effects, disruption of the olfactory system, impedes a patient's ability to smell, perceive flavor, and ultimately may interfere with their nutritional intake and recovery from cancer. Recent studies reported that the chemotherapy drug, cyclophosphamide (CYP), can damage gustatory epithelia and disrupt cell proliferation in olfactory epithelia. In this study, we asked if CYP altered globose and horizontal basal cell proliferation in the murine main olfactory epithelium (MOE) and vomeronasal organ (VNO). We used antibodies for Ki67, a marker strictly associated with cell proliferation, and Keratin 5, a marker for the cytoskeleton of horizontal basal cells. Our results revealed a significant CYP-induced decrease in the number of proliferative cells in both epithelia, especially globose basal cells in the MOE, within the first 1-2 days postinjection. Recovery of cell renewal was apparent 6 days after injection. The immunohistochemical markers showed significantly higher levels of globose and horizontal basal cell proliferation in CYP-injected mice at 14 and 30 days postinjection compared with control mice. The prolonged proliferative activation of globose and horizontal basal cells suggests that, besides altering proliferation of olfactory epithelia, the epithelial substrate needed for successful cell renewal may be adversely affected by CYP.
Collapse
Affiliation(s)
- Kyle B Joseph
- Department of Biology and Vermont Chemosensory Group, University of Vermont, Burlington, VT, USA.,Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Nora Awadallah
- Department of Biology and Vermont Chemosensory Group, University of Vermont, Burlington, VT, USA.,City University of New York (CUNY) Neuroscience Collaborative, CUNY Graduate Center, New York City, NY, USA.,Department of Molecular, Cellular and Biomedical Sciences, The CUNY School of Medicine, City College, The City University of New York, New York City, NY, USA
| | - Eugene R Delay
- Department of Biology and Vermont Chemosensory Group, University of Vermont, Burlington, VT, USA
| | - Rona J Delay
- Department of Biology and Vermont Chemosensory Group, University of Vermont, Burlington, VT, USA
| |
Collapse
|
5
|
Chitinase-Like Protein Ym2 (Chil4) Regulates Regeneration of the Olfactory Epithelium via Interaction with Inflammation. J Neurosci 2021; 41:5620-5637. [PMID: 34016714 DOI: 10.1523/jneurosci.1601-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
The adult olfactory epithelium (OE) regenerates sensory neurons and nonsensory supporting cells from resident stem cells after injury. How supporting cells contribute to OE regeneration remains largely unknown. In this study, we elucidated a novel role of Ym2 (also known as Chil4 or Chi3l4), a chitinase-like protein expressed in supporting cells, in regulating regeneration of the injured OE in vivo in both male and female mice and cell proliferation/differentiation in OE colonies in vitro We found that Ym2 expression was enhanced in supporting cells after OE injury. Genetic knockdown of Ym2 in supporting cells attenuated recovery of the injured OE, while Ym2 overexpression by lentiviral infection accelerated OE regeneration. Similarly, Ym2 bidirectionally regulated cell proliferation and differentiation in OE colonies. Furthermore, anti-inflammatory treatment reduced Ym2 expression and delayed OE regeneration in vivo and cell proliferation/differentiation in vitro, which were counteracted by Ym2 overexpression. Collectively, this study revealed a novel role of Ym2 in OE regeneration and cell proliferation/differentiation of OE colonies via interaction with inflammatory responses, providing new clues to the function of supporting cells in these processes.SIGNIFICANCE STATEMENT The mammalian olfactory epithelium (OE) is a unique neural tissue that regenerates sensory neurons and nonsensory supporting cells throughout life and postinjury. How supporting cells contribute to this process is not entirely understood. Here we report that OE injury causes upregulation of a chitinase-like protein, Ym2, in supporting cells, which facilitates OE regeneration. Moreover, anti-inflammatory treatment reduces Ym2 expression and delays OE regeneration, which are counteracted by Ym2 overexpression. This study reveals an important role of supporting cells in OE regeneration and provides a critical link between Ym2 and inflammation in this process.
Collapse
|
6
|
Bryche B, Baly C, Meunier N. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res 2021; 384:589-605. [PMID: 33961125 PMCID: PMC8102665 DOI: 10.1007/s00441-021-03467-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Detection and discrimination of odorants by the olfactory system plays a pivotal role in animal survival. Olfactory-based behaviors must be adapted to an ever-changing environment. Part of these adaptations includes changes of odorant detection by olfactory sensory neurons localized in the olfactory epithelium. It is now well established that internal signals such as hormones, neurotransmitters, or paracrine signals directly affect the electric activity of olfactory neurons. Furthermore, recent data have shown that activity-dependent survival of olfactory neurons is important in the olfactory epithelium. Finally, as olfactory neurons are directly exposed to environmental toxicants and pathogens, the olfactory epithelium also interacts closely with the immune system leading to neuroimmune modulations. Here, we review how detection of odorants can be modulated in the vertebrate olfactory epithelium. We choose to focus on three cellular types of the olfactory epithelium (the olfactory sensory neuron, the sustentacular and microvillar cells) to present the diversity of modulation of the detection of odorant in the olfactory epithelium. We also present some of the growing literature on the importance of immune cells in the functioning of the olfactory epithelium, although their impact on odorant detection is only just beginning to be unravelled.
Collapse
Affiliation(s)
- Bertrand Bryche
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France
| | - Christine Baly
- Université Paris Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Nicolas Meunier
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France.
| |
Collapse
|
7
|
Diving into the streams and waves of constitutive and regenerative olfactory neurogenesis: insights from zebrafish. Cell Tissue Res 2020; 383:227-253. [PMID: 33245413 DOI: 10.1007/s00441-020-03334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The olfactory system is renowned for its functional and structural plasticity, with both peripheral and central structures displaying persistent neurogenesis throughout life and exhibiting remarkable capacity for regenerative neurogenesis after damage. In general, fish are known for their extensive neurogenic ability, and the zebrafish in particular presents an attractive model to study plasticity and adult neurogenesis in the olfactory system because of its conserved structure, relative simplicity, rapid cell turnover, and preponderance of neurogenic niches. In this review, we present an overview of the anatomy of zebrafish olfactory structures, with a focus on the neurogenic niches in the olfactory epithelium, olfactory bulb, and ventral telencephalon. Constitutive and regenerative neurogenesis in both the peripheral olfactory organ and central olfactory bulb of zebrafish is reviewed in detail, and a summary of current knowledge about the cellular origin and molecular signals involved in regulating these processes is presented. While some features of physiologic and injury-induced neurogenic responses are similar, there are differences that indicate that regeneration is not simply a reiteration of the constitutive proliferation process. We provide comparisons to mammalian neurogenesis that reveal similarities and differences between species. Finally, we present a number of open questions that remain to be answered.
Collapse
|
8
|
Awadallah N, Proctor K, Joseph KB, Delay ER, Delay RJ. Cyclophosphamide has Long-Term Effects on Proliferation in Olfactory Epithelia. Chem Senses 2020; 45:97-109. [PMID: 31844905 PMCID: PMC7446702 DOI: 10.1093/chemse/bjz075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy patients often experience chemosensory changes during and after drug therapy. The chemotherapy drug, cyclophosphamide (CYP), has known cytotoxic effects on sensory and proliferating cells of the taste system. Like the taste system, cells in the olfactory epithelia undergo continuous renewal. Therefore, we asked if a single injection of 75 mg/kg CYP would affect cell proliferation in the anterior dorsomedial region of the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) from 0 to 125 days after injection. Both epithelia showed a decrease in Ki67-labeled cells compared to controls at day 1 and no Ki67+ cells at day 2 postinjection. In the sensory layer of the MOE, cell proliferation began to recover 4 days after CYP injection and by 6 days, the rate of proliferation was significantly greater than controls. Ki67+ cells peaked 30 days postinjection, then declined to control levels at day 45. Similar temporal sequences of initial CYP-induced suppression of cell proliferation followed by elevated rates peaking 30-45 days postinjection were seen in the sustentacular layer of the MOE and all 3 areas (sensory, sustentacular, marginal) of the VNO. CYP affected proliferation in the sensory layer of the MOE more than the sustentacular layer and all 3 areas of the VNO. These findings suggest that chemotherapy involving CYP is capable of affecting cell renewal of the olfactory system and likely contributes to clinical loss of function during and after chemotherapy.
Collapse
Affiliation(s)
- Nora Awadallah
- Neuroscience Program, Marsh Life Science, University of Vermont, Burlington, USA
| | - Kara Proctor
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, USA
| | - Kyle B Joseph
- Department of Biology, Marsh Life Science, University of Vermont, Burlington, USA
| | - Eugene R Delay
- Neuroscience Program, Marsh Life Science, University of Vermont, Burlington, USA
- Department of Biology, Marsh Life Science, University of Vermont, Burlington, USA
| | - Rona J Delay
- Neuroscience Program, Marsh Life Science, University of Vermont, Burlington, USA
- Department of Biology, Marsh Life Science, University of Vermont, Burlington, USA
| |
Collapse
|
9
|
Demirler MC, Sakizli U, Bali B, Kocagöz Y, Eski SE, Ergönen A, Alkiraz AS, Bayramli X, Hassenklöver T, Manzini I, Fuss SH. Purinergic signalling selectively modulates maintenance but not repair neurogenesis in the zebrafish olfactory epithelium. FEBS J 2019; 287:2699-2722. [PMID: 31821713 DOI: 10.1111/febs.15170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/26/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
Olfactory sensory neurons (OSNs) of the vertebrate olfactory epithelium (OE) undergo continuous turnover but also regenerate efficiently when the OE is acutely damaged by traumatic injury. Two distinct pools of neuronal stem/progenitor cells, the globose (GBCs), and horizontal basal cells (HBCs) have been shown to selectively contribute to intrinsic OSN turnover and damage-induced OE regeneration, respectively. For both types of progenitors, their rate of cell divisions and OSN production must match the actual loss of cells to maintain or to re-establish sensory function. However, signals that communicate between neurons or glia cells of the OE and resident neurogenic progenitors remain largely elusive. Here, we investigate the effect of purinergic signaling on cell proliferation and OSN neurogenesis in the zebrafish OE. Purine stimulation elicits transient Ca2+ signals in OSNs and distinct non-neuronal cell populations, which are located exclusively in the basal OE and stain positive for the neuronal stem cell marker Sox2. The more apical population of Sox2-positive cells comprises evenly distributed glia-like sustentacular cells (SCs) and spatially restricted GBC-like cells, whereas the more basal population expresses the HBC markers keratin 5 and tumor protein 63 and lines the entire sensory OE. Importantly, exogenous purine stimulation promotes P2 receptor-dependent mitotic activity and OSN generation from sites where GBCs are located but not from HBCs. We hypothesize that purine compounds released from dying OSNs modulate GBC progenitor cell cycling in a dose-dependent manner that is proportional to the number of dying OSNs and, thereby, ensures a constant pool of sensory neurons over time.
Collapse
Affiliation(s)
- Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Uğurcan Sakizli
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Burak Bali
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Yiğit Kocagöz
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Sema Elif Eski
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Arda Ergönen
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Aysu Sevval Alkiraz
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Xalid Bayramli
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Thomas Hassenklöver
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Germany
| | - Stefan H Fuss
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| |
Collapse
|
10
|
Rotermund N, Schulz K, Hirnet D, Lohr C. Purinergic Signaling in the Vertebrate Olfactory System. Front Cell Neurosci 2019; 13:112. [PMID: 31057369 PMCID: PMC6477478 DOI: 10.3389/fncel.2019.00112] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Adenosine 5'-triphosphate (ATP) is an ubiquitous co-transmitter in the vertebrate brain. ATP itself, as well as its breakdown products ADP and adenosine are involved in synaptic transmission and plasticity, neuron-glia communication and neural development. Although purinoceptors have been demonstrated in the vertebrate olfactory system by means of histological techniques for many years, detailed insights into physiological properties and functional significance of purinergic signaling in olfaction have been published only recently. We review the current literature on purinergic neuromodulation, neuron-glia interactions and neurogenesis in the vertebrate olfactory system.
Collapse
Affiliation(s)
- Natalie Rotermund
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Kristina Schulz
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Daniela Hirnet
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Purinergic Signaling Pathway in Human Olfactory Neuronal Precursor Cells. Stem Cells Int 2019; 2019:2728786. [PMID: 31065271 PMCID: PMC6466875 DOI: 10.1155/2019/2728786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular ATP and trophic factors released by exocytosis modulate in vivo proliferation, migration, and differentiation in multipotent stem cells (MpSC); however, the purinoceptors mediating this signaling remain uncharacterized in stem cells derived from the human olfactory epithelium (hOE). Our aim was to determine the purinergic pathway in isolated human olfactory neuronal precursor cells (hONPC) that exhibit MpSC features. Cloning by limiting dilution from a hOE heterogeneous primary culture was performed to obtain a culture predominantly constituted by hONPC. Effectiveness of cloning to isolate MpSC-like precursors was corroborated through immunodetection of specific protein markers and by functional criteria such as self-renewal, proliferation capability, and excitability of differentiated progeny. P2 receptor expression in hONPC was determined by Western blot, and the role of these purinoceptors in the ATP-induced exocytosis and changes in cytosolic Ca2+ ([Ca2+]i) were evaluated using the fluorescent indicators FM1-43 and Fura-2 AM, respectively. The clonal culture was enriched with SOX2 and OCT3/4 transcription factors; additionally, the proportion of nestin-immunopositive cells, the proliferation capability, and functionality of differentiated progeny remained unaltered through the long-term clonal culture. hONPC expressed P2X receptor subtypes 1, 3-5, and 7, as well as P2Y2, 4, 6, and 11; ATP induced both exocytosis and a transient [Ca2+]i increase predominantly by activation of metabotropic P2Y receptors. Results demonstrated for the first time that ex vivo-expressed functional P2 receptors in MpSC-like hONPC regulate exocytosis and Ca2+ signaling. This purinergic-triggered release of biochemical messengers to the extracellular milieu might be involved in the paracrine signaling among hOE cells.
Collapse
|
12
|
Jia C, Keasey MP, Lovins C, Hagg T. Inhibition of astrocyte FAK-JNK signaling promotes subventricular zone neurogenesis through CNTF. Glia 2019; 66:2456-2469. [PMID: 30500112 DOI: 10.1002/glia.23498] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022]
Abstract
Astrocyte-derived ciliary neurotrophic factor (CNTF) promotes adult subventricular zone (SVZ) neurogenesis. We found that focal adhesion kinase (FAK) and JNK, but not ERK or P38, repress CNTF in vitro. Here, we defined the FAK-JNK pathway and its regulation of CNTF in mice, and the related leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), which promote stem cell renewal at the expense of neurogenesis. Intrastriatal injection of FAK inhibitor, FAK14, in adult male C57BL/6 mice reduced pJNK and increased CNTF expression in the SVZ-containing periventricular region. Injection of a JNK inhibitor increased CNTF without affecting LIF and IL-6, and increased SVZ proliferation and neuroblast formation. The JNK inhibitor had no effect in CNTF-/- mice, suggesting that JNK inhibits SVZ neurogenesis by repressing CNTF. Inducible deletion of FAK in astrocytes increased SVZ CNTF and neurogenesis, but not LIF and IL-6. Intrastriatal injection of inhibitors suggested that P38 reduces LIF and IL-6 expression, whereas ERK induces CNTF and LIF. Intrastriatal FAK inhibition increased LIF, possibly through ERK, and IL-6 through another pathway that does not involve P38. Systemic injection of FAK14 also inhibited JNK while increasing CNTF, but did not affect P38 and ERK activation, or LIF and IL-6 expression. Importantly, systemic FAK14 increased SVZ neurogenesis in wild-type C57BL/6 and CNTF+/+ mice, but not in CNTF-/- littermates, indicating that it acts by upregulating CNTF. These data show a surprising differential regulation of related cytokines and identify the FAK-JNK-CNTF pathway as a specific target in astrocytes to promote neurogenesis and possibly neuroprotection in neurological disorders.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
13
|
Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy. Stem Cells Int 2017; 2017:6823917. [PMID: 29109742 PMCID: PMC5646323 DOI: 10.1155/2017/6823917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.
Collapse
|
14
|
Weng PL, Vinjamuri M, Ovitt CE. Ascl3 transcription factor marks a distinct progenitor lineage for non-neuronal support cells in the olfactory epithelium. Sci Rep 2016; 6:38199. [PMID: 27910949 PMCID: PMC5133605 DOI: 10.1038/srep38199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/04/2016] [Indexed: 12/30/2022] Open
Abstract
The olfactory epithelium (OE) is composed of olfactory sensory neurons (OSNs), sustentacular supporting cells, and several types of non-neuronal cells. Stem and progenitor cells are located basally, and are the source of all cell types needed to maintain OE homeostasis. Here, we report that Ascl3, a basic helix-loop-helix transcription factor, is expressed in the developing OE. Lineage tracing experiments demonstrate that the non-neuronal microvillar cells and Bowman's glands are exclusively derived from Ascl3+ progenitor cells in the OE during development. Following chemically-induced injury, Ascl3 expression is activated in a subset of horizontal basal cells (HBCs), which repopulate all microvillar cells and Bowman's glands during OE regeneration. After ablation of Ascl3-expressing cells, the OE can regenerate, but lacks the non-neuronal microvillar and Bowman's gland support cells. These results demonstrate that Ascl3 marks progenitors that are lineage-committed strictly to microvillar cells and Bowman's glands, and highlight the requirement for these cell types to support OE homeostasis.
Collapse
Affiliation(s)
- Pei-Lun Weng
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Mridula Vinjamuri
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Catherine E. Ovitt
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| |
Collapse
|
15
|
Rivière S, Soubeyre V, Jarriault D, Molinas A, Léger-Charnay E, Desmoulins L, Grebert D, Meunier N, Grosmaitre X. High Fructose Diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice. Sci Rep 2016; 6:34011. [PMID: 27659313 PMCID: PMC5034277 DOI: 10.1038/srep34011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Type 2 Diabetes (T2D), a major public health issue reaching worldwide epidemic, has been correlated with lower olfactory abilities in humans. As olfaction represents a major component of feeding behavior, its alteration may have drastic consequences on feeding behaviors that may in turn aggravates T2D. In order to decipher the impact of T2D on the olfactory epithelium, we fed mice with a high fructose diet (HFruD) inducing early diabetic state in 4 to 8 weeks. After only 4 weeks of this diet, mice exhibited a dramatic decrease in olfactory behavioral capacities. Consistently, this decline in olfactory behavior was correlated to decreased electrophysiological responses of olfactory neurons recorded as a population and individually. Our results demonstrate that, in rodents, olfaction is modified by HFruD-induced diabetes. Functional, anatomical and behavioral changes occurred in the olfactory system at a very early stage of the disease.
Collapse
Affiliation(s)
- Sébastien Rivière
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Vanessa Soubeyre
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - David Jarriault
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Adrien Molinas
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Elise Léger-Charnay
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Lucie Desmoulins
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Denise Grebert
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Domaine de Vilvert, F-78350 Jouy-en-Josas, IFR 144 Neuro-Sud Paris, France
| | - Nicolas Meunier
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Domaine de Vilvert, F-78350 Jouy-en-Josas, IFR 144 Neuro-Sud Paris, France.,Université de Versailles Saint Quentin en Yvelines, F-78000 Versailles, France
| | - Xavier Grosmaitre
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| |
Collapse
|
16
|
Carracedo G, Crooke A, Guzman-Aranguez A, Pérez de Lara MJ, Martin-Gil A, Pintor J. The role of dinucleoside polyphosphates on the ocular surface and other eye structures. Prog Retin Eye Res 2016; 55:182-205. [PMID: 27421962 DOI: 10.1016/j.preteyeres.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/17/2022]
Abstract
Dinucleoside polyphosphates comprises a group of dinucleotides formed by two nucleosides linked by a variable number of phosphates, abbreviated NpnN (where n represents the number of phosphates). These compounds are naturally occurring substances present in tears, aqueous humour and in the retina. As the consequence of their presence, these dinucleotides contribute to many ocular physiological processes. On the ocular surface, dinucleoside polyphosphates can stimulate tear secretion, mucin release from goblet cells and they help epithelial wound healing by accelerating cell migration rate. These dinucleotides can also stimulate the presence of proteins known to protect the ocular surface against microorganisms, such as lysozyme and lactoferrin. One of the latest discoveries is the ability of some dinucleotides to facilitate the paracellular way on the cornea, therefore allowing the delivery of compounds, such as antiglaucomatous ones, more easily within the eye. The compound Ap4A has been described being abnormally elevated in patient's tears suffering of dry eye, Sjogren syndrome, congenital aniridia, or after refractive surgery, suggesting this molecule as biomarker for dry eye condition. At the intraocular level, some diadenosine polyphosphates are abnormally elevated in glaucoma patients, and this can be related to the stimulation of a P2Y2 receptor that increases the chloride efflux and water movement in the ciliary epithelium. In the retina, the dinucleotide dCp4U, has been proven to be useful to help in the recovery of retinal detachments. Altogether, dinucleoside polyphosphates are a group of compounds which present relevant physiological actions but which also can perform promising therapeutic benefits.
Collapse
Affiliation(s)
- Gonzalo Carracedo
- Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba Martin-Gil
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Lattanzi W, Geloso MC. Editorial: Crosstalk between the Osteogenic and Neurogenic Stem Cell Niches: How Far are They from Each Other? Front Cell Neurosci 2016; 9:504. [PMID: 26834561 PMCID: PMC4717324 DOI: 10.3389/fncel.2015.00504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Affiliation(s)
- Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Faculty of Medicine and Surgery "A. Gemelli", Università Cattolica del Sacro CuoreRome, Italy; Latium Musculoskeletal Tissue BankRome, Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Faculty of Medicine and Surgery "A. Gemelli", Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
18
|
Hutch CR, Hegg CC. Cannabinoid receptor signaling induces proliferation but not neurogenesis in the mouse olfactory epithelium. NEUROGENESIS 2016; 3:e1118177. [PMID: 27606334 PMCID: PMC4973592 DOI: 10.1080/23262133.2015.1118177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 11/21/2022]
Abstract
The olfactory epithelium actively generates neurons through adulthood, and this neurogenesis is tightly regulated by multiple factors that are not fully defined. Here, we examined the role of cannabinoids in the regulation of neurogenesis in the mouse olfactory epithelium. In vivo proliferation and cell lineage studies were performed in mice (C57BL/6 and cannabinoid type 1 and 2 receptor deficient strains) treated with cannabinoids directly (WIN 55,212–2 or 2-arachidonylglycerol ether) or indirectly via inhibition of cannabinoid hydrolytic enzymes. Cannabinoids increased proliferation in neonatal and adult mice, and had no effect on proliferation in cannabinoid type 1 and 2 receptor deficient adult mice. Pretreatment with the cannabinoid type1 receptor antagonist AM251 decreased cannabinoid-induced proliferation in adult mice. Despite a cannabinoid-induced increase in proliferation, there was no change in newly generated neurons or non-neuronal cells 16 d post-treatment. However, cannabinoid administration increased apoptotic cell death at 72 hours post-treatment and by 16 d the level of apoptosis dropped to control levels. Thus, cannabinoids induce proliferation, but do not induce neurogenesis nor non-neuronal cell generation. Cannabinoid receptor signaling may regulate the balance of progenitor cell survival and proliferation in adult mouse olfactory epithelium.
Collapse
Affiliation(s)
- Chelsea R Hutch
- Neuroscience Program, Michigan State University, East Lansing, MI, USA; Environmental and Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA; Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Colleen C Hegg
- Neuroscience Program, Michigan State University, East Lansing, MI, USA; Environmental and Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
Goss GM, Chaudhari N, Hare JM, Nwojo R, Seidler B, Saur D, Goldstein BJ. Differentiation potential of individual olfactory c-Kit+ progenitors determined via multicolor lineage tracing. Dev Neurobiol 2015; 76:241-51. [PMID: 26016700 DOI: 10.1002/dneu.22310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/14/2015] [Accepted: 05/22/2015] [Indexed: 11/10/2022]
Abstract
Olfactory tissue undergoes lifelong renewal, due to the presence of basal neural stem cells. Multiple categories of globose basal stem cells have been identified, expressing markers such as Lgr5, Ascl1, GBC-2, and c-Kit. The differentiation potential of individual globose cells has remained unclear. Here, we utilized Cre/loxP lineage tracing with a multicolor reporter system to define c-Kit+ cell contributions at clonal resolution. We determined that reporter expression permitted identification of c-Kit derived progeny with fine cellular detail, and that clones were found to be comprised by neurons only, microvillar cells only, microvillar cells and neurons, or gland/duct cells. Quantification of reporter-labeled cells indicated that c-Kit+ cells behave as transit amplifying or immediate precursors, although we also found evidence for longer-term c-Kit+ cell contributions. Our results from the application of multicolor fate mapping delineate the clonal contributions of c-Kit+ cells to olfactory epithelial renewal, and provide novel insight into tissue maintenance of an adult neuroepithelium.
Collapse
Affiliation(s)
- Garrett M Goss
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Nirupa Chaudhari
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Raphael Nwojo
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Barbara Seidler
- Department of Internal Medicine, Technical University of Munich, München, Germany
| | - Dieter Saur
- Department of Internal Medicine, Technical University of Munich, München, Germany
| | - Bradley J Goldstein
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
20
|
Geloso MC, Corvino V, Di Maria V, Marchese E, Michetti F. Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Front Cell Neurosci 2015; 9:85. [PMID: 25852477 PMCID: PMC4360818 DOI: 10.3389/fncel.2015.00085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Neuropeptides are emerging as key regulators of stem cell niche activities in health and disease, both inside and outside the central nervous system (CNS). Among them, neuropeptide Y (NPY), one of the most abundant neuropeptides both in the nervous system and in non-neural districts, has become the focus of much attention for its involvement in a wide range of physiological and pathological conditions, including the modulation of different stem cell activities. In particular, a pro-neurogenic role of NPY has been evidenced in the neurogenic niche, where a direct effect on neural progenitors has been demonstrated, while different cellular types, including astrocytes, microglia and endothelial cells, also appear to be responsive to the peptide. The marked modulation of the NPY system during several pathological conditions that affect neurogenesis, including stress, seizures and neurodegeneration, further highlights the relevance of this peptide in the regulation of adult neurogenesis. In view of the considerable interest in understanding the mechanisms controlling neural cell fate, this review aims to summarize and discuss current data on NPY signaling in the different cellular components of the neurogenic niche in order to elucidate the complexity of the mechanisms underlying the modulatory properties of this peptide.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
21
|
Jia C, Hegg CC. Effect of IP3R3 and NPY on age-related declines in olfactory stem cell proliferation. Neurobiol Aging 2014; 36:1045-56. [PMID: 25482245 DOI: 10.1016/j.neurobiolaging.2014.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 10/16/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022]
Abstract
Losing the sense of smell because of aging compromises health and quality of life. In the mouse olfactory epithelium, aging reduces the capacity for tissue homeostasis and regeneration. The microvillous cell subtype that expresses both inositol trisphosphate receptor type 3 (IP3R3) and the neuroproliferative factor neuropeptide Y (NPY) is critical for regulation of homeostasis, yet its role in aging is undefined. We hypothesized that an age-related decline in IP3R3 expression and NPY signaling underlie age-related homeostatic changes and olfactory dysfunction. We found a decrease in IP3R3(+) and NPY(+) microvillous cell numbers and NPY protein and a reduced sensitivity to NPY-mediated proliferation over 24 months. However, in IP3R3-deficient mice, there was no further age-related reduction in cell numbers, proliferation, or olfactory function compared with wild type. The proliferative response was impaired in aged IP3R3-deficient mice when injury was caused by satratoxin G, which induces IP3R3-mediated NPY release, but not by bulbectomy, which does not evoke NPY release. These data identify IP3R3 and NPY signaling as targets for improving recovery following olfactotoxicant exposure.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Colleen C Hegg
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
22
|
Pfister S, Weber T, Härtig W, Schwerdel C, Elsaesser R, Knuesel I, Fritschy JM. Novel role of cystic fibrosis transmembrane conductance regulator in maintaining adult mouse olfactory neuronal homeostasis. J Comp Neurol 2014; 523:406-30. [PMID: 25271146 DOI: 10.1002/cne.23686] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 02/03/2023]
Abstract
The olfactory epithelium (OE) of mice deficient in cystic fibrosis transmembrane conductance regulator (CFTR) exhibits ion transport deficiencies reported in human CF airways, as well as progressive neuronal loss, suggesting defects in olfactory neuron homeostasis. Microvillar cells, a specialized OE cell-subtype, have been implicated in maintaining tissue homeostasis. These cells are endowed with a PLCβ2/IP3 R3/TRPC6 signal transduction pathway modulating release of neuropeptide Y (NPY), which stimulates OE stem cell activity. It is unknown, however, whether microvillar cells also mediate the deficits observed in CFTR-null mice. Here we show that Cftr mRNA in mouse OE is exclusively localized in microvillar cells and CFTR immunofluorescence is coassociated with the scaffolding protein NHERF-1 and PLCβ2 in microvilli. In CFTR-null mice, PLCβ2 was undetectable, NHERF-1 mislocalized, and IP3 R3 more intensely stained, along with increased levels of NPY, suggesting profound alteration of the PLCβ2/IP3 R3 signaling pathway. In addition, basal olfactory neuron homeostasis was altered, shown by increased progenitor cell proliferation, differentiation, and apoptosis and by reduced regenerative capacity following methimazole-induced neurodegeneration. The importance of CFTR in microvillar cells was further underscored by decreased thickness of the OE mucus layer and increased numbers of immune cells within this tissue in CFTR-KO mice. Finally, we observed enhanced immune responses to an acute viral-like infection, as well as hyper-responsiveness to chemical and physical stimuli applied intranasally. Taken together, these data strengthen the notion that microvillar cells in the OE play a key role in maintaining tissue homeostasis and identify several mechanisms underlying this regulation through the multiple functions of CFTR.
Collapse
Affiliation(s)
- Sandra Pfister
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
An IP3R3- and NPY-expressing microvillous cell mediates tissue homeostasis and regeneration in the mouse olfactory epithelium. PLoS One 2013; 8:e58668. [PMID: 23516531 PMCID: PMC3596314 DOI: 10.1371/journal.pone.0058668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Calcium-dependent release of neurotrophic factors plays an important role in the maintenance of neurons, yet the release mechanisms are understudied. The inositol triphosphate (IP3) receptor is a calcium release channel that has a physiological role in cell growth, development, sensory perception, neuronal signaling and secretion. In the olfactory system, the IP3 receptor subtype 3 (IP3R3) is expressed exclusively in a microvillous cell subtype that is the predominant cell expressing neurotrophic factor neuropeptide Y (NPY). We hypothesized that IP3R3-expressing microvillous cells secrete sufficient NPY needed for both the continual maintenance of the neuronal population and for neuroregeneration following injury. We addressed this question by assessing the release of NPY and the regenerative capabilities of wild type, IP3R3(+/-), and IP3R3(-/-) mice. Injury, simulated using extracellular ATP, induced IP3 receptor-mediated NPY release in wild-type mice. ATP-evoked NPY release was impaired in IP3R3(-/-) mice, suggesting that IP3R3 contributes to NPY release following injury. Under normal physiological conditions, both IP3R3(-/-) mice and explants from these mice had fewer progenitor cells that proliferate and differentiate into immature neurons. Although the number of mature neurons and the in vivo rate of proliferation were not altered, the proliferative response to the olfactotoxicant satratoxin G and olfactory bulb ablation injury was compromised in the olfactory epithelium of IP3R3(-/-) mice. The reductions in both NPY release and number of progenitor cells in IP3R3(-/-) mice point to a role of the IP3R3 in tissue homeostasis and neuroregeneration. Collectively, these data suggest that IP3R3 expressing microvillous cells are actively responsive to injury and promote recovery.
Collapse
|
24
|
Decressac M, Barker RA. Neuropeptide Y and its role in CNS disease and repair. Exp Neurol 2012; 238:265-72. [PMID: 23022456 DOI: 10.1016/j.expneurol.2012.09.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/09/2012] [Accepted: 09/20/2012] [Indexed: 01/04/2023]
Abstract
Neuropeptide Y (NPY) is widely expressed throughout the CNS and exerts a number of important physiological functions as well as playing a role in pathological conditions such as obesity, anxiety, epilepsy, chronic pain and neurodegenerative disorders. In this review, we highlight some of the recent advances in our understanding of NPY biology and how this may help explain not only its role in health and disease, but also its possible use therapeutically.
Collapse
Affiliation(s)
- M Decressac
- Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.
| | | |
Collapse
|
25
|
Lucero MT. Peripheral modulation of smell: fact or fiction? Semin Cell Dev Biol 2012; 24:58-70. [PMID: 22986099 DOI: 10.1016/j.semcdb.2012.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 09/06/2012] [Indexed: 01/01/2023]
Abstract
Despite studies dating back 30 or more years showing modulation of odorant responses at the level of the olfactory epithelium, most descriptions of the olfactory system infer that odorant signals make their way from detection by cilia on olfactory sensory neurons to the olfactory bulb unaltered. Recent identification of multiple subtypes of microvillar cells and identification of neuropeptide and neurotransmitter expression in the olfactory mucosa add to the growing body of literature for peripheral modulation in the sense of smell. Complex mechanisms including perireceptor events, modulation of sniff rates, and changes in the properties of sensory neurons match the sensitivity of olfactory sensory neurons to the external odorant environment, internal nutritional status, reproductive status, and levels of arousal or stress. By furthering our understanding of the players mediating peripheral olfaction, we may open the door to novel approaches for modulating the sense of smell in both health and disease.
Collapse
Affiliation(s)
- Mary T Lucero
- Department of Physiology, School of Medicine, University of Utah, 420 Chipeta Way Ste, 1700 Salt Lake City, UT 84108, USA.
| |
Collapse
|
26
|
Negroni J, Meunier N, Monnerie R, Salesse R, Baly C, Caillol M, Congar P. Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats. PLoS One 2012; 7:e45266. [PMID: 23024812 PMCID: PMC3443224 DOI: 10.1371/journal.pone.0045266] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/17/2012] [Indexed: 01/13/2023] Open
Abstract
Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes.
Collapse
Affiliation(s)
- Julia Negroni
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
| | - Nicolas Meunier
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
- Université de Versailles Saint-Quentin en Yvelines, Versailles, France
| | - Régine Monnerie
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
| | - Roland Salesse
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
| | - Christine Baly
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
| | - Monique Caillol
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
| | - Patrice Congar
- INRA, UR1197 Neurobiologie de l′Olfaction et Modélisation en Imagerie, Jouy-en-Josas, France
- IFR144, NeuroSud Paris, Gif-Sur-Yvette, France
- * E-mail:
| |
Collapse
|
27
|
Pfister S, Dietrich MG, Sidler C, Fritschy JM, Knuesel I, Elsaesser R. Characterization and turnover of CD73/IP(3)R3-positive microvillar cells in the adult mouse olfactory epithelium. Chem Senses 2012; 37:859-68. [PMID: 22952298 DOI: 10.1093/chemse/bjs069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The main olfactory epithelium consists of 4 major cell types: sensory neurons, supporting cells, microvillar cells, and basal progenitor cells. Several populations of microvillar olfactory cells have been described, whose properties are not yet fully understood. In this study, we aimed to clarify the classification of microvillar cells by introducing a specific marker, CD73. Furthermore, we investigated the turnover of CD73-microvillar cells during adult life. Using direct and indirect immunofluorescence in adult main olfactory epithelium, we first demonstrate that ecto-5'-nucleotidase (CD73) is a reliable marker for microvillar cells reported previously to express phospholipase C β2 (PLC β2) along with type 3 IP(3) receptors (IP(3)R3) and transient receptor potential channels 6 (TRPC6), as well as for cells labeled by transgenic expression of tauGFP driven by the IP(3)R3 promoter. The ubiquitous CD73 immunoreactivity in the microvilli of these 2 cell populations indicates that they correspond to the same cell type (CD73-microvillar cell), endowed with a signal transduction cascade mobilizing Ca(++) from intracellular stores. These microvillar cells respond to odors, possess a basal process, and do not degenerate after bulbectomy, suggesting that they contribute to cellular homeostasis in the olfactory epithelium. Next, we examined whether CD73-microvillar cells undergo turnover in the adult olfactory epithelium. By combining CD73 immunofluorescence and BrdU pulse labeling, we show delayed BrdU incorporation in a small fraction of CD73-positive microvillar cells, which persists for several weeks after BrdU administration. These findings indicate that CD73-microvillar cells likely differentiate from proliferating progenitor cells and have a slow turnover despite their apical position in the olfactory epithelium. These combined properties are unique among olfactory cells, in line with the possibility that they might regulate cellular homeostasis driven by extracellular ATP and adenosine.
Collapse
Affiliation(s)
- Sandra Pfister
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|