1
|
Jia Q, Li J, Guo X, Li Y, Wu Y, Peng Y, Fang Z, Zhang X. Neuroprotective effects of chaperone-mediated autophagy in neurodegenerative diseases. Neural Regen Res 2024; 19:1291-1298. [PMID: 37905878 PMCID: PMC11467915 DOI: 10.4103/1673-5374.385848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins. Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular homeostasis, while providing nutrients and support for cell survival. Chaperone-mediated autophagy activity can be detected in almost all cells, including neurons. Owing to the extreme sensitivity of neurons to their environmental changes, maintaining neuronal homeostasis is critical for neuronal growth and survival. Chaperone-mediated autophagy dysfunction is closely related to central nervous system diseases. It has been shown that neuronal damage and cell death are accompanied by chaperone-mediated autophagy dysfunction. Under certain conditions, regulation of chaperone-mediated autophagy activity attenuates neurotoxicity. In this paper, we review the changes in chaperone-mediated autophagy in neurodegenerative diseases, brain injury, glioma, and autoimmune diseases. We also summarize the most recent research progress on chaperone-mediated autophagy regulation and discuss the potential of chaperone-mediated autophagy as a therapeutic target for central nervous system diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jin Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
- Department of Critical Care Medicine, Air Force Medical Center, Beijing, China
| | - Xiaofeng Guo
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yi Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - You Wu
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuliang Peng
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xijing Zhang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Endoplasmic reticulum homeostasis: a potential target for diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1182848. [PMID: 37383398 PMCID: PMC10296190 DOI: 10.3389/fendo.2023.1182848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
3
|
Wang L, Liu L, Han C, Jiang H, Ma K, Guo S, Xia Y, Wan F, Huang J, Xiong N, Wang T. Histone Deacetylase 4 Inhibition Reduces Rotenone-Induced Alpha-Synuclein Accumulation via Autophagy in SH-SY5Y Cells. Brain Sci 2023; 13:brainsci13040670. [PMID: 37190635 DOI: 10.3390/brainsci13040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
(1) Background: Parkinson's disease (PD) is the most common movement disorder. Imbalanced protein homeostasis and α-syn aggregation are involved in PD pathogenesis. Autophagy is related to the occurrence and development of PD and can be regulated by histone deacetylases (HDACs). Various inhibitors of HDACs exert neuroprotective effects within in vitro and in vivo models of PD. HDAC4, a class Ⅱ HDAC, colocalizes with α-synuclein and ubiquitin in Lewy bodies and also accumulates in the nuclei of dopaminergic neurons in PD models. (2) Methods: In the present study, the gene expression profile of HDACs from two previously reported datasets in the GEO database was analyzed, and the RNA levels of HDAC4 in brain tissues were compared between PD patients and healthy controls. In vitro, SH-SY5Y cells transfected with HDAC4 shRNA or pretreated with mc1568 were treated with 1 μM of rotenone for 24 h. Then, the levels of α-syn, LC3, and p62 were detected using Western blot analysis and immunofluorescent staining, and cell viabilities were detected using Cell Counting Kit-8 (CCK-8). (3) Results: HDAC4 was highly expressed in PD substantia nigra and locus coeruleus. Mc1568, an inhibitor of HDAC4, decreased α-synuclein levels in rotenone-treated SH-SY5Y cells in a concentration-dependent manner and activated autophagy, which was impaired by rotenone. The knockdown of HDAC4 reversed rotenone-induced α-syn accumulation in SH-SY5Y cells and protected the neurons by enhancing autophagy. (4) Conclusions: HDAC4 is a potential therapeutic target for PD. The inhibition of HDAC4 by mc1568 or a gene block can reduce α-syn levels by regulating the autophagy process in PD. Mc1568 is a promising therapeutic agent for PD and other disorders related to α-syn accumulation.
Collapse
Affiliation(s)
- Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiyi Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
A Review on Autophagy in Orofacial Neuropathic Pain. Cells 2022; 11:cells11233842. [PMID: 36497100 PMCID: PMC9735968 DOI: 10.3390/cells11233842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Orofacial neuropathic pain indicates pain caused by a lesion or diseases of the somatosensory nervous system. It is challenging for the clinician to diagnose and manage orofacial neuropathic pain conditions due to the considerable variability between individual clinical presentations and a lack of understanding of the mechanisms underlying the etiology and pathogenesis. In the last few decades, researchers have developed diagnostic criteria, questionnaires, and clinical assessment methods for the diagnosis of orofacial neuropathic pain. Recently, researchers have observed the role of autophagy in neuronal dysfunction as well as in the modulation of neuropathic pain. On this basis, in the present review, we highlight the characteristics, classification, and clinical assessment of orofacial neuropathic pain. Additionally, we introduce autophagy and its potential role in the modulation of orofacial neuropathic pain, along with a brief overview of the pathogenesis, which in future may reveal new possible targets for treating this condition.
Collapse
|
5
|
Drobny A, Prieto Huarcaya S, Dobert J, Kluge A, Bunk J, Schlothauer T, Zunke F. The role of lysosomal cathepsins in neurodegeneration: Mechanistic insights, diagnostic potential and therapeutic approaches. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119243. [PMID: 35217144 DOI: 10.1016/j.bbamcr.2022.119243] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Lysosomes are ubiquitous organelles with a fundamental role in maintaining cellular homeostasis by mediating degradation and recycling processes. Cathepsins are the most abundant lysosomal hydrolyses and are responsible for the bulk degradation of various substrates. A correct autophagic function is essential for neuronal survival, as most neurons are post-mitotic and thus susceptible to accumulate cellular components. Increasing evidence suggests a crucial role of the lysosome in neurodegeneration as a key regulator of aggregation-prone and disease-associated proteins, such as α-synuclein, β-amyloid and huntingtin. Particularly, alterations in lysosomal cathepsins CTSD, CTSB and CTSL can contribute to the pathogenesis of neurodegenerative diseases as seen for neuronal ceroid lipofuscinosis, synucleinopathies (Parkinson's disease, Dementia with Lewy Body and Multiple System Atrophy) as well as Alzheimer's and Huntington's disease. In this review, we provide an overview of recent evidence implicating CTSD, CTSB and CTSL in neurodegeneration, with a special focus on the role of these enzymes in α-synuclein metabolism. In addition, we summarize the potential role of lysosomal cathepsins as clinical biomarkers in neurodegenerative diseases and discuss potential therapeutic approaches by targeting lysosomal function.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jan Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Annika Kluge
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Josina Bunk
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
6
|
Assaye MA, Gizaw ST. Chaperone-Mediated Autophagy and Its Implications for Neurodegeneration and Cancer. Int J Gen Med 2022; 15:5635-5649. [PMID: 35734200 PMCID: PMC9207255 DOI: 10.2147/ijgm.s368364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Proteostasis, also known as protein homeostasis, is critical for cell survival. Autophagy is a cellular process that degrades and recycles damaged or long-lived proteins, misfolded proteins, and damaged or abnormal organelles in order to preserve homeostasis. Among the three forms of autophagy, chaperone-mediated autophagy (CMA) is distinct from macroautophagy and microautophagy; it does not require the formation of vacuoles and only degrades selected individual proteins. CMA helps to maintain cellular homeostasis by regulating protein quality, bioenergetics, and substrate-associated cellular processes at the right moment. This pathway's dysfunction has been linked to several diseases and disorders. Neurodegenerative diseases and cancer have received the most attention. In various neurodegenerative disorders, especially in their later stages, CMA activity declines. CMA has been shown to act as a tumor suppressor in cancer by destroying specific tumor promoters. Once a tumor has grown, it also helps tumor survival and the metastatic cascade. The presence of changes in CMA in these diseases disorders raises the idea of targeting CMA to restore cellular homeostasis as a potential therapeutic method. Manipulation of CMA activity may be effective therapeutic strategies for treating these diseases. Therefore, in this paper; we introduce the basic processes, regulatory mechanisms, and physiological functions of CMA; evidences supporting the role of impaired CMA function in neurodegeneration and cancer; and the potential of how targeting CMA could be a promising therapeutic method for the two diseases.
Collapse
Affiliation(s)
- Masresha Ahmed Assaye
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon T Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Engelender S, Stefanis L, Oddo S, Bellucci A. Can We Treat Neurodegenerative Proteinopathies by Enhancing Protein Degradation? Mov Disord 2022; 37:1346-1359. [PMID: 35579450 DOI: 10.1002/mds.29058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative proteinopathies are defined as a class of neurodegenerative disorders, with either genetic or sporadic age-related onset, characterized by the pathological accumulation of aggregated protein deposits. These mainly include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) as well as frontotemporal lobar degeneration (FTLD). The deposition of abnormal protein aggregates in the brain of patients affected by these disorders is thought to play a causative role in neuronal loss and disease progression. On that account, the idea of improving the clearance of pathological protein aggregates has taken hold as a potential therapeutic strategy. Among the possible approaches to pursue for reducing disease protein accumulation, there is the stimulation of the main protein degradation machineries of eukaryotic cells: the ubiquitin proteasomal system (UPS) and autophagy lysosomal pathway (ALP). Of note, several clinical trials testing the efficacy of either UPS- or ALP-active compounds are currently ongoing. Here, we discuss the main gaps and controversies emerging from experimental studies and clinical trials assessing the therapeutic efficacy of modulators of either the UPS or ALP in neurodegenerative proteinopathies, to gather whether they may constitute a real gateway from these disorders. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Simone Engelender
- Department of Biochemistry, The B. Rappaport Faculty of Medicine and Institute of Medical Research, Technion-Israel Institute of Technology, Haifa, Israel
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
8
|
Prieto Huarcaya S, Drobny A, Marques ARA, Di Spiezio A, Dobert JP, Balta D, Werner C, Rizo T, Gallwitz L, Bub S, Stojkovska I, Belur NR, Fogh J, Mazzulli JR, Xiang W, Fulzele A, Dejung M, Sauer M, Winner B, Rose-John S, Arnold P, Saftig P, Zunke F. Recombinant pro-CTSD (cathepsin D) enhances SNCA/α-Synuclein degradation in α-Synucleinopathy models. Autophagy 2022; 18:1127-1151. [PMID: 35287553 PMCID: PMC9196656 DOI: 10.1080/15548627.2022.2045534] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by the abnormal intracellular accumulation of SNCA/α-synuclein. While the exact mechanisms underlying SNCA pathology are not fully understood, increasing evidence suggests the involvement of autophagy as well as lysosomal deficiencies. Because CTSD (cathepsin D) has been proposed to be the major lysosomal protease involved in SNCA degradation, its deficiency has been linked to the presence of insoluble SNCA conformers in the brain of mice and humans as well as to the transcellular transmission of SNCA aggregates. We here postulate that SNCA degradation can be enhanced by the application of the recombinant human proform of CTSD (rHsCTSD). Our results reveal that rHsCTSD is efficiently endocytosed by neuronal cells, correctly targeted to lysosomes and matured to an enzymatically active protease. In dopaminergic neurons derived from induced pluripotent stem cells (iPSC) of PD patients harboring the A53T mutation within the SNCA gene, we confirm the reduction of insoluble SNCA after treatment with rHsCTSD. Moreover, we demonstrate a decrease of pathological SNCA conformers in the brain and within primary neurons of a ctsd-deficient mouse model after dosing with rHsCTSD. Boosting lysosomal CTSD activity not only enhanced SNCA clearance in human and murine neurons as well as tissue, but also restored endo-lysosome and autophagy function. Our findings indicate that CTSD is critical for SNCA clearance and function. Thus, enzyme replacement strategies utilizing CTSD may also be of therapeutic interest for the treatment of PD and other synucleinopathies aiming to decrease the SNCA burden.Abbreviations: aa: amino acid; SNCA/α-synuclein: synuclein alpha; APP: amyloid beta precursor protein; BBB: blood brain barrier; BF: basal forebrain; CBB: Coomassie Brilliant Blue; CLN: neuronal ceroid lipofuscinosis; CNL10: neuronal ceroid lipofuscinosis type 10; Corr.: corrected; CTSD: cathepsin D; CTSB: cathepsin B; DA: dopaminergic; DA-iPSn: induced pluripotent stem cell-derived dopaminergic neurons; dox: doxycycline; ERT: enzyme replacement therapy; Fx: fornix, GBA/β-glucocerebrosidase: glucosylceramidase beta; h: hour; HC: hippocampus; HT: hypothalamus; i.c.: intracranially; IF: immunofluorescence; iPSC: induced pluripotent stem cell; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LSDs: lysosomal storage disorders; MAPT: microtubule associated protein tau; M6P: mannose-6-phosphate; M6PR: mannose-6-phosphate receptor; MB: midbrain; mCTSD: mature form of CTSD; neurofil.: neurofilament; PD: Parkinson disease; proCTSD: proform of CTSD; PRNP: prion protein; RFU: relative fluorescence units; rHsCTSD: recombinant human proCTSD; SAPC: Saposin C; SIM: structured illumination microscopy; T-insol: Triton-insoluble; T-sol: Triton-soluble; TEM: transmission electron microscopy, TH: tyrosine hydroxylase; Thal: thalamus.
Collapse
Affiliation(s)
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - André R A Marques
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), Nova Medical School, Nms, Nova University Lisbon, Lisboa, Portugal
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Simon Bub
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Iva Stojkovska
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | | - Joseph R Mazzulli
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| |
Collapse
|
9
|
Chaperone-Mediated Autophagy in Neurodegenerative Diseases and Acute Neurological Insults in the Central Nervous System. Cells 2022; 11:cells11071205. [PMID: 35406769 PMCID: PMC8997510 DOI: 10.3390/cells11071205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an important function that mediates the degradation of intracellular proteins and organelles. Chaperone-mediated autophagy (CMA) degrades selected proteins and has a crucial role in cellular proteostasis under various physiological and pathological conditions. CMA dysfunction leads to the accumulation of toxic protein aggregates in the central nervous system (CNS) and is involved in the pathogenic process of neurodegenerative diseases, including Parkinson’s disease and Alzheimer’s disease. Previous studies have suggested that the activation of CMA to degrade aberrant proteins can provide a neuroprotective effect in the CNS. Recent studies have shown that CMA activity is upregulated in damaged neural tissue following acute neurological insults, such as cerebral infarction, traumatic brain injury, and spinal cord injury. It has been also suggested that various protein degradation mechanisms are important for removing toxic aberrant proteins associated with secondary damage after acute neurological insults in the CNS. Therefore, enhancing the CMA pathway may induce neuroprotective effects not only in neurogenerative diseases but also in acute neurological insults. We herein review current knowledge concerning the biological mechanisms involved in CMA and highlight the role of CMA in neurodegenerative diseases and acute neurological insults. We also discuss the possibility of developing CMA-targeted therapeutic strategies for effective treatments.
Collapse
|
10
|
Alterations in Proteostasis System Components in Peripheral Blood Mononuclear Cells in Parkinson Disease: Focusing on the HSP70 and p62 Levels. Biomolecules 2022; 12:biom12040493. [PMID: 35454081 PMCID: PMC9030208 DOI: 10.3390/biom12040493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson disease (PD) is attributed to a proteostasis disorder mediated by α-synuclein accumulating in a specific brain region. PD manifestation is often related to extraneuronal alterations, some of which could be used as diagnostic or prognostic PD biomarkers. In this work, we studied the shifts in the expression of proteostasis-associated chaperones of the HSP70 family and autophagy-dependent p62 protein values in the peripheral blood mononuclear cells (PBMC) of mild to moderate PD patients. Although we did not detect any changes in the intracellular HSP70 protein pool in PD patients compared to non-PD controls, an increase in the transcriptional activity of the stress-associated HSPA1A/B and HSPA6 genes was observed in these cells. Basal p62 content was found to be increased in PD patients’ PBMC, similarly to the p62 level in substantia nigra neural cells in PD. Moreover, the spontaneous apoptosis level was increased among PBMC and positively correlated with the p62 intracellular level in the PD group. A combined HSPA6- and p62-based analysis among 26 PD patients and 36 age-matched non-PD controls pointed out the diagnostic significance of these markers, with intermediate sensitivity and high specificity of this combination when observing patients diagnosed with PD.
Collapse
|
11
|
Jarosińska OD, Rüdiger SGD. Molecular Strategies to Target Protein Aggregation in Huntington's Disease. Front Mol Biosci 2021; 8:769184. [PMID: 34869596 PMCID: PMC8636123 DOI: 10.3389/fmolb.2021.769184] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the aggregation of the mutant huntingtin (mHTT) protein in nerve cells. mHTT self-aggregates to form soluble oligomers and insoluble fibrils, which interfere in a number of key cellular functions. This leads to cell quiescence and ultimately cell death. There are currently still no treatments available for HD, but approaches targeting the HTT levels offer systematic, mechanism-driven routes towards curing HD and other neurodegenerative diseases. This review summarizes the current state of knowledge of the mRNA targeting approaches such as antisense oligonucleotides and RNAi system; and the novel methods targeting mHTT and aggregates for degradation via the ubiquitin proteasome or the autophagy-lysosomal systems. These methods include the proteolysis-targeting chimera, Trim-Away, autophagosome-tethering compound, autophagy-targeting chimera, lysosome-targeting chimera and approach targeting mHTT for chaperone-mediated autophagy. These molecular strategies provide a knowledge-based approach to target HD and other neurodegenerative diseases at the origin.
Collapse
Affiliation(s)
- Olga D. Jarosińska
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Martins WK, Silva MDND, Pandey K, Maejima I, Ramalho E, Olivon VC, Diniz SN, Grasso D. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100033. [PMID: 34909664 PMCID: PMC8663935 DOI: 10.1016/j.crphar.2021.100033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical metabolic process that supports homeostasis at a basal level and is dynamically regulated in response to various physiological and pathological processes. Autophagy has some etiologic implications that support certain pathological processes due to alterations in the lysosomal-degradative pathway. Some of the conditions related to autophagy play key roles in highly relevant human diseases, e.g., cardiovascular diseases (15.5%), malignant and other neoplasms (9.4%), and neurodegenerative conditions (3.7%). Despite advances in the discovery of new strategies to treat these age-related diseases, autophagy has emerged as a therapeutic option after preclinical and clinical studies. Here, we discuss the pitfalls and success in regulating autophagy initiation and its lysosome-dependent pathway to restore its homeostatic role and mediate therapeutic effects for cancer, neurodegenerative, and cardiac diseases. The main challenge for the development of autophagy regulators for clinical application is the lack of specificity of the repurposed drugs, due to the low pharmacological uniqueness of their target, including those that target the PI3K/AKT/mTOR and AMPK pathway. Then, future efforts must be conducted to deal with this scenery, including the disclosure of key components in the autophagy machinery that may intervene in its therapeutic regulation. Among all efforts, those focusing on the development of novel allosteric inhibitors against autophagy inducers, as well as those targeting autolysosomal function, and their integration into therapeutic regimens should remain a priority for the field.
Collapse
Affiliation(s)
- Waleska Kerllen Martins
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Maryana do Nascimento da Silva
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Kiran Pandey
- Center for Neural Science, New York University, Meyer Building, Room 823, 4 Washington Place, New York, NY, 10003, USA
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa Machi, Maebashi, Gunma, 3718512, Japan
| | - Ercília Ramalho
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Vania Claudia Olivon
- Laboratory of Pharmacology and Physiology, UNIDERP, Av. Ceará, 333. Vila Miguel Couto, Campo Grande, MS, 79003-010, Brazil
| | - Susana Nogueira Diniz
- Laboratory of Molecular Biology and Functional Genomics, Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Daniel Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, CONICET, Junín 954 p4, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
13
|
Adornetto A, Morrone LA, Satriano A, Laganà ML, Licastro E, Nucci C, Corasaniti MT, Tonin P, Bagetta G, Russo R. Effects of caloric restriction on retinal aging and neurodegeneration. PROGRESS IN BRAIN RESEARCH 2020; 256:189-207. [PMID: 32958212 DOI: 10.1016/bs.pbr.2020.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glaucoma is the most common neurodegenerative cause of irreversible blindness worldwide. Restricted caloric regimens are an attractive approach for delaying the progression of neurodegenerative diseases. Here we review the current literature on the effects of caloric restriction on retinal neurons, under physiological and pathological conditions. We focused on autophagy as one of the mechanisms modulated by restricted caloric regimens and involved in the death of retinal ganglion cells (RGCs) over the course of glaucoma.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Andrea Satriano
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Luisa Laganà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ester Licastro
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Tiziana Corasaniti
- School of Hospital Pharmacy, University "Magna Graecia" of Catanzaro and Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
14
|
Friesen EL, Zhang YT, Earnshaw R, De Snoo ML, O'Hara DM, Agapova V, Chau H, Ngana S, Chen KS, Kalia LV, Kalia SK. BAG5 Promotes Alpha-Synuclein Oligomer Formation and Functionally Interacts With the Autophagy Adaptor Protein p62. Front Cell Dev Biol 2020; 8:716. [PMID: 32850835 PMCID: PMC7417480 DOI: 10.3389/fcell.2020.00716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones are critical to maintaining intracellular proteostasis and have been shown to have a protective role against alpha-synuclein-mediated toxicity. Co-chaperone proteins regulate the activity of molecular chaperones and connect the chaperone network to protein degradation and cell death pathways. Bcl-2 associated athanogene 5 (BAG5) is a co-chaperone that modulates proteostasis by inhibiting the activity of Heat shock protein 70 (Hsp70) and several E3 ubiquitin ligases, resulting in enhanced neurodegeneration in models of Parkinson's disease (PD). Here we identify a novel interaction between BAG5 and p62/sequestosome-1 (SQSTM1), suggesting that BAG5 may bridge the chaperone network to autophagy-mediated protein degradation. We found that BAG5 enhanced the formation of pathogenic alpha-synuclein oligomers and regulated the levels and subcellular distribution of p62. These results extend the role of BAG5 in alpha-synuclein processing and intracellular proteostasis.
Collapse
Affiliation(s)
- Erik L Friesen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Yu Tong Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Rebecca Earnshaw
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Mitch L De Snoo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Darren M O'Hara
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Victoria Agapova
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Hien Chau
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Sophie Ngana
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Kevin S Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Lorraine V Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Lázaro DF, Outeiro TF. The Interplay Between Proteostasis Systems and Parkinson’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:223-236. [DOI: 10.1007/978-3-030-38266-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Albanese F, Novello S, Morari M. Autophagy and LRRK2 in the Aging Brain. Front Neurosci 2019; 13:1352. [PMID: 31920513 PMCID: PMC6928047 DOI: 10.3389/fnins.2019.01352] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a highly conserved process by which long-lived macromolecules, protein aggregates and dysfunctional/damaged organelles are delivered to lysosomes for degradation. Autophagy plays a crucial role in regulating protein quality control and cell homeostasis in response to energetic needs and environmental challenges. Indeed, activation of autophagy increases the life-span of living organisms, and impairment of autophagy is associated with several human disorders, among which neurodegenerative disorders of aging, such as Parkinson’s disease. These disorders are characterized by the accumulation of aggregates of aberrant or misfolded proteins that are toxic for neurons. Since aging is associated with impaired autophagy, autophagy inducers have been viewed as a strategy to counteract the age-related physiological decline in brain functions and emergence of neurodegenerative disorders. Parkinson’s disease is a hypokinetic, multisystemic disorder characterized by age-related, progressive degeneration of central and peripheral neuronal populations, associated with intraneuronal accumulation of proteinaceous aggregates mainly composed by the presynaptic protein α-synuclein. α-synuclein is a substrate of macroautophagy and chaperone-mediated autophagy (two major forms of autophagy), thus impairment of its clearance might favor the process of α-synuclein seeding and spreading that trigger and sustain the progression of this disorder. Genetic factors causing Parkinson’s disease have been identified, among which mutations in the LRRK2 gene, which encodes for a multidomain protein encompassing central GTPase and kinase domains, surrounded by protein-protein interaction domains. Six LRRK2 mutations have been pathogenically linked to Parkinson’s disease, the most frequent being the G2019S in the kinase domain. LRRK2-associated Parkinson’s disease is clinically and neuropathologically similar to idiopathic Parkinson’s disease, also showing age-dependency and incomplete penetrance. Several mechanisms have been proposed through which LRRK2 mutations can lead to Parkinson’s disease. The present article will focus on the evidence that LRRK2 and its mutants are associated with autophagy dysregulation. Studies in cell lines and neurons in vitro and in LRRK2 knock-out, knock-in, kinase-dead and transgenic animals in vivo will be reviewed. The role of aging in LRRK2-induced synucleinopathy will be discussed. Possible mechanisms underlying the LRRK2-mediated control over autophagy will be analyzed, and the contribution of autophagy dysregulation to the neurotoxic actions of LRRK2 will be examined.
Collapse
Affiliation(s)
- Federica Albanese
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Morari
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Cristofani R, Rusmini P, Galbiati M, Cicardi ME, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Messi E, Piccolella M, Carra S, Crippa V, Poletti A. The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death. Front Neurosci 2019; 13:796. [PMID: 31427919 PMCID: PMC6688727 DOI: 10.3389/fnins.2019.00796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Misfolding protein diseases are a wide class of disorders in which the aberrantly folded protein aggregates accumulate in affected cells. In the brain and in the skeletal muscle, misfolded protein accumulation induces a variety of cell dysfunctions that frequently lead to cell death. In motoneuron diseases (MNDs), misfolded proteins accumulate primarily in motoneurons, glial cells and/or skeletal muscle cells, altering motor function. The deleterious effects of misfolded proteins can be counteracted by the activity of the protein quality control (PQC) system, composed of chaperone proteins and degradative systems. Here, we focus on a PQC system component: heat shock protein family B (small) member 8 (HSPB8), a chaperone induced by harmful stressful events, including proteotoxicity. In motoneuron and muscle cells, misfolded proteins activate HSPB8 transcription and enhance HSPB8 levels, which contributes to prevent aggregate formation and their harmful effects. HSPB8 acts not only as a chaperone, but also facilitates the autophagy process, to enable the efficient clearance of the misfolded proteins. HSPB8 acts as a dimer bound to the HSP70 co-chaperone BAG3, a scaffold protein that is also capable of binding to HSP70 (associated with the E3-ligase CHIP) and dynein. When this complex is formed, it is transported by dynein to the microtubule organization center (MTOC), where aggresomes are formed. Here, misfolded proteins are engulfed into nascent autophagosomes to be degraded via the chaperone-assisted selective autophagy (CASA). When CASA is insufficient or impaired, HSP70 and CHIP associate with an alternative co-chaperone, BAG1, which routes misfolded proteins to the proteasome for degradation. The finely tuned equilibrium between proteasome and CASA activity is thought to be crucial for maintaining the functional cell homeostasis during proteotoxic stresses, which in turn is essential for cell survival. This fine equilibrium seems to be altered in MNDs, like Amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA), contributing to the onset and the progression of disease. Here, we will review how misfolded proteins may affect the PQC system and how the proper activity of this system can be restored by boosting or regulating HSPB8 activity, with the aim to ameliorate disease progression in these two fatal MNDs.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Serena Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy.,Centro Interuniversitario Sulle Malattie Neurodegenerative, Università degli Studi di Firenze, Roma Tor Vergata, Milan, Italy
| |
Collapse
|
18
|
Liu X, Zhu M, Ju Y, Li A, Sun X. Autophagy dysfunction in neuropathic pain. Neuropeptides 2019; 75:41-48. [PMID: 30910234 DOI: 10.1016/j.npep.2019.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 01/13/2023]
Abstract
Autophagy is a lysosomal degradation pathway that maintains tissue homeostasis by recycling damaged and aged cellular components, which plays important roles in development of the nervous system, as well as in neuronal function and survival. In addition, autophagy dysfunction underlies neuropathic pain. Thus, the modulation of autophagy can alleviate neuropathic pain. Here, we describe the definition, mechanisms of autophagy and neuropathic pain. On this basis, we further discuss the role of autophagy dysfunction in neuropathic pain. This review updates our knowledge on autophagy mechanisms which propose potential therapeutic targets for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Affiliated Lixiang Eye Hospital of Soochow University, Suzhou 210005, Jiangsu, China
| | - Yuanyuan Ju
- Medical College, Nantong University, Nantong 2266001, Jiangsu, China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Xiaolei Sun
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
19
|
Multiple molecular pathways stimulating macroautophagy protect from alpha-synuclein-induced toxicity in human neurons. Neuropharmacology 2019; 149:13-26. [DOI: 10.1016/j.neuropharm.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
20
|
Brekk OR, Makridakis M, Mavroeidi P, Vlahou A, Xilouri M, Stefanis L. Impairment of chaperone-mediated autophagy affects neuronal homeostasis through altered expression of DJ-1 and CRMP-2 proteins. Mol Cell Neurosci 2018; 95:1-12. [PMID: 30562574 DOI: 10.1016/j.mcn.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/20/2018] [Accepted: 12/13/2018] [Indexed: 01/26/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a substrate-specific mode of lysosomal proteolysis, with multiple lines of evidence connecting its dysfunction to both ageing and disease. We have recently shown that CMA impairment through knock-down of the lysosomal receptor LAMP2A is detrimental to neuronal viability in vivo; however, it is not clear which subset of proteins regulated by the CMA pathway mediate such changes. In this study, we have manipulated CMA function through alterations of LAMP2A abundance in primary rat cortical neurons, to identify potential changes to the neuronal proteome occurring prior to neurotoxic effects. We have identified a list of proteins with significant, >2-fold change in abundance following our manipulations, of which PARK7/DJ-1 - an anti-oxidant implicated in hereditary forms of Parkinson's Disease (PD), and DPYSL2/CRMP-2 - a microtubule-binding phosphoprotein involved in schizophrenia pathogenesis - were both found to have measurable effects on neuronal homeostasis and phenotype. Taken together, this study describes alterations in the abundance of neuronal proteins involved in neuropsychiatric disorders upon CMA manipulation, and suggests that such alterations may in part be responsible for the neurodegeneration observed upon CMA impairment in vivo.
Collapse
Affiliation(s)
- Oeystein Roed Brekk
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece; University of Crete, School of Medicine, Heraklion, Crete, Greece.
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Panagiota Mavroeidi
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece; Second Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
21
|
Nabavi SF, Sureda A, Dehpour AR, Shirooie S, Silva AS, Devi KP, Ahmed T, Ishaq N, Hashim R, Sobarzo-Sánchez E, Daglia M, Braidy N, Volpicella M, Vacca RA, Nabavi SM. Regulation of autophagy by polyphenols: Paving the road for treatment of neurodegeneration. Biotechnol Adv 2018; 36:1768-1778. [DOI: 10.1016/j.biotechadv.2017.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
|
22
|
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17:660-688. [PMID: 30116051 DOI: 10.1038/nrd.2018.109] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer's Disease Research, Columbia University, New York, NY, USA
| | - Olga Corti
- ICM Institute for Brain and Spinal Cord, Paris, France
| | | | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Greg M Pastores
- Department of Metabolic Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge and UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Michael R Duchen
- UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou (AP-HP), Paris, France
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Fanny Mochel
- INSERM U 1127, Brain and Spine Institute, Paris, France
| | | | - Caroline Louis
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| |
Collapse
|
23
|
Issa AR, Sun J, Petitgas C, Mesquita A, Dulac A, Robin M, Mollereau B, Jenny A, Chérif-Zahar B, Birman S. The lysosomal membrane protein LAMP2A promotes autophagic flux and prevents SNCA-induced Parkinson disease-like symptoms in the Drosophila brain. Autophagy 2018; 14:1898-1910. [PMID: 29989488 PMCID: PMC6152503 DOI: 10.1080/15548627.2018.1491489] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 02/03/2023] Open
Abstract
The autophagy-lysosome pathway plays a fundamental role in the clearance of aggregated proteins and protection against cellular stress and neurodegenerative conditions. Alterations in autophagy processes, including macroautophagy and chaperone-mediated autophagy (CMA), have been described in Parkinson disease (PD). CMA is a selective autophagic process that depends on LAMP2A (lysosomal-associated membrane protein 2A), a mammal and bird-specific membrane glycoprotein that translocates cytosolic proteins containing a KFERQ-like peptide motif across the lysosomal membrane. Drosophila reportedly lack CMA and use endosomal microautophagy (eMI) as an alternative selective autophagic process. Here we report that neuronal expression of human LAMP2A protected Drosophila against starvation and oxidative stress, and delayed locomotor decline in aging flies without extending their lifespan. LAMP2A also prevented the progressive locomotor and oxidative defects induced by neuronal expression of PD-associated human SNCA (synuclein alpha) with alanine-to-proline mutation at position 30 (SNCAA30P). Using KFERQ-tagged fluorescent biosensors, we observed that LAMP2A expression stimulated selective autophagy in the adult brain and not in the larval fat body, but did not increase this process under starvation conditions. Noteworthy, we found that neurally expressed LAMP2A markedly upregulated levels of Drosophila Atg5, a key macroautophagy initiation protein, and that it increased the density of Atg8a/LC3-positive puncta, which reflects the formation of autophagosomes. Furthermore, LAMP2A efficiently prevented accumulation of the autophagy defect marker Ref(2)P/p62 in the adult brain under acute oxidative stress. These results indicate that LAMP2A can potentiate autophagic flux in the Drosophila brain, leading to enhanced stress resistance and neuroprotection. ABBREVIATIONS Act5C: actin 5C; a.E.: after eclosion; Atg5: autophagy-related 5; Atg8a/LC3: autophagy-related 8a; CMA: chaperone-mediated autophagy; DHE: dihydroethidium; elav: embryonic lethal abnormal vision; eMI: endosomal microautophagy; ESCRT: endosomal sorting complexes required for transport; GABARAP: GABA typeA receptor-associated protein; Hsc70-4: heat shock protein cognate 4; HSPA8/Hsc70: heat shock protein family A (Hsp70) member 8; LAMP2: lysosomal associated membrane protein 2; MDA: malondialdehyde; PA-mCherry: photoactivable mCherry; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PD: Parkinson disease; Ref(2)P/p62: refractory to sigma P; ROS: reactive oxygen species; RpL32/rp49: ribosomal protein L32; RT-PCR: reverse transcription polymerase chain reaction; SING: startle-induced negative geotaxis; SNCA/α-synuclein: synuclein alpha; SQSTM1/p62: sequestosome 1; TBS: Tris-buffered saline; UAS: upstream activating sequence.
Collapse
Affiliation(s)
- Abdul-Raouf Issa
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Jun Sun
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Céline Petitgas
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Ana Mesquita
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Amina Dulac
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Marion Robin
- ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Bertrand Mollereau
- ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Baya Chérif-Zahar
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| |
Collapse
|
24
|
Exosomal secretion of α-synuclein as protective mechanism after upstream blockage of macroautophagy. Cell Death Dis 2018; 9:757. [PMID: 29988147 PMCID: PMC6037700 DOI: 10.1038/s41419-018-0816-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 01/16/2023]
Abstract
Accumulation of pathological α-synuclein aggregates plays a major role in Parkinson’s disease. Macroautophagy is a mechanism to degrade intracellular protein aggregates by wrapping them into autophagosomes, followed by fusion with lysosomes. We had previously shown that pharmacological activation of macroautophagy protects against α-synuclein-induced toxicity in human neurons. Here, we hypothesized that inhibition of macroautophagy would aggravate α-synuclein-induced cell death. Unexpectedly, inhibition of autophagosome formation by silencing of ATG5 protected from α-synuclein-induced toxicity. Therefore, we studied alternative cellular mechanisms to compensate for the loss of macroautophagy. ATG5 silencing did not affect the ubiquitin–proteasome system, chaperone systems, chaperone-mediated autophagy, or the unfolded protein response. However, ATG5 silencing increased the secretion of α-synuclein via exosomes. Blocking exosomal secretion exacerbated α-synuclein-induced cell death. We conclude that exosomal secretion of α-synuclein is increased after impaired formation of autophagosomes to reduce the intracellular α-synuclein burden. This compensatory mechanism prevents α-synuclein-induced neuronal cell death.
Collapse
|
25
|
Tripathi MK, Rajput C, Mishra S, Rasheed MSU, Singh MP. Malfunctioning of Chaperone-Mediated Autophagy in Parkinson's Disease: Feats, Constraints, and Flaws of Modulators. Neurotox Res 2018; 35:260-270. [PMID: 29949106 DOI: 10.1007/s12640-018-9917-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022]
Abstract
Homeostatic regulation of class II programmed cell death/autophagy for the degradation and elimination of substandard organelles and defective proteins is decisive for the survival of dopaminergic neurons. Chaperone-mediated autophagy (CMA), one of the most highly dedicated self-sacrificing events, is accountable for the partial elimination of redundant soluble cytoplasmic proteins in Parkinson's disease (PD). CMA is characterized by the selective delivery of superfluous protein containing lysine-phenylalanine-glutamate-arginine-glutamine (KFERQ)/KFERQ-like motif to the lysosome through molecular chaperones, such as heat shock cognate-70 (Hsc-70). KFERQ/KFERQ-like motif present in the poor quality cytoplasmic substrate protein and Hsc-70 complex is recognized by a janitor protein, which is referred to as the lysosome-associated membrane protein-2A (LAMP-2A). This protein is known to facilitate an entry of substrate-chaperone complex in the lumen for hydrolytic cleavage of substrate and elimination of end-products. Impaired CMA is repeatedly blamed for an accumulation of surplus soluble proteins. However, it is still an enigma if CMA is a bonus or curse for PD. Case-control studies and cellular and animal models have deciphered the contribution of impaired CMA in PD. Current article updates the role of CMA in toxicant models and recapitulates the evidences that have highlighted a link between impaired CMA and PD. Although PD is an irreversible happening and CMA is a dual edging phenomenon, it is anticipated that fine-tuning of the latter encounters the former to a certain extent. Besides, the truth, embellishment, and propaganda regarding the issue are also emphasized in the final segment of the article.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226 001, Uttar Pradesh, India
| | - Charul Rajput
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226 001, Uttar Pradesh, India
| | - Saumya Mishra
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226 001, Uttar Pradesh, India
| | - Mohd Sami Ur Rasheed
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226 001, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
26
|
Moreno-Blas D, Gorostieta-Salas E, Castro-Obregón S. Connecting chaperone-mediated autophagy dysfunction to cellular senescence. Ageing Res Rev 2018; 41:34-41. [PMID: 29113832 DOI: 10.1016/j.arr.2017.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
Abstract
Chaperone-mediated autophagy (CMA) is one of the main pathways of the lysosome-autophagy proteolytic system. It regulates different cellular process through the selective degradation of cytosolic proteins. In ageing, the function of CMA is impaired causing an inefficient stress response and the accumulation of damaged, oxidized or misfolded proteins, which is associated with numerous age-related diseases. Deficient protein degradation alters cellular proteostasis and activates signaling pathways that culminate in the induction of cellular senescence, whose accumulation is a typical feature of ageing. However, the relationship between CMA activity and cellular senescence has been poorly studied. Here, we review and integrate evidence showing that CMA dysfunction correlates with the acquisition of many hallmarks of cellular senescence and propose that loss of CMA function during aging promotes cellular senescence.
Collapse
Affiliation(s)
- Daniel Moreno-Blas
- Department of Neurodevelopment and Physiology, Institute of Cellular Physiology, National Autonomous University of México (UNAM), Mexico City, Mexico.
| | - Elisa Gorostieta-Salas
- Department of Neurodevelopment and Physiology, Institute of Cellular Physiology, National Autonomous University of México (UNAM), Mexico City, Mexico.
| | - Susana Castro-Obregón
- Department of Neurodevelopment and Physiology, Institute of Cellular Physiology, National Autonomous University of México (UNAM), Mexico City, Mexico.
| |
Collapse
|
27
|
Duarte-Silva S, Maciel P. Pharmacological Therapies for Machado-Joseph Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:369-394. [PMID: 29427114 DOI: 10.1007/978-3-319-71779-1_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3 (SCA3), is the most common autosomal dominant ataxia worldwide. MJD integrates a large group of disorders known as polyglutamine diseases (polyQ). To date, no effective treatment exists for MJD and other polyQ diseases. Nevertheless, researchers are making efforts to find treatment possibilities that modify the disease course or alleviate disease symptoms. Since neuroimaging studies in mutation carrying individuals suggest that in nervous system dysfunction begins many years before the onset of any detectable symptoms, the development of therapeutic interventions becomes of great importance, not only to slow progression of manifest disease but also to delay, or ideally prevent, its onset. Potential therapeutic targets for MJD and polyQ diseases can be divided into (i) those that are aimed at the polyQ proteins themselves, namely gene silencing, attempts to enhance mutant protein degradation or inhibition/prevention of aggregation; and (ii) those that intercept the toxic downstream effects of the polyQ proteins, such as mitochondrial dysfunction and oxidative stress, transcriptional abnormalities, UPS impairment, excitotoxicity, or activation of cell death. The existence of relevant animal models and the recent contributions towards the identification of putative molecular mechanisms underlying MJD are impacting on the development of new drugs. To date only a few preclinical trials were conducted, nevertheless some had very promising results and some candidate drugs are close to being tested in humans. Clinical trials for MJD are also very few to date and their results not very promising, mostly due to trial design constraints. Here, we provide an overview of the pharmacological therapeutic strategies for MJD studied in animal models and patients, and of their possible translation into the clinical practice.
Collapse
Affiliation(s)
- Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
28
|
Boyko AA, Troyanova NI, Kovalenko EI, Sapozhnikov AM. Similarity and Differences in Inflammation-Related Characteristics of the Peripheral Immune System of Patients with Parkinson's and Alzheimer's Diseases. Int J Mol Sci 2017; 18:ijms18122633. [PMID: 29211044 PMCID: PMC5751236 DOI: 10.3390/ijms18122633] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common age-related neurodegenerative disorders. Both diseases are characterized by chronic inflammation in the brain-neuroinflammation. The first signs of PD and AD are most often manifested in old age, in which the immune system is usually characterized by chronic inflammation, so-called "inflammaging" In recent years, there is growing evidence that pathogenesis of these diseases is connected with both regional and peripheral immune processes. Currently, the association of clinical signs of PD and AD with different characteristics of patient immune status is actively being researched. In this mini-review we compare the association of PD and AD alterations of a number of immune system parameters connected with the process of inflammation.
Collapse
Affiliation(s)
- Anna A Boyko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
| | - Natalya I Troyanova
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
| | - Elena I Kovalenko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
| | - Alexander M Sapozhnikov
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
| |
Collapse
|
29
|
Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Prog Neurobiol 2017; 159:1-38. [DOI: 10.1016/j.pneurobio.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/01/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
|
30
|
Rusmini P, Cristofani R, Galbiati M, Cicardi ME, Meroni M, Ferrari V, Vezzoli G, Tedesco B, Messi E, Piccolella M, Carra S, Crippa V, Poletti A. The Role of the Heat Shock Protein B8 (HSPB8) in Motoneuron Diseases. Front Mol Neurosci 2017; 10:176. [PMID: 28680390 PMCID: PMC5478700 DOI: 10.3389/fnmol.2017.00176] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA) are two motoneuron diseases (MNDs) characterized by aberrant protein behavior in affected cells. In familial ALS (fALS) and in SBMA specific gene mutations lead to the production of neurotoxic proteins or peptides prone to misfold, which then accumulate in form of aggregates. Notably, some of these proteins accumulate into aggregates also in sporadic ALS (sALS) even if not mutated. To prevent proteotoxic stresses detrimental to cells, misfolded and/or aggregated proteins must be rapidly removed by the protein quality control (PQC) system. The small heat shock protein B8 (HSPB8) is a chaperone induced by harmful events, like proteasome inhibition. HSPB8 is expressed both in motoneuron and muscle cells, which are both targets of misfolded protein toxicity in MNDs. In ALS mice models, in presence of the mutant proteins, HSPB8 is upregulated both in spinal cord and muscle. HSPB8 interacts with the HSP70 co-chaperone BAG3 and enhances the degradation of misfolded proteins linked to sALS, or causative of fALS and of SBMA. HSPB8 acts by facilitating autophagy, thereby preventing misfolded protein accumulation in affected cells. BAG3 and BAG1 compete for HSP70-bound clients and target them for disposal to the autophagy or proteasome, respectively. Enhancing the selective targeting of misfolded proteins by HSPB8-BAG3-HSP70 to autophagy may also decrease their delivery to the proteasome by the BAG1-HSP70 complex, thereby limiting possible proteasome overwhelming. Thus, approaches aimed at potentiating HSPB8-BAG3 may contribute to the maintenance of proteostasis and may delay MNDs progression.
Collapse
Affiliation(s)
- Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Maria E Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Marco Meroni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Giulia Vezzoli
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy
| | - Serena Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio EmiliaModena, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy.,C. Mondino National Neurological InstitutePavia, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di MilanoMilano, Italy.,Centro Interuniversitario sulle Malattie Neurodegenerative, Università degli Studi di Firenze, Roma Tor VergataMilano, Italy
| |
Collapse
|
31
|
Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N. The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J Neurochem 2017; 142:215-230. [PMID: 28407242 DOI: 10.1111/jnc.14042] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/26/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
Abstract
Microglia over-activation contributes to neurodegenerative processes by neurotoxin factors and pro-inflammatory molecules of pro-inflammatory processes. Mitochondrial reactive oxygen species (ROS) and autophagy pathway might be involved in microglial activation, but the underlying mechanism is unclear. Here, we regulated autophagy pathway of microglia in vitro by autophagy inhibition (3-methyladenine treatment, siRNA-Beclin 1 or siRNA-ATG5 transfection) or induction (rapamycin treatment) in murine microglial BV-2 cells or cultured primary mouse microglial cells. And we found that autophagy inhibition could sensitize mitochondrial profile and microglial activation of cultured microglial cells, demonstrated by significant production of mitochondrial ROS, loss of mitochondrial membrane potential, secretion of pro-inflammatory cytokines including interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 12 (IL-12) and tumor necrosis factor α and marked activation of mitogen-activated proteinkinases (MAPKs) and nuclear factor κB (NF-κB). These effects could be blocked by specific inhibitors of MAPK and NF-κB or mitochondrial antioxidants, Mito-TEMPO. Meanwhile, induction of autophagy with rapamycin treatment could significantly suppress microglial inflammatory responses, mitochondrial ROS production, activation of MAPKs and NF-κB. Taken together, our in vitro results from primary cultured microglia and BV-2 cell lines indicated that autophagy inhibition might participate in brain macrophage or microglia over-activation and mitochondrial ROS generation might be involved in the regulatory microglial pro-inflammatory responses.
Collapse
Affiliation(s)
- Junli Ye
- Department of Pathophysiology, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Zhongxin Jiang
- Department of Clinical Laboratory, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Xuehong Chen
- Department of Pharmacology, Medical College, Qingdao University, Qingdao, China
| | - Mengyang Liu
- Department of Clinical Laboratory, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Jing Li
- Department of Clinical Laboratory, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Na Liu
- Department of Clinical Laboratory, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Demirsoy S, Martin S, Maes H, Agostinis P. Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma. Front Oncol 2016; 6:240. [PMID: 27896217 PMCID: PMC5108812 DOI: 10.3389/fonc.2016.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Melanoma has emerged as a paradigm of a highly aggressive and plastic cancer, capable to co-opt the tumor stroma in order to adapt to the hostile microenvironment, suppress immunosurveillance mechanisms, and disseminate. In particular, oncogene- and aneuploidy-driven dysregulations of proteostasis in melanoma cells impose a rewiring of central proteostatic processes, such as the heat shock and unfolded protein responses, autophagy, and the endo-lysosomal system, to avoid proteotoxicity. Research over the past decade has indicated that alterations in key nodes of these proteostasis pathways act in conjunction with crucial oncogenic drivers to increase intrinsic adaptations of melanoma cells against proteotoxic stress, modulate the high metabolic demand of these cancer cells and the interface with other stromal cells, through the heightened release of soluble factors or exosomes. Here, we overview and discuss how key proteostasis pathways and vesicular trafficking mechanisms are turned into vital conduits of melanoma progression, by supporting cancer cell's adaptation to the microenvironment, limiting or modulating the ability to respond to therapy and fueling melanoma dissemination.
Collapse
Affiliation(s)
- Seyma Demirsoy
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Shaun Martin
- Laboratory for Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Hannelore Maes
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| |
Collapse
|
33
|
M'Angale PG, Staveley BE. Bcl-2 homologue Debcl enhances α-synuclein-induced phenotypes in Drosophila. PeerJ 2016; 4:e2461. [PMID: 27672511 PMCID: PMC5028777 DOI: 10.7717/peerj.2461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
Background Parkinson disease (PD) is a debilitating movement disorder that afflicts 1–2% of the population over 50 years of age. The common hallmark for both sporadic and familial forms of PD is mitochondrial dysfunction. Mammals have at least twenty proapoptotic and antiapoptotic Bcl-2 family members, in contrast, only two Bcl-2 family genes have been identified in Drosophila melanogaster, the proapoptotic mitochondrial localized Debcl and the antiapoptotic Buffy. The expression of the human transgene α-synuclein, a gene that is strongly associated with inherited forms of PD, in dopaminergic neurons (DA) of Drosophila, results in loss of neurons and locomotor dysfunction to model PD in flies. The altered expression of Debcl in the DA neurons and neuron-rich eye and along with the expression of α-synuclein offers an opportunity to highlight the role of Debcl in mitochondrial-dependent neuronal degeneration and death. Results The directed overexpression of Debcl using the Ddc-Gal4 transgene in the DA of Drosophila resulted in flies with severely decreased survival and a premature age-dependent loss in climbing ability. The inhibition of Debcl resulted in enhanced survival and improved climbing ability whereas the overexpression of Debcl in the α-synuclein-induced Drosophila model of PD resulted in more severe phenotypes. In addition, the co-expression of Debcl along with Buffy partially counteracts the Debcl-induced phenotypes, to improve the lifespan and the associated loss of locomotor ability observed. In complementary experiments, the overexpression of Debcl along with the expression of α-synuclein in the eye, enhanced the eye ablation that results from the overexpression of Debcl. The co-expression of Buffy along with Debcl overexpression results in the rescue of the moderate developmental eye defects. The co-expression of Buffy along with inhibition of Debcl partially restores the eye to a roughened eye phenotype. Discussion The overexpression of Debcl in DA neurons produces flies with shortened lifespan and impaired locomotor ability, phenotypes that are strongly associated with models of PD in Drosophila. The co-expression of Debcl along with α-synuclein enhanced the PD-like phenotypes. The co-expression of Debcl along with Buffy suppresses these phenotypes. Complementary experiments in the Drosophila eye show similar trends during development. Taken all together these results suggest a role for Debcl in neurodegenerative disorders.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador , Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador , Canada
| |
Collapse
|
34
|
Ariosa AR, Klionsky DJ. Autophagy core machinery: overcoming spatial barriers in neurons. J Mol Med (Berl) 2016; 94:1217-1227. [PMID: 27544281 DOI: 10.1007/s00109-016-1461-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/09/2022]
Abstract
Autophagy is a major degradation pathway that engulfs, removes, and recycles unwanted cytoplasmic material including damaged organelles and toxic protein aggregates. One type of autophagy, macroautophagy, is a tightly regulated process facilitated by autophagy-related (Atg) proteins that must communicate effectively and act in concert to enable the de novo formation of the phagophore, its maturation into an autophagosome, and its subsequent targeting and fusion with the lysosome or the vacuole. Autophagy plays a significant role in physiology, and its dysregulation has been linked to several diseases, which include certain cancers, cardiomyopathies, and neurodegenerative diseases. Here, we summarize the key processes and the proteins that make up the macroautophagy machinery. We also briefly highlight recently uncovered molecular mechanisms specific to neurons allowing them to uniquely regulate this catabolic process to accommodate their complicated architecture and non-dividing state. Overall, these distinct mechanisms establish a conceptual framework addressing how macroautophagic dysfunction could result in maladies of the nervous system, providing possible therapeutic avenues to explore with a goal of preventing or curing such diseases.
Collapse
Affiliation(s)
- Aileen R Ariosa
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
35
|
Yang Y, Zhao C, Yang P, Wang X, Wang L, Chen A. Autophagy in cardiac metabolic control: Novel mechanisms for cardiovascular disorders. Cell Biol Int 2016; 40:944-54. [PMID: 27191043 DOI: 10.1002/cbin.10626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023]
Abstract
As an extensively studied quality control system, autophagy is responsible for clearance of dysfunctional organelles and damaged marcomolecules in cells. In addition to its biological recycling function, autophagy plays a significant role in the pathogenesis of metabolic syndromes such as obesity and diabetes. In particular, metabolic disorders contribute to cardiovascular disease development. As energy required to maintain cardiac cells functional is immense, disturbances in the balance between anabolic and catabolic metabolism possibly contribute to cardiovascular disorders. Therefore, an urgent need to expand our knowledge on the role of autophagy on the metabolic regulation of hearts emerges. In this review, the potential relationship between autophagic activity and cardiac metabolism is explored and we also discuss how dysregulated autophagy leads to severe cardiac disorders from the perspective of metabolic control.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Cong Zhao
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Pingzhen Yang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Lizi Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| |
Collapse
|
36
|
Lu M, Su C, Qiao C, Bian Y, Ding J, Hu G. Metformin Prevents Dopaminergic Neuron Death in MPTP/P-Induced Mouse Model of Parkinson's Disease via Autophagy and Mitochondrial ROS Clearance. Int J Neuropsychopharmacol 2016; 19:pyw047. [PMID: 27207919 PMCID: PMC5043649 DOI: 10.1093/ijnp/pyw047] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/03/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Our previous study demonstrated that metabolic inflammation exacerbates dopaminergic neuronal degeneration in type 2 diabetes mice. Metformin, a typical oral hypoglycemic agent for diabetes, has been regarded as an activator of AMP-activated protein kinase and a regulator of systemic energy metabolism. Although metformin plays potential protective effects in many disorders, it is unclear whether metformin has a therapeutic role in dopaminergic neuron degeneration in Parkinson's disease. METHODS In the present study, a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid-induced mouse model of Parkinson's disease was established to explore the neuroprotective effect of metformin on dopaminergic neurons in substania nigra compacta. We next cultured SH-SY5Y cells to investigate the mechanisms for the neuroprotective effect of metformin. RESULTS We showed that treatment with metformin (5mg/mL in drinking water) for 5 weeks significantly ameliorated the degeneration of substania nigra compacta dopaminergic neurons, increased striatal dopaminergic levels, and improved motor impairment induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid. We further found that metformin inhibited microglia overactivation-induced neuroinflammation in substania nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid Parkinson's disease mice, which might contribute to the protective effect of metformin on neurodegeneration. Furthermore, metformin (2mM) activated AMP-activated protein kinase in SH-SY5Y cells, in turn inducing microtubule-associated protein 1 light chain 3-II-mediated autophagy and eliminating mitochondrial reactive oxygen species. Consequently, metformin alleviated MPP+-induced cytotoxicity and attenuated neuronal apoptosis. CONCLUSIONS Our findings demonstrate that metformin may be a pluripotent and promising drug for dopaminergic neuron degeneration, which will give us insight into the potential of metformin in terms of opening up novel therapeutic avenues for Parkinson's disease.
Collapse
Affiliation(s)
- Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Lu, Su, Qiao, Bian, Ding, and Hu); Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China (Dr Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (Dr Hu)
| | - Cunjin Su
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Lu, Su, Qiao, Bian, Ding, and Hu); Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China (Dr Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (Dr Hu)
| | - Chen Qiao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Lu, Su, Qiao, Bian, Ding, and Hu); Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China (Dr Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (Dr Hu)
| | - Yaqi Bian
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Lu, Su, Qiao, Bian, Ding, and Hu); Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China (Dr Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (Dr Hu)
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Lu, Su, Qiao, Bian, Ding, and Hu); Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China (Dr Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (Dr Hu)
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Lu, Su, Qiao, Bian, Ding, and Hu); Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China (Dr Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (Dr Hu).
| |
Collapse
|
37
|
Boman A, Svensson S, Boxer A, Rojas JC, Seeley WW, Karydas A, Miller B, Kågedal K, Svenningsson P. Distinct Lysosomal Network Protein Profiles in Parkinsonian Syndrome Cerebrospinal Fluid. JOURNAL OF PARKINSON'S DISEASE 2016; 6:307-15. [PMID: 27061067 PMCID: PMC4927933 DOI: 10.3233/jpd-150759] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/13/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Clinical diagnosis of parkinsonian syndromes like Parkinson's disease (PD), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) is hampered by overlapping symptomatology and lack of diagnostic biomarkers, and definitive diagnosis is only possible post-mortem. OBJECTIVE Since impaired protein degradation plays an important role in many neurodegenerative disorders, we hypothesized that profiles of select lysosomal network proteins in cerebrospinal fluid could be differentially expressed in these parkinsonian syndromes. METHODS Cerebrospinal fluid samples were collected from PD patients (n = 18), clinically diagnosed 4-repeat tauopathy patients; corticobasal syndrome (CBS) (n = 3) and PSP (n = 8); and pathologically diagnosed PSP (n = 8) and CBD patients (n = 7). Each patient set was compared to its appropriate control group consisting of age and gender matched individuals. Select lysosomal network protein levels were detected via Western blotting. Factor analysis was used to test the diagnostic sensitivity, specificity and accuracy of the select lysosomal network protein expression profiles. RESULTS PD, CBD and PSP were markedly different in their cerebrospinal fluid lysosomal network protein profiles. Lysosomal-associated membrane proteins 1 and 2 were significantly decreased in PD; early endosomal antigen 1 was decreased and lysozyme increased in PSP; and lysosomal-associated membrane proteins 1 and 2, microtubule-associated protein 1 light chain 3 and lysozyme were increased in CBD. A panel of lysosomal-associated membrane protein 2, lysozyme and microtubule-associated protein 1 light chain discriminated between controls, PD and 4-repeat tauopathies. CONCLUSIONS This study offers proof of concept that select lysosomal network proteins are differentially expressed in cerebrospinal fluid of Parkinson's disease, corticobasal syndrome and progressive supranuclear palsy. Lysosomal network protein analysis could be further developed as a diagnostic fluid biomarker in parkinsonian syndromes.
Collapse
Affiliation(s)
- Andrea Boman
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Samuel Svensson
- Developmental Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- CBD Solutions, Stockholm, Sweden
| | - Adam Boxer
- Memory and Aging Center, University of California, San Francisco, USA
| | - Julio C. Rojas
- Memory and Aging Center, University of California, San Francisco, USA
| | - William W. Seeley
- Memory and Aging Center, University of California, San Francisco, USA
| | - Anna Karydas
- Memory and Aging Center, University of California, San Francisco, USA
| | - Bruce Miller
- Memory and Aging Center, University of California, San Francisco, USA
| | - Katarina Kågedal
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Per Svenningsson
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
38
|
Apoptosis, autophagy and unfolded protein response pathways in Arbovirus replication and pathogenesis. Expert Rev Mol Med 2016; 18:e1. [PMID: 26781343 PMCID: PMC4836210 DOI: 10.1017/erm.2015.19] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arboviruses are pathogens that widely affect the health of people in different communities around the world. Recently, a few successful approaches toward production of effective vaccines against some of these pathogens have been developed, but treatment and prevention of the resulting diseases remain a major health and research concern. The arbovirus infection and replication processes are complex, and many factors are involved in their regulation. Apoptosis, autophagy and the unfolded protein response (UPR) are three mechanisms that are involved in pathogenesis of many viruses. In this review, we focus on the importance of these pathways in the arbovirus replication and infection processes. We provide a brief introduction on how apoptosis, autophagy and the UPR are initiated and regulated, and then discuss the involvement of these pathways in regulation of arbovirus pathogenesis.
Collapse
|
39
|
The Role of the Protein Quality Control System in SBMA. J Mol Neurosci 2015; 58:348-64. [PMID: 26572535 DOI: 10.1007/s12031-015-0675-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/01/2015] [Indexed: 12/13/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is an X-linked disease associated with the expansion of the CAG triplet repeat present in exon 1 of the androgen receptor (AR) gene. This results in the production of a mutant AR containing an elongated polyglutamine tract (polyQ) in its N-terminus. Interestingly, the ARpolyQ becomes toxic only after its activation by the natural androgenic ligands, possibly because of aberrant androgen-induced conformational changes of the ARpolyQ, which generate misfolded species. These misfolded ARpolyQ species must be cleared from motoneurons and muscle cells, and this process is mediated by the protein quality control (PQC) system. Experimental evidence suggested that failure of the PQC pathways occurs in disease, leading to ARpolyQ accumulation and toxicity in the target cells. In this review, we summarized the overall impact of mutant and misfolded ARpolyQ on the PQC system and described how molecular chaperones and the degradative pathways (ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and the unfolded protein response (UPR), which activates the endoplasmic reticulum-associated degradation (ERAD)) are differentially affected in SBMA. We also extensively and critically reviewed several molecular and pharmacological approaches proposed to restore a global intracellular activity of the PQC system. Collectively, these data suggest that the fine and delicate equilibrium existing among the different players of the PQC system could be restored in a therapeutic perspective by the synergic/additive activities of compounds designed to tackle sequential or alternative steps of the intracellular defense mechanisms triggered against proteotoxic misfolded species.
Collapse
|
40
|
Ambrosi G, Ghezzi C, Zangaglia R, Levandis G, Pacchetti C, Blandini F. Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson's disease cells. Neurobiol Dis 2015; 82:235-242. [PMID: 26094596 DOI: 10.1016/j.nbd.2015.06.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/03/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022] Open
Abstract
Heterozygous mutations in GBA1 gene, encoding for lysosomal enzyme glucocerebrosidase (GCase), are a major risk factor for sporadic Parkinson's disease (PD). Defective GCase has been reported in fibroblasts of GBA1-mutant PD patients and pharmacological chaperone ambroxol has been shown to correct such defect. To further explore this issue, we investigated GCase and elements supporting GCase function and trafficking in fibroblasts from sporadic PD patients--with or without heterozygous GBA1 mutations--and healthy subjects, in basal conditions and following in vitro exposure to ambroxol. We assessed protein levels of GCase, lysosomal integral membrane protein-2 (LIMP-2), which mediates GCase trafficking to lysosomes, GCase endogenous activator saposin (Sap) C and parkin, which is involved in degradation of defective GCase. We also measured activities of GCase and cathepsin D, which cleaves Sap C from precursor prosaposin. GCase activity was reduced in fibroblasts from GBA1-mutant patients and ambroxol corrected this defect. Ambroxol increased cathepsin D activity, GCase and Sap C protein levels in all groups, while LIMP-2 levels were increased only in GBA1-mutant PD fibroblasts. Parkin levels were slightly increased only in the PD group without GBA1 mutations and were not significantly modified by ambroxol. Our study confirms that GCase activity is deficient in fibroblasts of GBA1-mutant PD patients and that ambroxol corrects this defect. The drug increased Sap C and LIMP-2 protein levels, without interfering with parkin. These results confirm that chemical chaperone ambroxol modulates lysosomal markers, further highlighting targets that may be exploited for innovative PD therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Ambrosi
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Cristina Ghezzi
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Roberta Zangaglia
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Giovanna Levandis
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Claudio Pacchetti
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Fabio Blandini
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy.
| |
Collapse
|
41
|
Rocha EM, Smith GA, Park E, Cao H, Brown E, Hayes MA, Beagan J, McLean JR, Izen SC, Perez-Torres E, Hallett PJ, Isacson O. Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons. Neurobiol Dis 2015; 82:495-503. [PMID: 26392287 DOI: 10.1016/j.nbd.2015.09.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/03/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022] Open
Abstract
Diminished lysosomal function can lead to abnormal cellular accumulation of specific proteins, including α-synuclein, contributing to disease pathogenesis of vulnerable neurons in Parkinson's disease (PD) and related α-synucleinopathies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase (GCase), and mutations in GBA1 are a prominent genetic risk factor for PD. Previous studies showed that in sporadic PD, and in normal aging, GCase brain activity is reduced and levels of corresponding glycolipid substrates are increased. The present study tested whether increasing GCase through AAV-GBA1 intra-cerebral gene delivery in two PD rodent models would reduce the accumulation of α-synuclein and protect midbrain dopamine neurons from α-synuclein-mediated neuronal damage. In the first model, transgenic mice overexpressing wildtype α-synuclein throughout the brain (ASO mice) were used, and in the second model, a rat model of selective dopamine neuron degeneration was induced by AAV-A53T mutant α-synuclein. In ASO mice, intra-cerebral AAV-GBA1 injections into several brain regions increased GCase activity and reduced the accumulation of α-synuclein in the substantia nigra and striatum. In rats, co-injection of AAV-GBA1 with AAV-A53T α-synuclein into the substantia nigra prevented α-synuclein-mediated degeneration of nigrostriatal dopamine neurons by 6 months. These neuroprotective effects were associated with altered protein expression of markers of autophagy. These experiments demonstrate, for the first time, the neuroprotective effects of increasing GCase against dopaminergic neuron degeneration, and support the development of therapeutics targeting GCase or other lysosomal genes to improve neuronal handling of α-synuclein.
Collapse
Affiliation(s)
- Emily M Rocha
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Gaynor A Smith
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Eric Park
- Shire, 300 Shire Way, Lexington, MA 02421, USA
| | - Hongmei Cao
- Shire, 300 Shire Way, Lexington, MA 02421, USA
| | | | - Melissa A Hayes
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Jonathan Beagan
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Jesse R McLean
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Sarah C Izen
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Eduardo Perez-Torres
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Penelope J Hallett
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA.
| | - Ole Isacson
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
42
|
Kenney DL, Benarroch EE. The autophagy-lysosomal pathway: General concepts and clinical implications. Neurology 2015. [PMID: 26203091 DOI: 10.1212/wnl.0000000000001860] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Daniel L Kenney
- From the Departments of Child and Adolescent Neurology (D.L.K.) and Neurology (E.E.B.), Mayo Clinic, Rochester, MN
| | - Eduardo E Benarroch
- From the Departments of Child and Adolescent Neurology (D.L.K.) and Neurology (E.E.B.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
43
|
Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 2015; 16:345-57. [DOI: 10.1038/nrn3961] [Citation(s) in RCA: 567] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Sirtuins and proteolytic systems: implications for pathogenesis of synucleinopathies. Biomolecules 2015; 5:735-57. [PMID: 25946078 PMCID: PMC4496694 DOI: 10.3390/biom5020735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
Insoluble and fibrillar forms of α-synuclein are the major components of Lewy bodies, a hallmark of several sporadic and inherited neurodegenerative diseases known as synucleinopathies. α-Synuclein is a natural unfolded and aggregation-prone protein that can be degraded by the ubiquitin-proteasomal system and the lysosomal degradation pathways. α-Synuclein is a target of the main cellular proteolytic systems, but it is also able to alter their function further, contributing to the progression of neurodegeneration. Aging, a major risk for synucleinopathies, is associated with a decrease activity of the proteolytic systems, further aggravating this toxic looping cycle. Here, the current literature on the basic aspects of the routes for α-synuclein clearance, as well as the consequences of the proteolytic systems collapse, will be discussed. Finally, particular focus will be given to the sirtuins’s role on proteostasis regulation, since their modulation emerged as a promising therapeutic strategy to rescue cells from α-synuclein toxicity. The controversial reports on the potential role of sirtuins in the degradation of α-synuclein will be discussed. Connection between sirtuins and proteolytic systems is definitely worth of further studies to increase the knowledge that will allow its proper exploration as new avenue to fight synucleinopathies.
Collapse
|
45
|
Tofaris GK, Schapira AHV. Neurodegenerative diseases in the era of targeted therapeutics: how to handle a tangled issue. Mol Cell Neurosci 2015; 66:1-2. [PMID: 25749373 DOI: 10.1016/j.mcn.2015.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neurodegenerative diseases are age-related and relentlessly progressive with increasing prevalence and no cure or lasting symptomatic therapy. The well-recognized prodromal phase in many forms of neurodegeneration suggests a prolonged period of neuronal compensated dysfunction prior to cell loss that may be amenable to therapeutic intervention. Although most efforts to date have been focused on misfolded toxic proteins, it is now clear that widespread changes in protein homeostasis occur early in these diseases and understanding this fundamental biology is key to the design of targeted therapies. What has emerged from molecular genetics and animal studies is a previously less appreciated association of neurodegenerative diseases with defects in the molecular regulation of protein trafficking between cellular organelles, especially the intricate network of endosomes, lysosomes, autophagosomes and mitochondria. Here we summarized the broader concepts that stemmed from this Special Issue on "Protein Clearance in Neurodegenerative diseases: from mechanisms to therapies". This article is part of a Special Issue entitled 'Neuronal Protein'.
Collapse
Affiliation(s)
- George K Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | - Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, UK
| |
Collapse
|