1
|
Sharma P, Sharma B, Ghildiyal S, Kharkwal H. ML218 modulates calcium binding protein, oxidative stress, and inflammation during ischemia-reperfusion brain injury in mice. Eur J Pharmacol 2024; 982:176919. [PMID: 39179092 DOI: 10.1016/j.ejphar.2024.176919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Cerebral ischemia disrupts calcium homeostasis in the brain causing excitotoxicity, oxidative stress, inflammation, and neuronal cell apoptosis. During ischemic conditions, T-type calcium channel channels contribute to increase in intracellular calcium ions in both neurons and glial cells therefore, the current study hypothesizes the antagonism of these channels using ML218, a novel specific T-Type inhibitor in experimental model of cerebral ischemia-reperfusion (CI/R) brain injury. CI/R injury was induced in Swiss Albino mice by occlusion of common carotid arteries followed by reperfusion. Animals were assessed for learning and memory (MWM), motor coordination (Rota rod), neurological function (neurological deficit score), cerebral infarction, edema, and histopathological alterations. Biochemical assessments were made for calcium binding proteins (Calmodulin- CaM, calcium/calmodulin-dependent protein kinase II-CaMKII, S100B), oxidative stress (4-hydroxy 2-nonenal-4-HNE, glutathione-GSH, inflammation (nuclear factor kappa-light-chain-enhancer of activated B-p65-NF-kB, tumor necrosis factor-TNF-α, interleukin-IL-10) inducible nitric oxide synthase (iNOS) levels, and acetylcholinesterase activity (AChE) in brain supernatants. Furthermore, serum levels of NF-kB, iNOS, and S100B were also assessed. CI/R animals showed impairment in learning, memory, motor coordination, and neurological function along with increase in cerebral infarction, edema, and histopathological alterations. Furthermore, increase in brain calcium binding proteins, oxidative stress, inflammation, and AChE activity along with serum NF-kB, iNOS, and S100B levels were recorded in CI/R animals. Administration of ML218 (5 mg/kg and 10 mg/kg; i.p.) was observed to recuperate CI/R induced impairments in behavioral, biochemical, and histopathological analysis. Hence, it may be concluded that ML218 mediates neuroprotection during CI/R via decreasing brain and serum calcium binding proteins, inflammation, iNOS, and oxidative stress markers.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| | - Shivani Ghildiyal
- Department of DravyaGuna, All India Institute of Ayurveda, An autonomous organization under Ministry of Ayush, Government of India, Sarita Vihar, New Delhi, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University Uttar Pradesh, India
| |
Collapse
|
2
|
Zadka Ł, Sochocka M, Hachiya N, Chojdak-Łukasiewicz J, Dzięgiel P, Piasecki E, Leszek J. Endocytosis and Alzheimer's disease. GeroScience 2024; 46:71-85. [PMID: 37646904 PMCID: PMC10828383 DOI: 10.1007/s11357-023-00923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia. The pathogenesis of AD still remains unclear, including two main hypotheses: amyloid cascade and tau hyperphosphorylation. The hallmark neuropathological changes of AD are extracellular deposits of amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Endocytosis plays an important role in a number of cellular processes including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. Based on the results of genetic and biochemical studies, there is a link between neuronal endosomal function and AD pathology. Taking this into account, we can state that in the results of previous research, endolysosomal abnormality is an important cause of neuronal lesions in the brain. Endocytosis is a central pathway involved in the regulation of the degradation of amyloidogenic components. The results of the studies suggest that a correlation between alteration in the endocytosis process and associated protein expression progresses AD. In this article, we discuss the current knowledge about endosomal abnormalities in AD.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.
| | - Naomi Hachiya
- Shonan Research Center, Central Glass Co., Ltd, Shonan Health Innovation Park 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | | | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368, Wroclaw, Poland
| | - Egbert Piasecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland
| |
Collapse
|
3
|
Rodríguez-Durán LF, López-Ibarra DL, Herrera-Xithe G, Bermúdez-Rattoni F, Osorio-Gómez D, Escobar ML. Synergistic photoactivation of VTA-catecholaminergic and BLA-glutamatergic projections induces long-term potentiation in the insular cortex. Neurobiol Learn Mem 2023; 205:107845. [PMID: 37865264 DOI: 10.1016/j.nlm.2023.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The presentation of novel stimuli induces a reliable dopamine release in the insular cortex (IC) from the ventral tegmental area (VTA). The novel stimuli could be associated with motivational and emotional signals induced by cortical glutamate release from the basolateral amygdala (BLA). Dopamine and glutamate are essential for acquiring and maintaining behavioral tasks, including visual and taste recognition memories. In this study, we hypothesize that the simultaneous activation of dopaminergic and glutamatergic projections to the neocortex can underlie synaptic plasticity. High-frequency stimulation of the BLA-IC circuit has demonstrated a reliable long-term potentiation (LTP), a widely acknowledged synaptic plasticity that underlies memory consolidation. Therefore, the concurrent optogenetic stimulation of the insula's glutamatergic and dopaminergic terminal fibers would induce reliable LTP. Our results confirmed that combined photostimulation of the VTA and BLA projections to the IC induces a slow-onset LTP. We also found that optogenetically-induced LTP in the IC relies on both glutamatergic NMDA receptors and dopaminergic D1/D5 receptors, suggesting that the combined effects of these neurotransmitters can trigger synaptic plasticity in the neocortex. Overall, our findings provide compelling evidence supporting the essential role of both dopaminergic and glutamatergic projections in modulating synaptic plasticity within the IC. Furthermore, our results suggest that the synergistic actions of these projections have a pivotal influence on the formation of motivational memories.
Collapse
Affiliation(s)
- Luis F Rodríguez-Durán
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Diana L López-Ibarra
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Gabriela Herrera-Xithe
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Daniel Osorio-Gómez
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico.
| | - Martha L Escobar
- Facultad de Psicología, UNAM, División de Investigación y Estudios de Posgrado, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Mexico City, Mexico.
| |
Collapse
|
4
|
Sharma A, Rahman G, Gorelik J, Bhargava A. Voltage-Gated T-Type Calcium Channel Modulation by Kinases and Phosphatases: The Old Ones, the New Ones, and the Missing Ones. Cells 2023; 12:461. [PMID: 36766802 PMCID: PMC9913649 DOI: 10.3390/cells12030461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) can regulate a wide variety of cellular fates, such as proliferation, apoptosis, and autophagy. More importantly, changes in the intracellular Ca2+ level can modulate signaling pathways that control a broad range of physiological as well as pathological cellular events, including those important to cellular excitability, cell cycle, gene-transcription, contraction, cancer progression, etc. Not only intracellular Ca2+ level but the distribution of Ca2+ in the intracellular compartments is also a highly regulated process. For this Ca2+ homeostasis, numerous Ca2+ chelating, storage, and transport mechanisms are required. There are also specialized proteins that are responsible for buffering and transport of Ca2+. T-type Ca2+ channels (TTCCs) are one of those specialized proteins which play a key role in the signal transduction of many excitable and non-excitable cell types. TTCCs are low-voltage activated channels that belong to the family of voltage-gated Ca2+ channels. Over decades, multiple kinases and phosphatases have been shown to modulate the activity of TTCCs, thus playing an indirect role in maintaining cellular physiology. In this review, we provide information on the kinase and phosphatase modulation of TTCC isoforms Cav3.1, Cav3.2, and Cav3.3, which are mostly described for roles unrelated to cellular excitability. We also describe possible potential modulations that are yet to be explored. For example, both mitogen-activated protein kinase and citron kinase show affinity for different TTCC isoforms; however, the effect of such interaction on TTCC current/kinetics has not been studied yet.
Collapse
Affiliation(s)
- Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Ghazala Rahman
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Julia Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| |
Collapse
|
5
|
Targeting T-type channels in cancer: What is on and what is off? Drug Discov Today 2021; 27:743-758. [PMID: 34838727 DOI: 10.1016/j.drudis.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/10/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022]
Abstract
Over the past 20 years, various studies have demonstrated a pivotal role of T-type calcium channels (TTCCs) in tumor progression. Cytotoxic effects of TTCC pharmacological blockers have been reported in vitro and in preclinical models. However, their roles in cancer physiology are only beginning to be understood. In this review, we discuss evidence for the signaling pathways and cellular processes stemming from TTCC activity, mainly inferred by inverse reasoning from pharmacological blocks and, only in a few studies, by gene silencing or channel activation. A thorough analysis indicates that drug-induced cytotoxicity is partially an off-target effect. Dissection of on/off-target activity is paramount to elucidate the physiological roles of TTCCs, and to deliver efficacious therapies suited to different cancer types and stages.
Collapse
|
6
|
Sexually dimorphic prelimbic cortex mechanisms play a role in alcohol dependence: protection by endostatin. Neuropsychopharmacology 2021; 46:1937-1949. [PMID: 34253856 PMCID: PMC8429630 DOI: 10.1038/s41386-021-01075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023]
Abstract
Angiogenesis or proliferation of endothelial cells plays a role in brain microenvironment homeostasis. Previously we have shown enhanced expression of markers of angiogenesis in the medial prefrontal cortex during abstinence in an animal model of ethanol dependence induced by chronic intermittent ethanol vapor (CIE) and ethanol drinking (ED) procedure. Here we report that systemic injections of the angiogenesis inhibitor endostatin reduced relapse to drinking behavior in female CIE-ED rats without affecting relapse to drinking in male CIE-ED rats, and female and male nondependent ED rats. Endostatin did not alter relapse to sucrose drinking in both sexes. Endostatin reduced expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) in all groups; however, rescued expression of tight junction protein claudin-5 in the prelimbic cortex (PLC) of female CIE-ED rats. In both sexes, CIE-ED enhanced microglial activation in the PLC and this was selectively prevented by endostatin in female CIE-ED rats. Endostatin prevented CIE-ED-induced enhanced NF-kB activity and expression and Fos expression in females and did not alter reduced Fos expression in males. Analysis of synaptic processes within the PLC revealed sexually dimorphic adaptations, with CIE-ED reducing synaptic transmission and altering synaptic plasticity in the PLC in females, and increasing synaptic transmission in males. Endostatin prevented the neuroadaptations in the PLC in females via enhancing phosphorylation of CaMKII, without affecting the neuroadaptations in males. Our multifaceted approach is the first to link PLC endothelial cell damage to the behavioral, neuroimmune, and synaptic changes associated with relapse to ethanol drinking in female subjects, and provides a new therapeutic strategy to reduce relapse in dependent subjects.
Collapse
|
7
|
Gantz SC, Ortiz MM, Belilos AJ, Moussawi K. Excitation of medium spiny neurons by 'inhibitory' ultrapotent chemogenetics via shifts in chloride reversal potential. eLife 2021; 10:64241. [PMID: 33822716 PMCID: PMC8024007 DOI: 10.7554/elife.64241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/28/2021] [Indexed: 11/13/2022] Open
Abstract
Ultrapotent chemogenetics, including the chloride-permeable inhibitory PSAM4-GlyR receptor, were recently proposed as a powerful strategy to selectively control neuronal activity in awake, behaving animals. We aimed to validate the inhibitory function of PSAM4-GlyR in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) in the ventral striatum. Activation of PSAM4-GlyR with the uPSEM792 ligand enhanced rather than suppressed the activity of D1-MSNs in vivo as indicated by increased c-fos expression in D1-MSNs and in vitro as indicated by cell-attached recordings from D1-MSNs in mouse brain slices. Whole-cell recordings showed that activation of PSAM4-GlyR depolarized D1-MSNs, attenuated GABAergic inhibition, and shifted the reversal potential of PSAM4-GlyR current to more depolarized potentials, perpetuating the depolarizing effect of receptor activation. These data show that 'inhibitory' PSAM4-GlyR chemogenetics may activate certain cell types and highlight the pitfalls of utilizing chloride conductances to inhibit neurons.
Collapse
Affiliation(s)
- Stephanie C Gantz
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Maria M Ortiz
- Biological and Biomedical Neuroscience Program, University of North Carolina, Chapel Hill, United States
| | | | - Khaled Moussawi
- National Institute on Drug Abuse, Baltimore, United States.,Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
8
|
Lee BH, Kang J, Kim HY, Gwak YS. The Roles of Superoxide on At-Level Spinal Cord Injury Pain in Rats. Int J Mol Sci 2021; 22:ijms22052672. [PMID: 33800907 PMCID: PMC7961837 DOI: 10.3390/ijms22052672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Background: In the present study, we examined superoxide-mediated excitatory nociceptive transmission on at-level neuropathic pain following spinal thoracic 10 contusion injury (SCI) in male Sprague Dawley rats. Methods: Mechanical sensitivity at body trunk, neuronal firing activity, and expression of superoxide marker/ionotropic glutamate receptors (iGluRs)/CamKII were measured in the T7/8 dorsal horn, respectively. Results: Topical treatment of superoxide donor t-BOOH (0.4 mg/kg) increased neuronal firing rates and pCamKII expression in the naïve group, whereas superoxide scavenger Tempol (1 mg/kg) and non-specific ROS scavenger PBN (3 mg/kg) decreased firing rates in the SCI group (* p < 0.05). SCI showed increases of iGluRs-mediated neuronal firing rates and pCamKII expression (* p < 0.05); however, t-BOOH treatment did not show significant changes in the naïve group. The mechanical sensitivity at the body trunk in the SCI group (6.2 ± 0.5) was attenuated by CamKII inhibitor KN-93 (50 μg, 3.9 ± 0.4) or Tempol (1 mg, 4 ± 0.4) treatment (* p < 0.05). In addition, the level of superoxide marker Dhet showed significant increase in SCI rats compared to the sham group (11.7 ± 1.7 vs. 6.6 ± 1.5, * p < 0.05). Conclusions: Superoxide and the pCamKII pathway contribute to chronic at-level neuropathic pain without involvement of iGluRs following SCI.
Collapse
Affiliation(s)
- Bong Hyo Lee
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea;
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Daegu 42158, Korea;
| | - Jonghoon Kang
- Department of Biology, Valdosta State University, Valdosta, GA 31698, USA;
| | - Hee Young Kim
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Daegu 42158, Korea;
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
| | - Young S. Gwak
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
- Correspondence: ; Tel.: +82-949-824-7222
| |
Collapse
|
9
|
Somkuwar SS, Mandyam CD. Individual Differences in Ethanol Drinking and Seeking Behaviors in Rats Exposed to Chronic Intermittent Ethanol Vapor Exposure is Associated with Altered CaMKII Autophosphorylation in the Nucleus Accumbens Shell. Brain Sci 2019; 9:brainsci9120367. [PMID: 31835746 PMCID: PMC6955871 DOI: 10.3390/brainsci9120367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022] Open
Abstract
Chronic intermittent ethanol vapor exposure (CIE) in rodents produces reliable and high blood ethanol concentration and behavioral symptoms associated with moderate to severe alcohol use disorder (AUD)—for example, escalation of operant ethanol self-administration, a feature suggestive of transition from recreational to addictive use, is a widely replicated behavior in rats that experience CIE. Herein, we present evidence from a subset of rats that do not demonstrate escalation of ethanol self-administration following seven weeks of CIE. These low responders (LR) maintain low ethanol self-administration during CIE, demonstrate lower relapse to drinking during abstinence and reduced reinstatement of ethanol seeking triggered by ethanol cues when compared with high responders (HR). We examined the blood ethanol levels in LR and HR rats during CIE and show higher levels in LR compared with HR. We also examined peak corticosterone levels during CIE and show that LR rats have higher levels compared with HR rats. Lastly, we evaluated the levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the nucleus accumbens shell and reveal that the activity of CaMKII, which is autophosphorylated at site Tyr-286, is significantly reduced in HR rats compared with LR rats. These findings demonstrate that dysregulation of the hypothalamic–pituitary–adrenal axis activity and plasticity-related proteins regulating molecular memory in the nucleus accumbens shell are associated with higher ethanol-drinking and -seeking in HR rats. Future mechanistic studies should evaluate CaMKII autophosphorylation-dependent remodeling of glutamatergic synapses in the ventral striatum as a plausible mechanism for the CIE-induced enhanced ethanol drinking and seeking behaviors.
Collapse
Affiliation(s)
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
10
|
Marks CR, Shonesy BC, Wang X, Stephenson JR, Niswender CM, Colbran RJ. Activated CaMKII α Binds to the mGlu 5 Metabotropic Glutamate Receptor and Modulates Calcium Mobilization. Mol Pharmacol 2018; 94:1352-1362. [PMID: 30282777 DOI: 10.1124/mol.118.113142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/19/2018] [Indexed: 01/03/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and metabotropic glutamate receptor 5 (mGlu5) are critical signaling molecules in synaptic plasticity and learning/memory. Here, we demonstrate that mGlu5 is present in CaMKIIα complexes isolated from mouse forebrain. Further in vitro characterization showed that the membrane-proximal region of the C-terminal domain (CTD) of mGlu5a directly interacts with purified Thr286-autophosphorylated (activated) CaMKIIα However, the binding of CaMKIIα to this CTD fragment is reduced by the addition of excess Ca2+/calmodulin or by additional CaMKIIα autophosphorylation at non-Thr286 sites. Furthermore, in vitro binding of CaMKIIα is dependent on a tribasic residue motif Lys-Arg-Arg (KRR) at residues 866-868 of the mGlu5a-CTD, and mutation of this motif decreases the coimmunoprecipitation of CaMKIIα with full-length mGlu5a expressed in heterologous cells by about 50%. The KRR motif is required for two novel functional effects of coexpressing constitutively active CaMKIIα with mGlu5a in heterologous cells. First, cell-surface biotinylation studies showed that CaMKIIα increases the surface expression of mGlu5a Second, using Ca2+ fluorimetry and single-cell Ca2+ imaging, we found that CaMKIIα reduces the initial peak of mGlu5a-mediated Ca2+ mobilization by about 25% while doubling the relative duration of the Ca2+ signal. These findings provide new insights into the physical and functional coupling of these key regulators of postsynaptic signaling.
Collapse
Affiliation(s)
- Christian R Marks
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Brian C Shonesy
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xiaohan Wang
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason R Stephenson
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Colleen M Niswender
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Roger J Colbran
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
11
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
12
|
Dong L, Cheng X, Zhou L, Hu Y. Calcium channels are involved in EphB/ephrinB reverse signaling‑induced apoptosis in a rat chronic ocular hypertension model. Mol Med Rep 2017; 17:2465-2471. [PMID: 29207174 PMCID: PMC5783492 DOI: 10.3892/mmr.2017.8162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022] Open
Abstract
Erythropoietin-producing hepatocyte receptor B (EphB)/ephrinB reverse signaling has been revealed to be activated in chronic ocular hypertension (COH) by increasing the apoptosis of retinal ganglion cells (RGCs). However, the exact mechanism is not well understood. The present study investigated the involvement of Ca2+ channels in the apoptosis of RGCs induced by EphB/ephrinB reverse signaling in a rat CHO model, which was established by cauterizing 3 out of the 4 episcleral veins. The expression levels of four voltage-gated Ca2+ channel subunits (Cav3.1–3.3 and Cav1.2) were detected using immunofluorescence and western blot analysis. TUNEL staining was performed to assess RGC apoptosis following an injection with the T type Ca2+ channel blocker. Ca2+ channels, mainly the T type, were upregulated in COH rat retinas when compared with the sham group (P<0.01). Additionally, the Cav3.2 subunit of T type calcium channels was predominantly expressed in Müller cells and RGCs, such as ephrinB2. Furthermore, an intravitreal injection of the Ca2+ channel blocker Mibefradil (3 µM) reduced EphB2-fragment crystallizable region-induced RGC apoptosis in normal rats. Thus, the results suggest that Ca2+ channels in a COH model may be a pathway involved in ephrinB/EphB signaling-induced RGC apoptosis.
Collapse
Affiliation(s)
- Lingdan Dong
- Central Laboratory, First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xianglin Cheng
- Department of Neurology, First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Long Zhou
- Department of Pathology, First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yanhong Hu
- Nursing Department of Medical School of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
13
|
Fang X, Li S, Han Q, Zhao Y, Gao J, Yan J, Luo A. Overexpression cdc42 attenuates isoflurane-induced neurotoxicity in developmental brain of rats. Biochem Biophys Res Commun 2017. [PMID: 28642137 DOI: 10.1016/j.bbrc.2017.06.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Fang T, Kasbi K, Rothe S, Aziz W, Giese KP. Age-dependent changes in autophosphorylation of alpha calcium/calmodulin dependent kinase II in hippocampus and amygdala after contextual fear conditioning. Brain Res Bull 2017. [PMID: 28648815 PMCID: PMC5599619 DOI: 10.1016/j.brainresbull.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The hippocampus and amygdala are essential brain regions responsible for contextual fear conditioning (CFC). The autophosphorylation of alpha calcium-calmodulin kinase II (αCaMKII) at threonine-286 (T286) is a critical step implicated in long-term potentiation (LTP), learning and memory. However, the changes in αCaMKII levels with aging and training in associated brain regions are not fully understood. Here, we studied how aging and training affect the levels of phosphorylated (T286) and proportion of phosphorylated:total αCaMKII in the hippocampus and amygdala. Young and aged mice, naïve (untrained) and trained in CFC, were analysed by immunohistochemistry for the levels of total and phosphorylated αCaMKII in the hippocampus and amygdala. We found that two hours after CFC training, young mice exhibited a higher level of phosphorylated and increased ratio of phosphorylated:total αCaMKII in hippocampal CA3 stratum radiatum. Furthermore, aged untrained mice showed a higher ratio of phosphorylated:total αCaMKII in the CA3 region of the hippocampus when compared to the young untrained group. No effect of training or aging were seen in the central, lateral and basolateral amygdala regions, for both phosphorylated and ratio of phosphorylated:total αCaMKII. These results show that aging impairs the training-induced upregulation of autophosphorylated (T286) αCaMKII in the CA3 stratum radiatum of the hippocampus. This indicates that distinct age-related mechanisms underlie CFC that may rely more heavily on NMDA receptor-dependent plasticity in young age.
Collapse
Affiliation(s)
- Ton Fang
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, United Kingdom
| | - Kamillia Kasbi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, United Kingdom
| | - Stephanie Rothe
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, United Kingdom
| | - Wajeeha Aziz
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, United Kingdom; University of Sussex, Sussex House, Falmer Brighton, BN1 9RH, United Kingdom.
| | - K Peter Giese
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
15
|
Yabuki Y, Matsuo K, Izumi H, Haga H, Yoshida T, Wakamori M, Kakei A, Sakimura K, Fukuda T, Fukunaga K. Pharmacological properties of SAK3, a novel T-type voltage-gated Ca 2+ channel enhancer. Neuropharmacology 2017; 117:1-13. [PMID: 28093211 DOI: 10.1016/j.neuropharm.2017.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/27/2016] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Abstract
T-type voltage-gated Ca2+ channels (T-VGCCs) function in the pathophysiology of epilepsy, pain and sleep. However, their role in cognitive function remains unclear. We previously reported that the cognitive enhancer ST101, which stimulates T-VGCCs in rat cortical slices, was a potential Alzheimer's disease therapeutic. Here, we introduce a more potent T-VGCC enhancer, SAK3 (ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo [1,2-a]pyridin]-2-ene-3-carboxylate), and characterize its pharmacological properties in brain. Based on whole cell patch-clamp analysis, SAK3 (0.01-10 nM) significantly enhanced Cav3.1 currents in neuro2A cells ectopically expressing Cav3.1. SAK3 (0.1-10 nM nM) also enhanced Cav3.3 but not Cav3.2 currents in the transfected cells. Notably, Cav3.1 and Cav3.3 T-VGCCs were localized in cholinergic neurve systems in hippocampus and in the medial septum. Indeed, acute oral administration of SAK3 (0.5 mg/kg, p.o.), but not ST101 (0.5 mg/kg, p.o.) significantly enhanced acetylcholine (ACh) release in the hippocampal CA1 region of naïve mice. Moreover, acute SAK3 (0.5 mg/kg, p.o.) administration significantly enhanced hippocampal ACh levels in olfactory-bulbectomized (OBX) mice, rescuing impaired memory-related behaviors. Treatment of OBX mice with the T-VGCC-specific blocker NNC 55-0396 (12.5 mg/kg, i.p.) antagonized both enhanced ACh release and memory improvements elicited by SAK3 administration. We also observed that SAK3-induced ACh releases were significantly blocked in the hippocampus from Cav3.1 knockout (KO) mice. These findings suggest overall that T-VGCCs play a key role in cognition by enhancing hippocampal ACh release and that the cognitive enhancer SAK3 could be a candidate therapeutic in Alzheimer's disease.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hidaka Haga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takashi Yoshida
- Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Minoru Wakamori
- Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Akikazu Kakei
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Nagano, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
16
|
The Involvement of the Decrease of Astrocytic Wnt5a in the Cognitive Decline in Minimal Hepatic Encephalopathy. Mol Neurobiol 2016; 54:7949-7963. [PMID: 27878554 DOI: 10.1007/s12035-016-0216-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
Wnt signaling plays a key role in neuroprotection and synaptic plasticity. We speculate that the impairment of Wnt signaling may mediate astrocytic neurotrophins (NTs) production and the impairment of Wnt signaling to astrocytic NTs production contributes to the pathogenesis of minimal hepatic encephalopathy (MHE). Here, we found that induction of astrocytic NTs synthesis was by Wnt5a via the calcium/calmodulin-sensitive protein kinase II (CaMK II)-cAMP-response element-binding protein (CREB) pathway in PCAs. The decrease of spatial learning and memory and downregulation of astrocytic BDNF and NT-3 were reversed by Wnt5a in MHE rat model. The increased association between CaMK II and CREB followed by phosphorylation of CREB in response to Wnt5a stimulation was suppressed in the MHE rat model. Our results highlight a novel pathogenesis of the contribution of downregulation of NTs to the inhibition of the interaction between Wnt5a and Frizzled-2 in astrocytes in MHE.
Collapse
|