1
|
Kaponi M, Kyriakopoulou PE, Hadidi A. Viroids of the Mediterranean Basin. Viruses 2024; 16:612. [PMID: 38675953 PMCID: PMC11053799 DOI: 10.3390/v16040612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
There has been substantial progress in the Mediterranean countries regarding research on viroids. Twenty-nine viroid species, all belonging to Pospiviroidae and Avsunviroidae genera, have been detected in the Mediterranean Basin. Not only have detection methods, such as reverse transcription-quantitative polymerase chain reaction and next-generation sequencing, been used for viroid detection, along with molecular hybridization techniques allowing for rapid detection, identification, and characterization of known and novel viroids in these countries, but eradication measures have also been taken that allowed for the efficient elimination of certain viroids in a number of Mediterranean countries. The eradication measures were followed as recommended by the European and Mediterranean Plant Protection Organization, which is known by its abbreviation, EPPO. The Mediterranean Region has been a niche for viroids since ancient times due to the warm climate and the socio-cultural conditions that facilitate viroid transmission among different host plant species.
Collapse
Affiliation(s)
- Maria Kaponi
- Plant Virology Laboratory, Benaki Phytopathological Institute, Stefanou Delta 8, Kifissia, 14561 Athens, Greece
| | | | - Ahmed Hadidi
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| |
Collapse
|
2
|
Guček T, Jakše J, Radišek S. Optimization and Validation of Singleplex and Multiplex RT-qPCR for Detection of Citrus bark cracking viroid (CBCVd), Hop latent viroid (HLVd), and Hop stunt viroid (HSVd) in Hops ( Humulus lupulus). PLANT DISEASE 2023; 107:3592-3601. [PMID: 37261880 DOI: 10.1094/pdis-11-22-2606-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Direct crop losses due to plant diseases and the measures used to control them have significant agricultural and economic impacts. The shift from diverse small-scale to large-scale genetically uniform monoculture production, along with agricultural intensification and climate change, has led to several known epidemics in man-made agroecosystems that have been rendered more vulnerable to pathogens. One such example is hop growing, which is threatened by highly aggressive hop viroids. Since 2007, almost one-third (about 500 ha) of Slovenian hop gardens have been affected by severe hop stunt disease caused by Citrus bark cracking viroid (CBCVd), which continues to spread despite strict prevention measures. We have developed and validated a multiplex RT-qPCR (mRT-qPCR) for the sensitive detection of CBCVd, Hop latent viroid (HLVd), and Hop stunt viroid (HSVd). Singleplex RT-qPCR assays were designed individually and subsequently combined in a one-step mRT-qPCR assay. Hop-specific mRNA170 and mRNA1192 internal controls were also developed to detect possible PCR inhibition. Analytical specificity was tested on 35 samples from different hosts, geographic regions, and combinations of viroids. Method validation showed that mRT-qPCR had lower sensitivity than singleplex RT-qPCR, while specificity, selectivity, repeatability, and reproducibility remained unchanged. The newly developed assays were found to be robust, reliable, and suitable for large-scale screening of hop viroids.
Collapse
Affiliation(s)
- Tanja Guček
- Slovenian Institute of Hop Research and Brewing, Žalec 3310, Slovenia
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Žalec 3310, Slovenia
| |
Collapse
|
3
|
Aviña-Padilla K, Zamora-Macorra EJ, Ochoa-Martínez DL, Alcántar-Aguirre FC, Hernández-Rosales M, Calderón-Zamora L, Hammond RW. Mexico: A Landscape of Viroid Origin and Epidemiological Relevance of Endemic Species. Cells 2022; 11:cells11213487. [PMID: 36359881 PMCID: PMC9653797 DOI: 10.3390/cells11213487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Viroids are single-stranded, circular RNA molecules (234-406 nt) that infect a wide range of crop species and cause economic losses in agriculture worldwide. They are characterized by the existence of a population of sequence variants, attributed to the low fidelity of RNA polymerases involved in their transcription, resulting in high mutation rates. Therefore, these biological entities exist as quasispecies. This feature allows them to replicate within a wide range of host plants, both monocots and dicots. Viroid hosts include economically important crops such as tomato, citrus, and fruit trees such as peach and avocado. Given the high risk of introducing viroids to viroid disease-free countries, these pathogens have been quarantined globally. As discussed herein, Mexico represents a geographical landscape of viroids linked to their origin and comprises considerable biodiversity. The biological features of viroid species endemic to Mexico are highlighted in this communication. In addition, we report the phylogenetic relationships among viroid and viroid strains, their economic impact, geographical distribution, and epidemiological features, including a broad host range and possible long-distance, seed, or insect-mediated transmission. In summary, this review could be helpful for a better understanding of the biology of viroid diseases and future programs on control of movement and spread to avoid economic losses in agricultural industries.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Centro de Investigacion y de Estudios Avanzados del I.P.N. Unidad Irapuato, Irapuato 36821, Mexico
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: or (K.A.-P.); (R.W.H.); Tel.: +1-301-504-5203 (R.W.H.)
| | | | | | | | | | - Loranda Calderón-Zamora
- Facultad de Biologia, Universidad Autonoma de Sinaloa, Calzada de las Americas y calle Universitarios, s/n Ciudad Universitaria, Culiacan 80013, Mexico
| | - Rosemarie W. Hammond
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
- Correspondence: or (K.A.-P.); (R.W.H.); Tel.: +1-301-504-5203 (R.W.H.)
| |
Collapse
|
4
|
Hajeri S, Vidalakis G, Yokomi RK. Detection of Viroids Using RT-qPCR. Methods Mol Biol 2022; 2316:153-162. [PMID: 34845693 DOI: 10.1007/978-1-0716-1464-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Viroids are the smallest known infectious pathogens. They are nonprotein-encoding, single-stranded, circular, naked RNA molecules that can cause several diseases in economically important crops. With the advent of thermal cyclers incorporating fluorescent detection, reverse transcription coupled to the quantitative polymerase chain reaction (RT-qPCR) has transformed the way the viroids are detected. The method involves using sequence-specific primers that anneal to the viroid RNA of interest. The viroid RNA serves as a template during reverse transcription, in which the enzyme reverse transcriptase generates a cDNA copy of a portion of the target RNA molecule. After first-strand cDNA synthesis, RNA template from cDNA:RNA hybrid molecule is removed by digestion with RNase H to improve the sensitivity of PCR step. This cDNA is then be used as a template for amplification of viroid sequence in PCR.
Collapse
Affiliation(s)
- Subhas Hajeri
- Citrus Pest Detection Program, Central California Tristeza Eradication Agency, Tulare, CA, USA.
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Raymond K Yokomi
- USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA.
| |
Collapse
|
5
|
Osman F, Vidalakis G. Real-Time Detection of Viroids Using Singleplex and Multiplex Quantitative Polymerase Chain Reaction. Methods Mol Biol 2022; 2316:181-194. [PMID: 34845695 DOI: 10.1007/978-1-0716-1464-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiplex quantitative polymerase chain reaction (multiplex qPCR) enables the amplification of more than one target in a single reaction using different reporter dyes with distinct fluorescent spectra. The number of reporter fluorophores is typically restricted to three or four, depending upon the capability of the real-time PCR platform and software used. Each target is amplified by a different set of primers and a uniquely labeled probe that distinguishes each PCR amplicon. Thus, the levels of several targets of interest can be quantified in real time. By combining several reactions in a single tube, multiplex qPCR reduces the quantity, and cost of reagents needed to screen a sample for multiple targets. Specificity and efficiency are not affected by the inclusion of the three assays in a multiplex reaction.
Collapse
Affiliation(s)
- Fatima Osman
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Maheshwari Y, Selvaraj V, Godfrey K, Hajeri S, Yokomi R. Multiplex detection of "Candidatus Liberibacter asiaticus" and Spiroplasma citri by qPCR and droplet digital PCR. PLoS One 2021; 16:e0242392. [PMID: 33730040 PMCID: PMC7968697 DOI: 10.1371/journal.pone.0242392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/03/2021] [Indexed: 11/24/2022] Open
Abstract
“Candidatus Liberibacter asiaticus” (CLas) and Spiroplasma citri are phloem-limited bacteria that infect citrus and are transmitted by insect vectors. S. citri causes citrus stubborn disease (CSD) and is vectored by the beet leafhopper in California. CLas is associated with the devastating citrus disease, Huanglongbing (HLB), and is vectored by the Asian citrus psyllid. CLas is a regulatory pathogen spreading in citrus on residential properties in southern California and is an imminent threat to spread to commercial citrus plantings. CSD is endemic in California and has symptoms in citrus that can be easily confused with HLB. Therefore, the objective of this study was to develop a multiplex qPCR and duplex droplet digital PCR (ddPCR) assay for simultaneous detection of CLas and S. citri to be used where both pathogens can co-exist. The multiplex qPCR assay was designed to detect multicopy genes of CLas—RNR (5 copies) and S. citri–SPV1 ORF1 (13 copies), respectively, and citrus cytochrome oxidase (COX) as internal positive control. Absolute quantitation of these pathogens was achieved by duplex ddPCR as a supplement for marginal qPCR results. Duplex ddPCR allowed higher sensitivity than qPCR for detection of CLas and S. citri. ddPCR showed higher tolerance to inhibitors and yielded highly reproducible results. The multiplex qPCR assay has the benefit of testing both pathogens at reduced cost and can serve to augment the official regulatory protocol for CLas detection in California. Moreover, the ddPCR provided unambiguous absolute detection of CLas and S. citri at very low concentrations without any standards for pathogen titer.
Collapse
Affiliation(s)
- Yogita Maheshwari
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, California, United States of America
| | - Vijayanandraj Selvaraj
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, California, United States of America
- * E-mail: (RY); (VS)
| | - Kristine Godfrey
- Contained Research Facility, University of California, Davis, Davis, California, United States of America
| | - Subhas Hajeri
- Citrus Pest Detection Program, Central California Tristeza Eradication Agency, Tulare, California, United States of America
| | - Raymond Yokomi
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, California, United States of America
- * E-mail: (RY); (VS)
| |
Collapse
|
7
|
Venkataraman S, Badar U, Shoeb E, Hashim G, AbouHaidar M, Hefferon K. An Inside Look into Biological Miniatures: Molecular Mechanisms of Viroids. Int J Mol Sci 2021; 22:2795. [PMID: 33801996 PMCID: PMC8001946 DOI: 10.3390/ijms22062795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Viroids are tiny single-stranded circular RNA pathogens that infect plants. Viroids do not encode any proteins, yet cause an assortment of symptoms. The following review describes viroid classification, molecular biology and spread. The review also discusses viroid pathogenesis, host interactions and detection. The review concludes with a description of future prospects in viroid research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kathleen Hefferon
- Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (S.V.); (U.B.); (E.S.); (G.H.); (M.A.)
| |
Collapse
|
8
|
Marquez‐Molins J, Gomez G, Pallas V. Hop stunt viroid: A polyphagous pathogenic RNA that has shed light on viroid-host interactions. MOLECULAR PLANT PATHOLOGY 2021; 22:153-162. [PMID: 33305492 PMCID: PMC7814962 DOI: 10.1111/mpp.13022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
TAXONOMY Hop stunt viroid (HSVd) is the type species of the genus Hostuviroid (family Pospiviroidae). The other species of this genus is Dahlia latent viroid, which presents an identical central conserved region (CCR) but lacks other structural hallmarks present in Hop stunt viroid. HSVd replication occurs in the nucleus through an asymmetric rolling-circle model as in the other members of the family Pospiviroidae, which also includes the genera Pospiviroid, Cocadviroid, Apscaviroid, and Coleoviroid. PHYSICAL PROPERTIES Hop stunt viroid consists of a single-stranded, circular RNA of 295-303 nucleotides depending on isolates and sequence variants. The most stable secondary structure is a rod-like or quasi-rod-like conformation with two characteristic domains: a CCR and a terminal conserved hairpin similar to that of cocadviroids. HSVd lacks a terminal conserved region. HOSTS AND SYMPTOMS HSVd infects a very broad range of natural hosts and has been reported to be the causal agent of five different diseases (citrus cachexia, cucumber pale fruit, peach and plum apple apricot distortion, and hop stunt). It is distributed worldwide. TRANSMISSION HSVd is transmitted mechanically and by seed.
Collapse
Affiliation(s)
- Joan Marquez‐Molins
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
9
|
Abstract
Citrus can host a number of important vector- and graft-transmissible pathogens which cause severe diseases. Citrus disease management and clean stock programs require pathogen detection systems which must be economical and sensitive to maintain a healthy citrus industry. Rapid diagnostic tests for simultaneous detection of major graft-transmissible disease agents enable reduction of cost and time. The genetic and biological features of viruses and viroids can vary according to the strains/variants, with severe and mild strains described within the same species. The use of diagnostic tests that can allow to selectively discriminate severe strain(s) is a powerful tool to intercept the most harmful strains and to reduce the need for biological indexing. Moreover a combination of these detection methods will facilitate the studies on the interactions between CTV and viroids, a research topic only partially explored so far.
Collapse
|
10
|
di Rienzo V, Bubici G, Montemurro C, Cillo F. Rapid identification of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus using high resolution melting and TaqMan SNP Genotyping assays as allelic discrimination techniques. PLoS One 2018; 13:e0196738. [PMID: 29709020 PMCID: PMC5927427 DOI: 10.1371/journal.pone.0196738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
In tomato, resistance to Tomato spotted wilt virus (TSWV) is conferred by the dominant gene, designated Sw-5. Virulent Sw-5 resistance breaking (SRB) mutants of TSWV have been reported on Sw-5 tomato cultivars. Two different PCR-based allelic discrimination techniques, namely Custom TaqMan™ SNP Genotyping and high-resolution melting (HRM) assays, were developed and compared for their ability to distinguish between avirulent (Sw-5 non-infecting, SNI) and SRB biotypes. TaqMan assays proved to be more sensitive (threshold of detection in a range of 50–70 TSWV RNA copies) and more reliable than HRM, assigning 25 TSWV isolates to their correct genotype with an accuracy of 100%. Moreover, the TaqMan SNP assays were further improved developing a rapid and simple protocol that included crude leaf extraction for RNA template preparations. On the other hand, HRM assays showed higher levels of sensitivity than TaqMan when used to co-detect both biotypes in different artificial mixtures. These diagnostic assays contributed to gain preliminary information on the epidemiology of TSWV isolates in open field conditions. In fact, the presented data suggest that SRB isolates are present as stable populations established year round, persisting on both winter (globe artichoke) and summer (tomato) crops, in the same cultivated areas of Southern Italy.
Collapse
Affiliation(s)
| | - Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Cinzia Montemurro
- Spin off SINAGRI s.r.l., Bari, Italy
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Cillo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
- * E-mail:
| |
Collapse
|
11
|
Osman F, Dang T, Bodaghi S, Vidalakis G. One-step multiplex RT-qPCR detects three citrus viroids from different genera in a wide range of hosts. J Virol Methods 2017; 245:40-52. [PMID: 28300606 DOI: 10.1016/j.jviromet.2017.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/27/2017] [Accepted: 03/10/2017] [Indexed: 01/23/2023]
Abstract
A one-step multiplex reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) based on species-specific minor groove binding (MGB) probes, was developed for the simultaneous detection, identification, and quantification of three citrus viroids belonging to different genera. Citrus exocortis viroid (Pospiviroid), Hop stunt viroid (Hostuviroid), and Citrus bark cracking viroid (Cocadviroid) cause a variety of maladies in agriculturally significant crops. Therefore, reliable assays for their detection are essential tools for various government and industry organizations implementing disease management programs. Singleplex qPCR primers and MGB probes were designed individually for the detection of the three targeted viroids, and subsequently combined in a one-step multiplex RT-qPCR reaction. A wide host range of woody plants, including citrus, grapevines, apricots, plums and herbaceous plants such as tomato, cucumber, eggplant and chrysanthemum different world regions were used to validate the assay. Single, double and triple viroid infections were identified in the tested samples. The developed multiplex RT-qPCR assay was compared with a previously reported SYBR Green I RT-qPCR for the universal detection of citrus viroids. Both assays accurately identified all citrus viroid infected samples. The multiplex assay complemented the SYBR Green I universal detection assay by differentiating among citrus viroid species in the positive samples. The developed multiplex RT-qPCR assay has the potential to simultaneously detect each targeted viroid and could be used in high throughput screenings for citrus viroids in field surveys, germplasm banks, nurseries and other viroid disease management programs.
Collapse
Affiliation(s)
- Fatima Osman
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Tyler Dang
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - Sohrab Bodaghi
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - Georgios Vidalakis
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|