1
|
Wang Y, Zhang H, Gu J, Chen C, Liu J, Zhang Z, Hua B, Miao M. The Sink-Source Relationship in Cucumber ( Cucumis sativus L.) Is Modulated by DNA Methylation. PLANTS (BASEL, SWITZERLAND) 2023; 13:103. [PMID: 38202411 PMCID: PMC10780960 DOI: 10.3390/plants13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
The optimization of the sink-source relationship is of great importance for crop yield regulation. Cucumber is a typical raffinose family oligosaccharide (RFO)-transporting crop. DNA methylation is a common epigenetic modification in plants, but its role in sink-source regulation has not been demonstrated in RFO-translocating species. Here, whole-genome bisulfite sequencing (WGBS-seq) was conducted to compare the nonfruiting-node leaves (NFNLs) and leaves of fruit setting (FNLs) at the 12th node by removing all female flowers in other nodes of the two treatments. We found considerable differentially methylated genes enriched in photosynthesis and carbohydrate metabolic processes. Comparative transcriptome analysis between FNLs and NFNLs indicated that many differentially expressed genes (DEGs) with differentially methylated regions were involved in auxin, ethylene and brassinolide metabolism; sucrose metabolism; and RFO synthesis pathways related to sink-source regulation. Moreover, DNA methylation levels of six sink-source-related genes in the pathways mentioned above decreased in leaves after 5-aza-dC-2'-deoxycytidine (5-Aza-dC, a DNA methyltransferase inhibitor) treatment on FNLs, and stachyose synthase (CsSTS) gene expression, enzyme activity and stachyose content in RFO synthesis pathway were upregulated, thereby increasing fruit length and dry weight. Taken together, our findings proposed an up-to-date inference for the potential role of DNA methylation in the sink-source relationship, which will provide important references for further exploring the molecular mechanism of DNA methylation in improving the yield of RFO transport plants.
Collapse
Affiliation(s)
- Yudan Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Huimin Zhang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226541, China;
| | - Jiawen Gu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Chen Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Jiexia Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Bing Hua
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Shao Z, Huang L, Zhang Y, Qiang S, Song X. Transgene Was Silenced in Hybrids between Transgenic Herbicide-Resistant Crops and Their Wild Relatives Utilizing Alien Chromosomes. PLANTS (BASEL, SWITZERLAND) 2022; 11:3187. [PMID: 36501227 PMCID: PMC9741405 DOI: 10.3390/plants11233187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The commercialization of transgenic herbicide-resistant (HR) crops may cause gene flow risk. If a transgene in progenies of transgenic crops and wild relatives is silencing, these progenies should be killed by the target herbicide, thus, the gene flow risk could be decreased. We obtained the progenies of backcross generations between wild Brassca juncea (AABB, 2n = 36) and glufosinate-resistant transgenic Brassica napus (AACC, 2n = 38, PAT gene located on the C-chromosome). They carried the HR gene but did not express it normally, i.e., gene silencing occurred. Meanwhile, six to nine methylation sites were found on the promoter of PAT in transgene-silencing progenies, while no methylation sites occurred on that in transgene-expressing progenies. In addition, transgene expressing and silencing backcross progenies showed similar fitness with wild Brassica juncea. In conclusion, we elaborate on the occurrence of transgene-silencing event in backcross progenies between transgenic crop utilizing alien chromosomes and their wild relatives, and the DNA methylation of the transgene promoter was an important factor leading to gene silencing. The insertion site of the transgene could be considered a strategy to reduce the ecological risk of transgenic crops, and applied to cultivate lower gene flow HR crops in the future.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoling Song
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (L.H.); (Y.Z.); (S.Q.)
| |
Collapse
|
3
|
Sečnik A, Štajner N, Radišek S, Kunej U, Križman M, Jakše J. Cytosine Methylation in Genomic DNA and Characterization of DNA Methylases and Demethylases and Their Expression Profiles in Viroid-Infected Hop Plants ( Humulus lupulus Var. 'Celeia'). Cells 2022; 11:cells11162592. [PMID: 36010668 PMCID: PMC9406385 DOI: 10.3390/cells11162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Abiotic and biotic stresses can lead to changes in host DNA methylation, which in plants is also mediated by an RNA-directed DNA methylation mechanism. Infections with viroids have been shown to affect DNA methylation dynamics in different plant hosts. The aim of our research was to determine the content of 5-methylcytosine (5-mC) in genomic DNA at the whole genome level of hop plants (Humulus lupulus Var. 'Celeia') infected with different viroids and their combinations and to analyse the expression of the selected genes to improve our understanding of DNA methylation dynamics in plant-viroid systems. The adapted HPLC-UV method used proved to be suitable for this purpose, and thus we were able to estimate for the first time that the cytosine methylation level in viroid-free hop plants was 26.7%. Interestingly, the observed 5-mC level was the lowest in hop plants infected simultaneously with CBCVd, HLVd and HSVd (23.7%), whereas the highest level was observed in plants infected with HLVd (31.4%). In addition, we identified three DNA methylases and one DNA demethylase gene in the hop's draft genome. The RT-qPCR revealed upregulation of all newly identified genes in hop plants infected with all three viroids, while no altered expression was observed in any of the other hop plants tested, except for CBCVd-infected hop plants, in which one DNA methylase was also upregulated.
Collapse
Affiliation(s)
- Andrej Sečnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, 3310 Žalec, Slovenia
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mitja Križman
- Laboratory for Food Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-3203280
| |
Collapse
|
4
|
Ravanrouy F, Niazi A, Moghadam A, Taghavi SM. MAP30 transgenic tobacco lines: from silencing to inducing. Mol Biol Rep 2021; 48:6719-6728. [PMID: 34420140 DOI: 10.1007/s11033-021-06662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND DNA methylation is one of the most important epigenetic event that regulates gene expression. In addition to DNA methylation, transgene copy number may induce gene silencing. Therefore, the study of these cases is useful for understanding of gene silencing regulation. METHODS AND RESULTS In this study, the methylation pattern of 35S promoter was investigated in the second generation of MAP30 transgenic tobacco lines. Therefore, the genomic DNA melting curve changes were investigated before and after bisulfite treatment by real time PCR. To determine the exact position of methylation, the samples were sequenced after bisulfite treatment. Observation of decrease in DNA melting curve of expressing line in comparison with silenced line confirmed the presence of DNA methylation in silenced line. In order to induce the MAP30 expression, the silenced line was treated using different concentrations of Azacytidine and green tea extracts. The results showed that all concentrations of green tea extracts for 6 days and the concentrations of 3 and 10 μM Azacytidine for 10 and 3 days could induce the expression of MAP30 in silenced line respectively. Finally, the transgene copy number was estimated using real time PCR, as silenced line contained more than two copies while the lines expressing MAP30 contained only one or two copies. CONCLUSIONS Finally, we found that the presence of DNA methylation and also multiple gene copy numbers in silenced line have been led to gene silencing. Moreover, the effect of green tea extract on DNA methylation showed incredible results for the first time.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Seyed Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Kang DR, Zhu Y, Li SL, Ai PH, Khan MA, Ding HX, Wang Y, Wang ZC. Transcriptome analysis of differentially expressed genes in chrysanthemum MET1 RNA interference lines. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1455-1468. [PMID: 34366589 PMCID: PMC8295425 DOI: 10.1007/s12298-021-01022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
UNLABELLED DNA methylation is the most important epigenetic modification involved in many essential biological processes. MET1 is one of DNA methyltransferases that affect the level of methylation in the entire genome. To explore the effect of MET1 gene silencing on gene expression profile of Chrysanthemum × morifolium 'Zijingling'. The stem section and leaves at the young stage were taken for transcriptome sequencing. MET1-RNAi leaves had 8 differentially expressed genes while 156 differentially expressed genes were observed in MET1-RNAi stem compared with control leaves and stem. These genes encode many key proteins in plant biological processes, such as transcription factors, signal transduction mechanisms, secondary metabolite synthesis, transport and catabolism and interaction. In general, 34.58% of the differentially expressed genes in leaves and stems were affected by the reduction of the MET1 gene. The differentially expressed genes in stem and leaves of transgenic plants went through significant changes. We found adequate amount of candidate genes associated with flowering, however, the number of genes with significant differences between transgenic and control lines was not too high. Several flowering related genes were screened out for gene expression verification and all of them were obseved as consistent with transcriptome data. These candidate genes may play important role in flowering variation of chrysanthemum. This study reveals the mechanism of CmMET1 interference on the growth and development of chrysanthemum at the transcriptional level, which provides the basis for further research on the epigenetic regulation mechanism in flower induction and development. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01022-1.
Collapse
Affiliation(s)
- Dong-ru Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Yi Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Shuai-lei Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Peng-hui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Hong-xu Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Ying Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Zi-cheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| |
Collapse
|
6
|
Zhang Y, Si F, Wang Y, Liu C, Zhang T, Yuan Y, Gai S. Application of 5-azacytidine induces DNA hypomethylation and accelerates dormancy release in buds of tree peony. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:91-100. [PMID: 31855819 DOI: 10.1016/j.plaphy.2019.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 05/22/2023]
Abstract
Release of bud dormancy is a prerequisite for the growth resumption and production in perennial plants such as tree peony. DNA methylation plays a pivotal role in regulating gene expression. In this study, combination of morphologic observation and DNA methylation analysis indicated that 5-azacytidine (5-azaC) application for 7 d declined 5 mC quantities and promoted dormancy release. After 5-azaC treatment, total 174,341 unigenes and 1818 differentially expression genes (DEGs) were obtained by RNA-seq, of which there were 1194 DEGs after 1 d 5-azaC treatment (AD1 vs CD1), and 624 DEGs after 7 d (AD7 vs CD7), respectively. The KEGG pathway analysis identified that totally 10 DEGs annotated in DNA replication pathway were enriched when AD7 compared with CD7. Furthermore, the expression patterns of several DEGs by real-time quantitative RT-PCR were consistent with that of RNA-seq data. 5-azaC application significantly decreased the expression levels of DNA methyltransferase genes, PsCMT3, PsMET1 and PsDRM2, and increased the transcript of demethylase gene PsROS1. Simultaneously, total methyltransferases activity decreased, and demethylase activity was induced by 5-azaC. In summary, application of 5-azaC inhibited the expression of the genes related to growth and development in short-term, indicating a possible toxic effect to plant, and its long-term effect was to induce hypomethylation by increasing demethylase genes transcripts and decreasing the expressions of methyltransferase genes, and then activate cell cycle, DNA replication and glycol-metabolism processes, which subsequently accelerated dormancy release. All these would provide a new strategy to further understand the molecular mechanism of dormancy release in tree peony.
Collapse
Affiliation(s)
- Yuxi Zhang
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Fuhui Si
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Yanyan Wang
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Chunying Liu
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Tao Zhang
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Yanchao Yuan
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Shupeng Gai
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| |
Collapse
|
7
|
Kellenberger RT, Schlüter PM, Schiestl FP. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa. PLoS One 2016; 11:e0166646. [PMID: 27870873 PMCID: PMC5117703 DOI: 10.1371/journal.pone.0166646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022] Open
Abstract
Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP) analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.
Collapse
Affiliation(s)
- Roman T. Kellenberger
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Philipp M. Schlüter
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Florian P. Schiestl
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Xin C, Hou R, Wu F, Zhao Y, Xiao H, Si W, Ali ME, Cai L, Guo J. Analysis of cytosine methylation status in potato by methylation-sensitive amplified polymorphisms under low-temperature stress. JOURNAL OF PLANT BIOLOGY 2015; 58:383-390. [DOI: 10.1007/s12374-015-0316-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|