1
|
Liu N, Zhong Q, Sun Z, Zhang B. Creatine monohydrate administration delayed muscle glycolysis of antemortem-stressed broilers by enhancing muscle energy status, increasing antioxidant capacity and regulating muscle metabolite profiles. Poult Sci 2025; 104:104778. [PMID: 39798284 DOI: 10.1016/j.psj.2025.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Preslaughter stress induced a negative energy balance of broilers, resulted in an accelerated glycolysis and finally led to an inferior meat quality. The present study aimed to investigate the effects of creatine monohydrate (CMH) supplementation on muscle energy storage, antioxidant capacity, the glycolysis of postmortem muscle and the metabolite profiles in muscle of broilers subjected to preslaughter transport. Two hundred and forty broilers were chosen and randomly allocated into three treatments (group A, group B and group C), comprising 8 replicates (10 broilers each replicate). Broilers in group A and B as well as group C were fed with the basal diet or diets containing 1200 mg/kg CMH for 14 days, respectively. After 12 h feed deprivation, broilers in group B (T3h group) and group C (T3h +CMH1200 group) were both subjected to a preslaughter transportation (3 h), but those in group A were treated with a 0.5 h-transport (refined as the control group). The results showed that preslaughter stress led to a lower pH24h value, a bigger L* value and a higher drip loss of muscle compared with the control group (P < 0.05). In addition, transport stress accelerated glycolysis in postmortem muscle, decreased energy storage and the antioxidant capacities of muscle (P < 0.05). However, CMH administration ameliorated energy status, delayed muscle glycolysis, elevated mRNA expression involved in Cr metabolism and inhibited AMPK signaling of broilers experienced preslaughter transport stress. Moreover, significant differences in glycine, serine and threonine metabolism, cysteine and methionine metabolism, purine metabolism, arginine and proline metabolism, ABC transporters, carbon metabolism, lysine metabolism and sulfur metabolism were observed using pathway enrichment analysis. Additionally, the contents of Cr and ATP were positively correlated with branched amino acids (L-valine and l-leucine), l-asparagine, inosine, PCr and d-ribose by metabolomics analysis. Taken together, CMH ameliorated energy status, delayed muscle glycolysis and improved meat quality of antemortem-stressed broilers by the regulation of pathways and key metabolites involved in energy metabolism of postmortem muscle.
Collapse
Affiliation(s)
- Ning Liu
- College of Animal Science and Technology, Ministry of Education Laboratory of, Animal Production and Quality Security, Jilin Agricultural University, Changchun 130117, China
| | - Qingzhen Zhong
- College of Animal Science and Technology, Ministry of Education Laboratory of, Animal Production and Quality Security, Jilin Agricultural University, Changchun 130117, China
| | - Zewei Sun
- College of Animal Science and Technology, Ministry of Education Laboratory of, Animal Production and Quality Security, Jilin Agricultural University, Changchun 130117, China.
| | - Bolin Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China; Department of Biology and Agriculture, Zunyi Normal College, Ping`an Avenue, Hong Huagang District, Zunyi 563006, China
| |
Collapse
|
2
|
Ijaz M, Li X, Hou C, Hussain Z, Zhang D. Role of Heat-Shock Proteins in the Determination of Postmortem Metabolism and Meat Quality Development of DFD Meat. Foods 2024; 13:2965. [PMID: 39335893 PMCID: PMC11431412 DOI: 10.3390/foods13182965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
This research explored the potential role of various heat-shock proteins (HSPs) in the determination of postmortem metabolism and the development of meat quality of normal, atypical DFD, and typical DFD beef. Beef longissimus thoracis muscle samples were classified into normal, atypical DFD, and typical DFD beef. The HSP27, HSP70, and HSP90 levels, meat quality parameters, and glycolytic metabolites were tested. The results showed that color coordinates (L*, a*, and b*), glycogen, and lactate contents were lower, whereas water-holding capacity was higher in the typical DFD beef than in the normal and atypical DFD beef (p < 0.05). The expression of HSP27 on day 1 was higher in atypical DFD beef. However, expressions of HSP70 on days 1 and 3 were higher in typical DFD, while the expression of HSP90 on day 1 was higher in atypical and typical DFD compared to the normal beef (p < 0.05). Interestingly, the expression of HSP27 was positively correlated with shear force readings. HSP70 and HSP90 presented a direct correlation with pH and water-holding capacity and an indirect correlation with a* and b*, glycogen and lactate contents (p < 0.05). The study concluded that the heat-shock proteins could influence the formation of DFD beef possibly by regulating the development of postmortem metabolism and meat quality traits.
Collapse
Affiliation(s)
- Muawuz Ijaz
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (M.I.); (C.H.); (Z.H.); (D.Z.)
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Jhang Campus, Jhang 35200, Pakistan
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (M.I.); (C.H.); (Z.H.); (D.Z.)
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (M.I.); (C.H.); (Z.H.); (D.Z.)
| | - Zubair Hussain
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (M.I.); (C.H.); (Z.H.); (D.Z.)
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (M.I.); (C.H.); (Z.H.); (D.Z.)
| |
Collapse
|
3
|
Yuan PQ, Lin S, Peng JY, Li YX, Liu YH, Wang P, Zhong HJ, Yang XM, Che LQ, Feng B, Batonon-Alavo DI, Mercier Y, Zhang XL, Lin Y, Xu SY, Li J, Zhuo Y, Wu D, Fang ZF. Effects of dietary methionine supplementation from different sources on growth performance and meat quality of barrows and gilts. Animal 2023; 17:100986. [PMID: 37820406 DOI: 10.1016/j.animal.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Methionine is indispensable for growth and meat formation in pigs. However, it is still unclear that increasing dietary sulphur-containing amino acid (SAA) levels using different methionine sources affects the growth performance and meat quality of barrows and gilts. To investigate this, 144 pigs (half barrows and half gilts) were fed the control (100% SAA, CON), DL-Methionine (125% SAA, DL-Met)-supplemented, or OH-Methionine (125% SAA, OH-Met)-supplemented diets during the 11-110 kg period. The results showed that plasma methionine levels varied among treatments during the experimental phase, with increased plasma methionine levels observed following increased SAA consumption during the 25-45 kg period. In contrast, pigs fed the DL-Met diet had lower plasma methionine levels than those fed the CON diet (95-110 kg). Additionally, gilts fed the DL-Met or OH-Met diets showed decreased drip loss in longissimus lumborum muscle (LM) compared to CON-fed gilts. OH-Met-fed gilts had higher pH45min values than those fed the CON or DL-Met diets, whereas OH-Met-fed barrows had higher L45min values than those fed the CON or DL-Met diets. Moreover, increased consumption of SAA, regardless of the methionine source, tended to decrease the shear force of the LM in pigs. In conclusion, this study indicates that increasing dietary levels of SAA (+25%) appeared to improve the meat quality of gilts by decreasing drip loss and increasing meat tenderness.
Collapse
Affiliation(s)
- P Q Yuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairsand, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - S Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Urban Agriculture in South China, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - J Y Peng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y X Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y H Liu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - P Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - H J Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - X M Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - L Q Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - B Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | | | - Y Mercier
- Adisseo France S.A.S, CERN, Commentry, France
| | - X L Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - S Y Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - J Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - D Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Z F Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairsand, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China.
| |
Collapse
|
4
|
Protein phosphorylation profile of Atlantic cod (Gadus morhua) in response to pre-slaughter pumping stress and postmortem time. Food Chem 2023; 402:134234. [DOI: 10.1016/j.foodchem.2022.134234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022]
|
5
|
Ruixia L, Wei L, Wang Y, Wu F. AMP-activated protein kinase mediates glycolysis in post-mortem breast muscle of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2093138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lan Ruixia
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Linlin Wei
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Yuchen Wang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Fan Wu
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| |
Collapse
|
6
|
Ma J, Chen C, Yu Q, Han L. AMP-activated protein kinase contributes to myofibrillar protein hydrolysis in bovine skeletal muscle through postmortem mitochondrial dysfunction-induced apoptosis. J Food Biochem 2021; 46:e14028. [PMID: 34894156 DOI: 10.1111/jfbc.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to verify the role of AMP-activated protein kinase (AMPK) in mitochondrial dysfunction-induced apoptosis and postmortem bovine muscle tenderization. AMPK phosphorylation levels, mitochondrial dysfunction, mitochondrial apoptotic factors, and myofibrillar protein hydrolysis were assessed in the control group and Compound C (AMPK inhibitor) group over a 168 hr aging period. Compared with the Compound C group, the control group had an extremely significantly increased AMPK activity at 6-120 hr (p < .01) and a 62.3% and 42.1% higher mitochondrial Bax/Bcl-2 ratio at 6 and 12 hr, respectively (p < .05). Moreover, the control group had a significantly or extremely significantly higher mitochondrial dysfunction and cytoplasmic cytochrome c content at 6-72 and 12-72 hr, respectively (p < .05, p < .01); a 23.2%, 26.5%, and 26.1% increased caspase-3 expression levels at 12, 24, and 72 hr, respectively (p < .05); a significantly higher proportion of apoptotic nuclei at 24-168 hr (p < .05); and a 30.8%, 35.8%, 43.9%, and 39.5% increased production of 45-, 38-, 36-, 30-, and 28-kDa proteins at 168 hr, respectively (p < .05). Taken together, these results suggested that activated AMPK promoted mitochondrial apoptosis and bovine muscle tenderization during postmortem aging by increasing the Bax/Bcl-2 ratio on the mitochondrial membrane. PRACTICAL APPLICATIONS: Based on consumer preference, chilled fresh meat is gradually becoming the future trend of the meat industry. Poorly tenderized beef often affects consumers' desire to make secondary purchases and leads to large losses to the meat industry. Therefore, AMP-activated protein kinase, which regulates postmortem mitochondrial apoptosis and bovine muscle tenderization, is a valid research target.
Collapse
Affiliation(s)
- Jibing Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Zhang B, Liu N, He Z, Song P, Hao M, Xie Y, Li J, Liu R, Sun Z. Guanidino-Acetic Acid: A Scarce Substance in Biomass That Can Regulate Postmortem Meat Glycolysis of Broilers Subjected to Pre-slaughter Transportation. Front Bioeng Biotechnol 2021; 8:631194. [PMID: 33644010 PMCID: PMC7902524 DOI: 10.3389/fbioe.2020.631194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
The different substances in biomass can regulate the metabolism and reproduction of broilers. Guanidino-acetic acid (GAA) is a natural feed additive that showed a potential application in dietary for broilers, while its amount is scarce in biomass. The objective of the present study was to investigate the effects of dietary supplemented with GAA on muscle glycolysis of broilers subjected to pre-slaughter transportation. A total of 160 Qiandongnan Xiaoxiang chickens were randomly assigned into three treatments, including a basal control diet without GAA supplementation (80 birds) or supplemented with 600 mg/kg (40 birds) or 1,200 mg/kg (40 birds) GAA for 14 days. At the end of the experiment, the control group was equally divided into two groups, thus resulting in four groups. All birds in the four groups aforementioned were separately treated according to the following protocols: (1) no transport of birds of the control group fed with the basal diet; (2) a 3-h transport of birds of the control group fed with the basal diet; (3) a 3-h transport of birds fed with diets supplemented with 600 mg/kg GAA; and (4) a 3-h transport of birds fed with diets supplemented with 1,200 mg/kg GAA. The results demonstrated that 3-h pre-slaughter transport stress increased corticosterone contents and lowered glucose contents in plasma (P < 0.05), decreased pH24 h (P < 0.05), and resulted in inferior meat quality evidenced by elevating the drip loss, cooking loss, and L∗ value (P < 0.05). Meanwhile, 3-h pre-slaughter transport stress decreased the contents of Cr and ATP in muscle (P < 0.05) and elevated the ratio of AMP:ATP and the glycolytic potential of muscle (P < 0.05). Moreover, 3-h pre-slaughter transport resulted in a significant elevation of mRNA expressions of LKB1 and AMPKα2 (P < 0.05), as well as the increase in protein abundances of LKB1 phosphorylation and AMPKα phosphorylation (P < 0.05). However, 1,200 mg/kg GAA supplementation alleviated negative parameters in plasma, improved meat quality, and ameliorated postmortem glycolysis and energy metabolism through regulating the creatine-phosphocreatine cycle and key factors of AMPK signaling. In conclusion, dietary supplementation with 1,200 mg/kg GAA contributed to improving meat quality via ameliorating muscle energy expenditure and delaying anaerobic glycolysis of broilers subjected to the 3-h pre-slaughter transport.
Collapse
Affiliation(s)
- Bolin Zhang
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Ning Liu
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Zhen He
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Peiyong Song
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Meilin Hao
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Yuxiao Xie
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Jiahui Li
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Rujie Liu
- Department of Biology and Agriculture, Characteristic Laboratory of Animal Resources Conservation and Utilization of Chishui River Basin, Zunyi Normal College, Zunyi, China
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Baeza-Flores GDC, Guzmán-Priego CG, Parra-Flores LI, Murbartián J, Torres-López JE, Granados-Soto V. Metformin: A Prospective Alternative for the Treatment of Chronic Pain. Front Pharmacol 2020; 11:558474. [PMID: 33178015 PMCID: PMC7538784 DOI: 10.3389/fphar.2020.558474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Metformin (biguanide) is a drug widely used for the treatment of type 2 diabetes. This drug has been used for 60 years as a highly effective antihyperglycemic agent. The search for the mechanism of action of metformin has produced an enormous amount of research to explain its effects on gluconeogenesis, protein metabolism, fatty acid oxidation, oxidative stress, glucose uptake, autophagy and pain, among others. It was only up the end of the 1990s and beginning of this century that some of its mechanisms were revealed. Metformin induces its beneficial effects in diabetes through the activation of a master switch kinase named AMP-activated protein kinase (AMPK). Two upstream kinases account for the physiological activation of AMPK: liver kinase B1 and calcium/calmodulin-dependent protein kinase kinase 2. Once activated, AMPK inhibits the mechanistic target of rapamycin complex 1 (mTORC1), which in turn avoids the phosphorylation of p70 ribosomal protein S6 kinase 1 and phosphatidylinositol 3-kinase/protein kinase B signaling pathways and reduces cap-dependent translation initiation. Since metformin is a disease-modifying drug in type 2 diabetes, which reduces the mTORC1 signaling to induce its effects on neuronal plasticity, it was proposed that these mechanisms could also explain the antinociceptive effect of this drug in several models of chronic pain. These studies have highlighted the efficacy of this drug in chronic pain, such as that from neuropathy, insulin resistance, diabetic neuropathy, and fibromyalgia-type pain. Mounting evidence indicates that chronic pain may induce anxiety, depression and cognitive impairment in rodents and humans. Interestingly, metformin is able to reverse some of these consequences of pathological pain in rodents. The purpose of this review was to analyze the current evidence about the effects of metformin in chronic pain and three of its comorbidities (anxiety, depression and cognitive impairment).
Collapse
Affiliation(s)
- Guadalupe Del Carmen Baeza-Flores
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Crystell Guadalupe Guzmán-Priego
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Leonor Ivonne Parra-Flores
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Jorge Elías Torres-López
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico.,Departamento de Anestesiología, Hospital Regional de Alta Especialidad "Dr. Juan Graham Casasús", Villahermosa, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
9
|
Gao Y, Zhang J, He L, Shi X, Han L, Yu Q, Yang Y, Song R, Han M, Zhao S. Associations among adenosine monophosphate-activated protein kinase, glycolysis, muscle characteristics, and apoptosis in postmortem bovines longissimus muscle. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03458-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
|
11
|
Gao Y, Yang Y, Han L, Yu Q, Song R, Han M, Shi H, He L. Study on the effect of CaMKKβ-mediated AMPK activation on the glycolysis and the quality of different altitude postmortem bovines longissimus muscle. J Food Biochem 2019; 43:e13023. [PMID: 31456257 DOI: 10.1111/jfbc.13023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022]
Abstract
This study investigated the activity of adenosine monophosphate-activated protein kinase (AMPK), glycolysis, and meat quality index in three altitude bovines during postmortem aging process. Local cattle (altitude:1,500 m), Gannan yak (3,000 m), and Yushu yak (4,500 m) postmortem Longissimus Dorsi (LD) muscle were used. Results indicated that CaCl2 significantly increased the AMPK activity by increasing the calcium-regulated protein kinase kinase (CaMKKβ) activity. Besides, AMPK activation enhanced the activity of lactate dehydrogenase (LDH) and Ca2+ -ATPase and accelerated the rate of muscle maturation during postmortem aging. Moreover, the expression of HIF-1, PRKAA2, and GLUT4 genes in high-altitude Yushu yak was higher than that of low-altitude bovines. CaCl2 activates AMPK by activating CaMKKβ cascade and accelerates postmortem glycolysis affecting the intramuscular environment, color, and muscle protein degradation to accelerate postmortem muscle maturation, suggesting that AMPK has essential effects on postmortem muscle glycolysis and quality, and can regulate muscle quality by regulating postmortem muscle AMPK activity. PRACTICAL APPLICATIONS: Insufficient postmortem glycolysis usually leads to DFD (dark, firm, and dry) meat. Beef have relatively high incidences of DFD meat, which has an unattractive dark color and causes significant loss to the meat industry. Therefore, AMPK, which can regulate postmortem glycolysis to affect meat quality, is a valid research target.
Collapse
Affiliation(s)
- Yongfang Gao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yayuan Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Rende Song
- The Qinghai Work Station of Animal and Veterinary Sciences, Qinghai, China
| | - Mingshan Han
- Inner Mongolia Kerchin Cattle Industry Co., Ltd., Tongliao, China
| | - Hongmei Shi
- The Institute of Animal Science and Veterinary, Hezuo, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Su R, Luo Y, Wang B, Hou Y, Zhao L, Su L, Yao D, Qian Y, Jin Y. Effects of physical exercise on meat quality characteristics of Sunit sheep. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Early differential gene expression in beef Longissimus thoracis muscles from carcasses with normal (<5.8) and high (>5.9) ultimate pH. Meat Sci 2019; 153:117-125. [PMID: 30927683 DOI: 10.1016/j.meatsci.2019.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/03/2019] [Accepted: 03/18/2019] [Indexed: 01/19/2023]
Abstract
The objective of this study was to investigate early postmortem (0.5 h) gene expression in beef Longissimus thoracis (LT) muscles from carcasses with NORMAL (<5.8) and HIGH (>5.9) ultimate pH (pHu). A total of 53 transcripts were differentially expressed (P-value <.05): 40 showed up-regulation and 13 showed down-regulation in HIGH pHu carcasses. Four up-regulated (PDK4, GADD45B, MAOA, METTL21C) genes were confirmed (P < .05) by q-PCR. HIGH pHu samples resulted with lower values in glycolytic potential and AMP-activated protein kinase activity compared to NORMAL at 0.5 and 24 h postmortem (P < .05). Functional pathway analysis showed that calcium transport and GADD45 signaling pathways are associated with the development of HIGH pH meat. Genes involved in stress-related signaling, such as GADD45B, METTL21C and MAOA were overexpressed. These genes are involved in stress signaling that might be affecting Ca2+ transport and oxidative metabolism pathways in HIGH pH muscles.
Collapse
|
14
|
Huang JC, Yang J, Huang M, Zhu ZS, Sun XB, Zhang BH, Xu XL, Meng WG, Chen KJ, Xu BC. Effect of pre-slaughter shackling and wing flapping on plasma parameters, postmortem metabolism, AMPK, and meat quality of broilers. Poult Sci 2018; 97:1841-1847. [PMID: 29462466 DOI: 10.3382/ps/pey019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to determine the effects of shackling and wing flapping on stress, postmortem metabolism, AMP-activated protein kinase (AMPK), and quality of broiler pectoralis major. Before slaughter, a total of 80 Arbor Acres broilers was randomly categorized into 2 replicate pens (40 broilers per pen) and each pen randomly divided into 2 groups (shackling, T; control, C). Corticosterone, creatine kinase, and lactate dehydrogenase were determined on blood plasma parameters. Pectoralis major were removed after evisceration and used for determination of energy metabolism, meat quality, and AMPK phosphorylation. In this study, shackling and wing flapping increased (P < 0.05) plasma corticosterone level, creatine kinase activity, and lactate dehydrogenase activity. Shackling and wing flapping increased (P < 0.05) AMPKα(Thr172) and acetyl-CoA carboxylase (ACC) phosphorylation, followed by rapid glycolysis and accumulation of lactic acid, and leading to a fast pH decline in the initial postmortem meat. Shackling and wing flapping have an adverse effect on final meat quality, which increased (P < 0.05) muscle lightness, drip loss, and cooking loss. The results indicate that antemortem shackling and wing flapping increased stress and AMPKα(Thr172) phosphorylation, which may accelerate glycolysis and lead to a low water-holding capacity of broiler meat.
Collapse
Affiliation(s)
- J C Huang
- College of Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - J Yang
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - M Huang
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Z S Zhu
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - X B Sun
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - B H Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - X L Xu
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - W G Meng
- College of Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - K J Chen
- College of Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - B C Xu
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.,The State Key Laboratory of Meat Processing and Quality Control, Jiangsu Yurun Meat & Food Co., Ltd., Nanjing, 211806, China
| |
Collapse
|
15
|
Ponnampalam EN, Hopkins DL, Bruce H, Li D, Baldi G, Bekhit AED. Causes and Contributing Factors to “Dark Cutting” Meat: Current Trends and Future Directions: A Review. Compr Rev Food Sci Food Saf 2017; 16:400-430. [DOI: 10.1111/1541-4337.12258] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Eric N. Ponnampalam
- Agriculture Research; Agriculture Victoria (DEDJTR); Attwood Victoria Australia
| | | | - Heather Bruce
- Dept. of Agricultural, Food and Nutritional Science; Univ. of Alberta; Edmonton Canada
| | - Duo Li
- Inst. of Nutrition & Health; Qingdao Univ.; Qingdao 266071 China
| | - Gianluca Baldi
- Agriculture Research; Agriculture Victoria (DEDJTR); Attwood Victoria Australia
| | | |
Collapse
|
16
|
Li Q, Li Z, Lou A, Wang Z, Zhang D, Shen QW. Histone acetyltransferase inhibitors antagonize AMP-activated protein kinase in postmortem glycolysis. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:857-864. [PMID: 27809464 PMCID: PMC5411850 DOI: 10.5713/ajas.16.0556] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/12/2016] [Accepted: 10/24/2016] [Indexed: 01/28/2023]
Abstract
Objective The purpose of this study was to investigate the influence of AMP-activated protein kinase (AMPK) activation on protein acetylation and glycolysis in postmortem muscle to better understand the mechanism by which AMPK regulates postmortem glycolysis and meat quality. Methods A total of 32 mice were randomly assigned to four groups and intraperitoneally injected with 5-Aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR, a specific activator of AMPK), AICAR and histone acetyltransferase inhibitor II, or AICAR, Trichostatin A (TSA, an inhibitor of histone deacetylase I and II) and Nicotinamide (NAM, an inhibitor of the Sirt family deacetylases). After mice were euthanized, the Longissimus dorsi muscle was collected at 0 h, 45 min, and 24 h postmortem. AMPK activity, protein acetylation and glycolysis in postmortem muscle were measured. Results Activation of AMPK by AICAR significantly increased glycolysis in postmortem muscle. At the same time, it increased the total acetylated proteins in muscle 45 min postmortem. Inhibition of protein acetylation by histone acetyltransferase inhibitors reduced AMPK activation induced increase in the total acetylated proteins and glycolytic rate in muscle early postmortem, while histone deacetylase inhibitors further promoted protein acetylation and glycolysis. Several bands of proteins were detected to be differentially acetylated in muscle with different glycolytic rates. Conclusion Protein acetylation plays an important regulatory role in postmortem glycolysis. As AMPK mediates the effects of pre-slaughter stress on postmortem glycolysis, protein acetylation is likely a mechanism by which antemortem stress influenced postmortem metabolism and meat quality though the exact mechanism is to be elucidated.
Collapse
Affiliation(s)
- Qiong Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhongwen Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Qingwu W Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
17
|
Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2016; 1866:232-251. [PMID: 27681874 DOI: 10.1016/j.bbcan.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Lee DG, Yang KE, Hwang JW, Kang HS, Lee SY, Choi S, Shin J, Jang IS, An HJ, Chung H, Jung HI, Choi JS. Degradation of Kidney and Psoas Muscle Proteins as Indicators of Post-Mortem Interval in a Rat Model, with Use of Lateral Flow Technology. PLoS One 2016; 11:e0160557. [PMID: 27552165 PMCID: PMC4995019 DOI: 10.1371/journal.pone.0160557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/21/2016] [Indexed: 11/29/2022] Open
Abstract
We investigated potential protein markers of post-mortem interval (PMI) using rat kidney and psoas muscle. Tissue samples were taken at 12 h intervals for up to 96 h after death by suffocation. Expression levels of eight soluble proteins were analyzed by Western blotting. Degradation patterns of selected proteins were clearly divided into three groups: short-term, mid-term, and long-term PMI markers based on the half maximum intensity of intact protein expression. In kidney, glycogen synthase (GS) and glycogen synthase kinase-3β were degraded completely within 48 h making them short-term PMI markers. AMP-activated protein kinase α, caspase 3 and GS were short-term PMI markers in psoas muscle. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was a mid-term PMI marker in both tissues. Expression levels of the typical long-term PMI markers, p53 and β-catenin, were constant for at least 96 h post-mortem in both tissues. The degradation patterns of GS and caspase-3 were verified by immunohistochemistry in both tissues. GAPDH was chosen as a test PMI protein to perform a lateral flow assay (LFA). The presence of recombinant GAPDH was clearly detected in LFA and quantified in a concentration-dependent manner. These results suggest that LFA might be used to estimate PMI at a crime scene.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Kyeong Eun Yang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Jeong Won Hwang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hwan-Soo Kang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Seung-Yeul Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Seoyeon Choi
- National Core Research Center for Nanomedical Technology, Yonsei University, Seoul, Republic of Korea
| | - Joonchul Shin
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ik-Soon Jang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Heesun Chung
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyo-Il Jung
- National Core Research Center for Nanomedical Technology, Yonsei University, Seoul, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
- * E-mail: (HIJ); (JSC)
| | - Jong-Soon Choi
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (HIJ); (JSC)
| |
Collapse
|
19
|
Bongiorni S, Gruber CEM, Bueno S, Chillemi G, Ferrè F, Failla S, Moioli B, Valentini A. Transcriptomic investigation of meat tenderness in two Italian cattle breeds. Anim Genet 2016; 47:273-87. [DOI: 10.1111/age.12418] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2015] [Indexed: 12/23/2022]
Affiliation(s)
- S. Bongiorni
- Department for Innovation in Biological, Agro-food and Forest systems, DIBAF; University of Tuscia; via S. Camillo de Lelliss.n.c. Viterbo 01100 Italy
| | - C. E. M. Gruber
- Molecular Digital Diagnostics (MDD); s.r.l., via San Camillo de Lellis Viterbo 01100 Italy
| | - S. Bueno
- Cineca Supercomputing Center; via dei Tizii 6 Rome 00185 Italy
| | - G. Chillemi
- Cineca Supercomputing Center; via dei Tizii 6 Rome 00185 Italy
| | - F. Ferrè
- Cineca Supercomputing Center; via dei Tizii 6 Rome 00185 Italy
- Centre for Molecular Bioinformatics; Biology Department; University of Rome Tor Vergata; Rome Italy
| | - S. Failla
- Consiglio per la Ricerca e la sperimentazione in Agricoltura; Monterotondo Italy
| | - B. Moioli
- Consiglio per la Ricerca e la sperimentazione in Agricoltura; Monterotondo Italy
| | - A. Valentini
- Department for Innovation in Biological, Agro-food and Forest systems, DIBAF; University of Tuscia; via S. Camillo de Lelliss.n.c. Viterbo 01100 Italy
| |
Collapse
|
20
|
Apaoblaza A, Galaz A, Strobel P, Ramírez-Reveco A, Jeréz-Timaure N, Gallo C. Glycolytic potential and activity of adenosine monophosphate kinase (AMPK), glycogen phosphorylase (GP) and glycogen debranching enzyme (GDE) in steer carcasses with normal (<5.8) or high (>5.9) 24h pH determined in M. longissimus dorsi. Meat Sci 2014; 101:83-9. [PMID: 25462384 DOI: 10.1016/j.meatsci.2014.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
Muscle glycogen concentration (MGC) and lactate (LA), activity of glycogen debranching enzyme (GDE), glycogen phosphorylase (GP) and adenosine monophosphate kinase (AMPK) were determined at 0.5h (T0) and 24h (T24) post-mortem in Longissimus dorsi samples from 38 steers that produced high pH (>5.9) and normal pH (<5.8) carcasses at 24h postmortem. MGC, LA and glycolytic potential were higher (P<0.05) in normal pH carcasses. GDE activity was similar (P>0.05) in both pH categories. GP activity increased between T0 and T24 only in normal pH carcasses. AMPK activity was four times higher in normal pH v/s high pH carcasses, without changing its activity over time. Results reinforce the idea that differences in postmortem glycogenolytic/glycolytic flow in L. dorsi of steers showing normal v/s high muscle pH at 24h, could be explained not only by the higher initial MGC in normal pH carcasses, but also by a high and sustained activity of AMPK and an increased GP activity at 24h postmortem.
Collapse
Affiliation(s)
- A Apaoblaza
- Programa Doctorado en Ciencias Veterinarias, Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - A Galaz
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - P Strobel
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - A Ramírez-Reveco
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - N Jeréz-Timaure
- Departamento de Zootecnia, Facultad de Agronomía, Universidad del Zulia Núcleo Agropecuario, Maracaibo, Venezuela
| | - C Gallo
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| |
Collapse
|
21
|
Hao Y, Feng Y, Yang P, Feng J, Lin H, Gu X. Nutritional and physiological responses of finishing pigs exposed to a permanent heat exposure during three weeks. Arch Anim Nutr 2014; 68:296-308. [PMID: 24979614 DOI: 10.1080/1745039x.2014.931522] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of the current study was to investigate the effect of a permanent heat exposure during 21 days on pig performance, nutrient digestibility, physiological response and key enzyme of skeletal muscle energy metabolism. Twenty-four male finishing pigs (crossbreed castrates, 79.0 ± 1.50 kg body weight) were allocated to three groups (n = 8): (1) Control (ambient temperature (AT) 22°C, ad libitum feeding), (2) Group HE (AT 30°C, ad libitum feeding) and (3) Group PF (AT 22°C, pair-fed to Group HE). The permanent heat exposure decreased feed intake (p < 0.01), daily body weight gain (p < 0.05) and the digestibility of gross energy, dry matter, crude protein and ash (p < 0.05); rectal temperature and respiration rate were significantly increased (p < 0.01). The levels of plasma cortisol, creatine kinase and lactate dehydrogenase were also significantly increased in Group HE (p < 0.05). Furthermore, the heat exposure changed intracellular energy metabolism, where the AMP-activated protein kinase was activated (p = 0.02). This was combined with changes in parameters of glycolysis such as an accumulation of lactic acid (p = 0.02) and a drop of pH24 h (p = 0.02), an increase of hexokinase and pyruvate kinase activity (p < 0.01) and, finally, the maturation process of post mortem muscle was influenced. Due to pair-feeding it was possible to evaluate the effects of heat exposure, which were not dependent on reduced feed intake. Such effects were, e.g., reduced nutrient digestibility and changed activities of several enzymes in muscle and blood serum.
Collapse
Affiliation(s)
- Yue Hao
- a State Key Laboratory of Animal Nutrition, Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , Beijing , P. R. China
| | | | | | | | | | | |
Collapse
|