1
|
Hoffman LC, Schreuder J, Cozzolino D. Food authenticity and the interactions with human health and climate change. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39101830 DOI: 10.1080/10408398.2024.2387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Food authenticity and fraud, as well as the interest in food traceability have become a topic of increasing interest not only for consumers but also for the research community and the food manufacturing industry. Food authenticity and fraud are becoming prevalent in both the food supply and value chains since ancient times where different issues (e.g., food spoilage during shipment and storage, mixing decay foods with fresh products) has resulted in foods that influence consumers health. The effect of climate change on the quality of food ingredients and products could also have the potential to influence food authenticity. However, this issue has not been considered. This article focused on the interactions between consumer health and the potential effects of climate change on food authenticity and fraud. The role of technology and development of risk management tools to mitigate these issues are also discussed. Where applicable papers that underline the links between the interactions of climate change, human health and food fraud were referenced.
Collapse
Affiliation(s)
- Louwrens C Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Jana Schreuder
- Food Science Department, Stellenbosch University, Stellenbosch, South Africa
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Chen J, Tang H, Wang M, Wei H, Ou C. Explorative study for the rapid detection of adulterated surimi using gas chromatography-ion mobility spectrometry. Food Chem 2024; 439:138083. [PMID: 38043278 DOI: 10.1016/j.foodchem.2023.138083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Driven by economic interests, surimi adulteration has become a high-frequency issue. This study aims to assess the feasibility of gas chromatography-ion mobility spectrometry (GC-IMS) in detecting surimi adulteration. In this work, three common adulterated surimi models were established by mixing with different fish species and ratios. The fingerprints enabled a clear discrimination among different tuna surimi, and other two surimi models with different mixing ratios also showed VOCs (volatile organic compounds) differences. Results of unsupervised principal component analysis (PCA) and supervised partial least-squares discrimination analysis (PLS-DA) revealed that different types of adulterated surimi models can be well separated from each other. A total of 12, 16, and 9 VOCs were selected as the potential markers in three simulated models by PLS-DA method, respectively. Therefore, GC-IMS coupled with certain chemometrics is expected to serve as an alternative analytical tool to directly and visually detect adulterated surimi.
Collapse
Affiliation(s)
- Jingyi Chen
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Haiqing Tang
- Faculty of Food Science, Zhejiang Pharmaceutical University, Ningbo, Zhejiang 315100, China
| | - Mengyun Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huamao Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Changrong Ou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
3
|
Jia W, Qin Y, Zhao C. Rapid detection of adulterated lamb meat using near infrared and electronic nose: A F1-score-MRE data fusion approach. Food Chem 2024; 439:138123. [PMID: 38064835 DOI: 10.1016/j.foodchem.2023.138123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Individual detection techniques cannot guarantee accurate and reliable results when combatting the presence of adulterated lamb meat in the market. Here, we propose an approach combining the electronic nose and near-infrared spectroscopy fusion data with machine learning methods to effectively detect adulterated lamb meat (mixed with duck meat). To comprehensively analyse the data from both techniques, the F1-score-based Model Reliability Estimation (F1-score-MRE) data fusion method was introduced. The obtained results demonstrate the superiority of the F1-score-MRE method, achieving an accuracy rate of 98.58% (F1-score: 0.9855) in detecting adulterated lamb meat. This surpasses the performance of the traditional data fusion and feature concatenation methods. Furthermore, the F1-score-MRE data fusion method exhibited enhanced stability and accuracy compared with the single electronic nose and near-infrared data processed by the self-adaptive BPNN model (accuracy: 94.36%, 93.66%; F1-score: 0.9435, 0.9368). This study offers a promising solution to address concerns regarding adulterated lamb meat.
Collapse
Affiliation(s)
- Wenshen Jia
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Department of Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing 100097, China; Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China.
| | - Yingdong Qin
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Changtong Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
4
|
Haider A, Iqbal SZ, Bhatti IA, Alim MB, Waseem M, Iqbal M, Mousavi Khaneghah A. Food authentication, current issues, analytical techniques, and future challenges: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13360. [PMID: 38741454 DOI: 10.1111/1541-4337.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Food authentication and contamination are significant concerns, especially for consumers with unique nutritional, cultural, lifestyle, and religious needs. Food authenticity involves identifying food contamination for many purposes, such as adherence to religious beliefs, safeguarding health, and consuming sanitary and organic food products. This review article examines the issues related to food authentication and food fraud in recent periods. Furthermore, the development and innovations in analytical techniques employed to authenticate various food products are comprehensively focused. Food products derived from animals are susceptible to deceptive practices, which can undermine customer confidence and pose potential health hazards due to the transmission of diseases from animals to humans. Therefore, it is necessary to employ suitable and robust analytical techniques for complex and high-risk animal-derived goods, in which molecular biomarker-based (genomics, proteomics, and metabolomics) techniques are covered. Various analytical methods have been employed to ascertain the geographical provenance of food items that exhibit rapid response times, low cost, nondestructiveness, and condensability.
Collapse
Affiliation(s)
- Ali Haider
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Shahzad Zafar Iqbal
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Waseem
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | |
Collapse
|
5
|
Fisher OJ, Rady A, El-Banna AAA, Emaish HH, Watson NJ. AI-Assisted Cotton Grading: Active and Semi-Supervised Learning to Reduce the Image-Labelling Burden. SENSORS (BASEL, SWITZERLAND) 2023; 23:8671. [PMID: 37960371 PMCID: PMC10647751 DOI: 10.3390/s23218671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
The assessment of food and industrial crops during harvesting is important to determine the quality and downstream processing requirements, which in turn affect their market value. While machine learning models have been developed for this purpose, their deployment is hindered by the high cost of labelling the crop images to provide data for model training. This study examines the capabilities of semi-supervised and active learning to minimise effort when labelling cotton lint samples while maintaining high classification accuracy. Random forest classification models were developed using supervised learning, semi-supervised learning, and active learning to determine Egyptian cotton grade. Compared to supervised learning (80.20-82.66%) and semi-supervised learning (81.39-85.26%), active learning models were able to achieve higher accuracy (82.85-85.33%) with up to 46.4% reduction in the volume of labelled data required. The primary obstacle when using machine learning for Egyptian cotton grading is the time required for labelling cotton lint samples. However, by applying active learning, this study successfully decreased the time needed from 422.5 to 177.5 min. The findings of this study demonstrate that active learning is a promising approach for developing accurate and efficient machine learning models for grading food and industrial crops.
Collapse
Affiliation(s)
- Oliver J. Fisher
- Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (A.R.); (N.J.W.)
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Ahmed Rady
- Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (A.R.); (N.J.W.)
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| | - Aly A. A. El-Banna
- Department of Plant Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 5424041, Egypt;
| | - Haitham H. Emaish
- Department of Soils and Agricultural Chemistry, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 5424041, Egypt;
| | - Nicholas J. Watson
- Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (A.R.); (N.J.W.)
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
6
|
Hoffman L, Ingle P, Hemant Khole A, Zhang S, Yang Z, Beya M, Bureš D, Cozzolino D. Discrimination of lamb (Ovis aries), emu (Dromaius novaehollandiae), camel (Camelus dromedarius) and beef (Bos taurus) binary mixtures using a portable near infrared instrument combined with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122506. [PMID: 36868023 DOI: 10.1016/j.saa.2023.122506] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Consumers demand safe and nutritious foods at accessible prices; where issues associated with adulteration, fraud, and provenance have become important aspects to be considered by the modern food industry. There are many analytical techniques and methods available to determine food composition and quality, including food security. Among them, vibrational spectroscopy techniques are at the first line of defence (near and mid infrared spectroscopy, and Raman spectroscopy). In this study, a portable near infrared (NIR) instrument was evaluated to identify different levels of adulteration between binary mixtures of exotic and traditional meat species. Fresh meat cuts of lamb (Ovis aries), emu (Dromaius novaehollandiae), camel (Camelus dromedarius) and beef (Bos taurus) sourced from a commercial abattoir were used to make different binary mixtures (95 % %w/w, 90 % %w/w, 50 % %w/w, 10 % %w/w and 5 % %w/w) and analysed using a portable NIR instrument. The NIR spectra of the meat mixtures was analysed using principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). Two isosbestic points corresponding to absorbances at 1028 nm and 1224 nm were found to be consistent across all the binary mixtures analysed. The coefficient of determination in cross validation (R2) obtained for the determination of the per cent of species in a binary mixture was above 90 % with a standard error in cross validation (SECV) ranging between 12.6 and 15 %w/w. Overall, the results of this study indicate that NIR spectroscopy can determine the level or ratio of adulteration in the binary mixtures of minced meat.
Collapse
Affiliation(s)
- L Hoffman
- The University of Queensland, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland 4072, Australia
| | - P Ingle
- The University of Queensland, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland 4072, Australia; The University of Queensland, School of Agriculture and Food Sciences, Brisbane, Queensland 4072, Australia
| | - A Hemant Khole
- The University of Queensland, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland 4072, Australia; The University of Queensland, School of Agriculture and Food Sciences, Brisbane, Queensland 4072, Australia
| | - S Zhang
- The University of Queensland, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland 4072, Australia; The University of Queensland, School of Agriculture and Food Sciences, Brisbane, Queensland 4072, Australia
| | - Z Yang
- The University of Queensland, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland 4072, Australia; The University of Queensland, School of Agriculture and Food Sciences, Brisbane, Queensland 4072, Australia
| | - M Beya
- The University of Queensland, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland 4072, Australia
| | - D Bureš
- Institute of Animal Science, 104 00 Přátelství 815, 104 00 Prague, Czech Republic; Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, 165 00 Prague, Czech Republic
| | - D Cozzolino
- The University of Queensland, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland 4072, Australia.
| |
Collapse
|
7
|
Hyperspectral imaging combined with convolutional neural network for accurately detecting adulteration in Atlantic salmon. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Liu T, Tian Y, Cao Y, Wang Z, Zha G, Liu W, Wei L, Xiao H, Zhang Q, Cao C. Isoelectric point barcode and similarity analysis with the earth mover's distance for identification of species origin of raw meat. Food Res Int 2023; 166:112600. [PMID: 36914325 DOI: 10.1016/j.foodres.2023.112600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/20/2023]
Abstract
In this work, by combining the microcolumn isoelectric focusing (mIEF) and similarity analysis with the earth mover's distance (EMD) metric, we proposed the concept of isoelectric point (pI) barcode for the identification of species origin of raw meat. At first, we used the mIEF to analyze 14 meat species, including 8 species of livestock and 6 species of poultry, to generate 140 electropherograms of myoglobin/hemoglobin (Mb/Hb) markers. Secondly, we binarized the electropherograms and converted them into the pI barcodes that only showed the major Mb/Hb bands for the EMD analysis. Thirdly, we efficiently developed the barcode database of 14 meat species and successfully used the EMD method to identify 9 meat products thanks to the high throughput of mIEF and the simplified format of the barcode for similarity analysis. The developed method had the merits of facility, rapidity and low cost. The developed concept and method had evident potential to the facile identification of meat species.
Collapse
Affiliation(s)
- Tian Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihao Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Genhan Zha
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Wei
- Shanghai 6(th) People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Hua Xiao
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chengxi Cao
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai 6(th) People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
9
|
Wu Q, Mousa MA, Al-qurashi AD, Ibrahim OH, Abo-Elyousr KA, Rausch K, Abdel Aal AM, Kamruzzaman M. Global calibration for non-targeted fraud detection in quinoa flour using portable hyperspectral imaging and chemometrics. Curr Res Food Sci 2023; 6:100483. [PMID: 37033735 PMCID: PMC10073987 DOI: 10.1016/j.crfs.2023.100483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Quinoa is one of the highest nutritious grains, and global consumption of quinoa flour has increased as people pay more attention to health. Due to its high value, quinoa flour is susceptible to adulteration. Cross-contamination between quinoa flour and other flour can be easily neglected due to their highly similar appearance. Therefore, detecting adulteration in quinoa flour is important to consumers, industries, and regulatory agencies. In this study, portable hyperspectral imaging in the visible near-infrared (VNIR) spectral range (400-1000 nm) was applied as a rapid tool to detect adulteration in quinoa flour. Quinoa flour was adulterated with wheat, rice, soybean, and corn in the range of 0-98% with 2% increments. Partial least squares regression (PLSR) models were developed, and the best model for detecting the % authentic flour (quinoa) was obtained by the raw spectral data with R2p of 0.99, RMSEP of 3.08%, RPD of 8.77, and RER of 25.32. The model was improved, by selecting only 13 wavelengths using bootstrapping soft shrinkage (BOSS), to R2p of 0.99, RMSEP of 2.93%, RPD of 9.18, and RER of 26.60. A visualization map was also generated to predict the level of quinoa in the adulterated samples. The results of this study demonstrate the ability of VNIR hyperspectral imaging for adulteration detection in quinoa flour as an alternative to the complicated traditional method.
Collapse
|
10
|
Identification of Transgenic Agricultural Products and Foods Using NIR Spectroscopy and Hyperspectral Imaging: A Review. Processes (Basel) 2023. [DOI: 10.3390/pr11030651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Spectroscopy and its imaging techniques are now popular methods for quantitative and qualitative analysis in fields such as agricultural products and foods, and combined with various chemometric methods. In fact, this is the application basis for spectroscopy and spectral imaging techniques in other fields such as genetics and transgenic monitoring. To date, there has been considerable research using spectroscopy and its imaging techniques (especially NIR spectroscopy, hyperspectral imaging) for the effective identification of agricultural products and foods. There have been few comprehensive reviews that cover the use of spectroscopic and imaging methods in the identification of genetically modified organisms. Therefore, this paper focuses on the application of NIR spectroscopy and its imaging techniques (including NIR spectroscopy and hyperspectral imaging techniques) in transgenic agricultural product and food detection and compares them with traditional detection methods. A large number of studies have shown that the application of NIR spectroscopy and imaging techniques in the detection of genetically modified foods is effective when compared to conventional approaches such as polymerase chain reaction and enzyme-linked immunosorbent assay.
Collapse
|
11
|
Evaluating the Use of a Similarity Index (SI) Combined with near Infrared (NIR) Spectroscopy as Method in Meat Species Authenticity. Foods 2023; 12:foods12010182. [PMID: 36613404 PMCID: PMC9818338 DOI: 10.3390/foods12010182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
A hand-held near infrared (NIR) spectrophotometer combined with a similarity index (SI) method was evaluated to identify meat samples sourced from exotic and traditional meat species. Fresh meat cuts of lamb (Ovis aries), emu (Dromaius novaehollandiae), camel (Camelus dromedarius), and beef (Bos taurus) sourced from a commercial abattoir were used and analyzed using a hand-held NIR spectrophotometer. The NIR spectra of the commercial and exotic meat samples were analyzed using principal component analysis (PCA), linear discriminant analysis (LDA), and a similarity index (SI). The overall accuracy of the LDA models was 87.8%. Generally, the results of this study indicated that SI combined with NIR spectroscopy can distinguish meat samples sourced from different animal species. In future, we can expect that methods such as SI will improve the implementation of NIR spectroscopy in the meat and food industries as this method can be rapid, handy, affordable, and easy to understand for users and customers.
Collapse
|
12
|
Image based beef and lamb slice authentication using convolutional neural networks. Meat Sci 2023; 195:108997. [DOI: 10.1016/j.meatsci.2022.108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/11/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
13
|
Wang Y, Wang B, Wang D. Detection of chicken adulteration in beef via ladder-shape melting temperature isothermal amplification (LMTIA) assay. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2081514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yongzhen Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Food and Pharmacy College, Xuchang University, Xuchang, Henan, PR China
| | - Borui Wang
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Deguo Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Food and Pharmacy College, Xuchang University, Xuchang, Henan, PR China
| |
Collapse
|
14
|
Yongzhen W, Wang B, Wang D. Detection of pork adulteration in beef with ladder-shape melting temperature isothermal amplification (LMTIA) assay. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2129791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Wang Yongzhen
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| | - Borui Wang
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Deguo Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| |
Collapse
|
15
|
Kua JM, Azizi MMF, Abdul Talib MA, Lau HY. Adoption of analytical technologies for verification of authenticity of halal foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1906-1932. [PMID: 36252206 DOI: 10.1080/19440049.2022.2134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Halal authentication has become essential in the food industry to ensure food is free from any prohibited ingredients according to Islamic law. Diversification of food origin and adulteration issues have raised concerns among Muslim consumers. Therefore, verification of food constituents and their quality is paramount. From conventional methods based on physical and chemical properties, various diagnostic methods have emerged relying on protein or DNA measurements. Protein-based methods that have been used in halal detection including electrophoresis, chromatographic-based methods, molecular spectroscopy and immunoassays. Polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) are DNA-based techniques that possess better accuracy and sensitivity. Biosensors are miniatured devices that operate by converting biochemical signals into a measurable quantity. CRISPR-Cas is one of the latest novel emerging nucleic acid detection tools in halal food analysis as well as quantification of stable isotopes method for identification of animal species. Within this context, this review provides an overview of the various techniques in halal detection along with their advantages and limitations. The future trend and growth of detection technologies are also discussed in this review.
Collapse
Affiliation(s)
- Jay Mie Kua
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Mohd Afendy Abdul Talib
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| | - Han Yih Lau
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Mortas M, Awad N, Ayvaz H. Adulteration detection technologies used for halal/kosher food products: an overview. DISCOVER FOOD 2022. [PMCID: PMC9020560 DOI: 10.1007/s44187-022-00015-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractIn the Islamic and Jewish religions, there are various restrictions that should be followed in order for food products to be acceptable. Some food items like pork or dog meat are banned to be consumed by the followers of the mentioned religions. However, illegally, some food producers in various countries use either the meat or the fat of the banned animals during food production without being mentioned in the label on the final products, and this considers as food adulteration. Nowadays, halal or kosher labeled food products have a high economic value, therefore deceiving the consumers by producing adulterated food is an illegal business that could make large gains. On the other hand, there is an insistent need from the consumers for getting reliable products that comply with their conditions. One of the main challenges is that the detection of food adulteration and the presence of any of the banned ingredients is usually unnoticeable and cannot be determined by the naked eye. As a result, scientists strove to develop very sensitive and precise analytical techniques. The most widely utilized techniques for the detection and determination of halal/kosher food adulterations can be listed as High-Pressure Liquid Chromatography (HPLC), Capillary Electrophoresis (CE), Gas Chromatography (GC), Electronic Nose (EN), Polymerase Chain Reaction (PCR), Enzyme-linked Immuno Sorbent Assay (ELISA), Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR), Near-infrared (NIR) Spectroscopy, Laser-induced Breakdown Spectroscopy (LIBS), Fluorescent Light Spectroscopy, Fourier Transform Infrared (FTIR) Spectroscopy and Raman Spectroscopy (RS). All of the above-mentioned techniques were evaluated in terms of their detection capabilities, equipment and analysis costs, accuracy, mobility, and needed sample volume. As a result, the main purposes of the present review are to identify the most often used detection approaches and to get a better knowledge of the existing halal/kosher detection methods from a literature perspective.
Collapse
Affiliation(s)
- Mustafa Mortas
- Department Food Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, 55139 Turkey
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210 USA
| | - Nour Awad
- Department Food Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, 55139 Turkey
| | - Huseyin Ayvaz
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210 USA
- Department of Food Engineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale, 17100 Turkey
| |
Collapse
|
17
|
Setiadi IC, Hatta AM, Koentjoro S, Stendafity S, Azizah NN, Wijaya WY. Adulteration detection in minced beef using low-cost color imaging system coupled with deep neural network. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1073969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Major processed meat products, including minced beef, are one of the favorite ingredients of most people because they are high in protein, vitamins, and minerals. The high demand and high prices make processed meat products vulnerable to adulteration. In addition, eliminating morphological attributes makes the authenticity of minced beef challenging to identify with the naked eye. This paper aims to describe the feasibility study of adulteration detection in minced beef using a low-cost imaging system coupled with a deep neural network. The proposed method was expected to be able to detect minced beef adulteration. There were 500 captured images of minced beef samples. Then, there were 24 color and textural features retrieved from the image. The samples were then labeled and evaluated. A deep neural network (DNN) was developed and investigated to support classification. The proposed DNN was also compared to six machine learning algorithms in the form of accuracy, precision, and sensitivity of classification. The feature importance analysis was also performed to obtain the most impacted features to classification results. The DNN model classification accuracy was 98.00% without feature selection and 99.33% with feature selection. The proposed DNN has the best performance with individual accuracy of up to 99.33%, a precision of up to 98.68%, and a sensitivity of up to 98.67%. This work shows the enormous potential application of a low-cost imaging system coupled with DNN to rapidly detect adulterants in minced beef with high performance.
Collapse
|
18
|
Chaudhary V, Kajla P, Dewan A, Pandiselvam R, Socol CT, Maerescu CM. Spectroscopic techniques for authentication of animal origin foods. Front Nutr 2022; 9:979205. [PMID: 36204380 PMCID: PMC9531581 DOI: 10.3389/fnut.2022.979205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Milk and milk products, meat, fish and poultry as well as other animal derived foods occupy a pronounced position in human nutrition. Unfortunately, fraud in the food industry is common, resulting in negative economic consequences for customers as well as significant threats to human health and the external environment. As a result, it is critical to develop analytical tools that can quickly detect fraud and validate the authenticity of such products. Authentication of a food product is the process of ensuring that the product matches the assertions on the label and complies with rules. Conventionally, various comprehensive and targeted approaches like molecular, chemical, protein based, and chromatographic techniques are being utilized for identifying the species, origin, peculiar ingredients and the kind of processing method used to produce the particular product. Despite being very accurate and unimpeachable, these techniques ruin the structure of food, are labor intensive, complicated, and can be employed on laboratory scale. Hence the need of hour is to identify alternative, modern instrumentation techniques which can help in overcoming the majority of the limitations offered by traditional methods. Spectroscopy is a quick, low cost, rapid, non-destructive, and emerging approach for verifying authenticity of animal origin foods. In this review authors will envisage the latest spectroscopic techniques being used for detection of fraud or adulteration in meat, fish, poultry, egg, and dairy products. Latest literature pertaining to emerging techniques including their advantages and limitations in comparison to different other commonly used analytical tools will be comprehensively reviewed. Challenges and future prospects of evolving advanced spectroscopic techniques will also be descanted.
Collapse
Affiliation(s)
- Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Aastha Dewan
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - R. Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR–Central Plantation Crops Research Institute, Kasaragod, India
| | | | | |
Collapse
|
19
|
Hoffman LC, Ingle P, Khole AH, Zhang S, Yang Z, Beya M, Bureš D, Cozzolino D. Characterisation and Identification of Individual Intact Goat Muscle Samples ( Capra sp.) Using a Portable Near-Infrared Spectrometer and Chemometrics. Foods 2022; 11:foods11182894. [PMID: 36141022 PMCID: PMC9498649 DOI: 10.3390/foods11182894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Adulterated, poor-quality, and unsafe foods, including meat, are still major issues for both the food industry and consumers, which have driven efforts to find alternative technologies to detect these challenges. This study evaluated the use of a portable near-infrared (NIR) instrument, combined with chemometrics, to identify and classify individual-intact fresh goat muscle samples. Fresh goat carcasses (n = 35; 19 to 21.7 Kg LW) from different animals (age, breeds, sex) were used and separated into different commercial cuts. Thus, the longissimus thoracis et lumborum, biceps femoris, semimembranosus, semitendinosus, supraspinatus, and infraspinatus muscles were removed and scanned (900–1600 nm) using a portable NIR instrument. Differences in the NIR spectra of the muscles were observed at wavelengths of around 976 nm, 1180 nm, and 1430 nm, associated with water and fat content (e.g., intramuscular fat). The classification of individual muscle samples was achieved by linear discriminant analysis (LDA) with acceptable accuracies (68–94%) using the second-derivative NIR spectra. The results indicated that NIR spectroscopy could be used to identify individual goat muscles.
Collapse
Affiliation(s)
- Louwrens C. Hoffman
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences (CNAFS), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Prasheek Ingle
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences (CNAFS), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ankita Hemant Khole
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences (CNAFS), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shuxin Zhang
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences (CNAFS), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhiyin Yang
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences (CNAFS), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michel Beya
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences (CNAFS), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Bureš
- Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Daniel Cozzolino
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences (CNAFS), The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
20
|
Wang Y, Wang B, Wang D. Development of a Ladder-Shape Melting Temperature Isothermal Amplification Assay for Detection of Duck Adulteration in Beef. J Food Prot 2022; 85:1203-1209. [PMID: 35687733 DOI: 10.4315/jfp-22-015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/28/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Ladder-shape melting temperature isothermal amplification (LMTIA) is a newly developed technology, and the objective of this study was to establish its effectiveness for detection of duck adulteration in beef. LMTIA primers were designed with the prolactin receptor gene of Anas platyrhynchos as the target. The LMTIA reaction system was optimized, and its performance was compared with that of the loop-mediated isothermal amplification (LAMP) assay in terms of specificity, sensitivity, and limit of detection (LOD). Our results showed that the LMTIA assay was able to specifically detect 10 ng of genomic DNAs (gDNAs) of A. platyrhynchos, without detecting 10 ng of gDNAs of Bos taurus, Sus scrofa, Gallus gallus, Capra hircus, Felis catus, and Canis lupus familiaris. The sensitivity of the LMTIA assay was 1 ng of gDNAs of A. platyrhynchos; it was able to detect duck adulteration in beef with a 0.1% LOD. Although the LAMP assay could not clearly distinguish A. platyrhynchos from G. gallus, it had a sensitivity of 10 ng of gDNAs of A. platyrhynchos and a LOD of 1% duck adulteration in beef. This study may help facilitate the surveillance of commercial adulteration of beef with duck meat. HIGHLIGHTS
Collapse
Affiliation(s)
- Yongzhen Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, People's Republic of China
| | - Borui Wang
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Deguo Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, People's Republic of China
| |
Collapse
|
21
|
Wang S, Das AK, Pang J, Liang P. Real-time monitoring the color changes of large yellow croaker (Larimichthys crocea) fillets based on hyperspectral imaging empowered with artificial intelligence. Food Chem 2022; 382:132343. [PMID: 35152031 DOI: 10.1016/j.foodchem.2022.132343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Abstract
Vis-NIR hyperspectral imaging (HSI) system combined with artificial neural networks was investigated for the first time to monitor color changes of large yellow croaker (Larimichthys crocea) fillets during low-temperature storage. Feed-forward neural networks (FNN) empowered with the leaky rectified linear unit (Leaky-Relu) have been developed as a non-linear quantitative analysis model. It presented accurate predictive power for color changes based on optimal spectra (with R2P of 0.908, 0.915, and 0.977; and RMSEP of 1.062, 3.315, and 0.082 for L*, a*, and b*, respectively). In final, the simplified FNN-Leaky-Relu model (S-FNN-L) was utilized to visualize the distribution maps of color parameters in the fillets. The results demonstrated the feasibility of HSI could replace the traditional colorimeter to determine the spatial distribution in the color measurement of fish fillets with a rapid and non-invasive technique.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Avik Kumar Das
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
22
|
He Y, Xu W, Qu M, Zhang C, Wang W, Cheng F. Recent advances in the application of Raman spectroscopy for fish quality and safety analysis. Compr Rev Food Sci Food Saf 2022; 21:3647-3672. [PMID: 35794726 DOI: 10.1111/1541-4337.12968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
Fish is one of the highly demanded aquatic products, and its quality and safety play a pivotal role in daily diet. However, the possible hazardous substance in perishable fish both in pre- and postharvest periods may decrease their values and pose a threat to public health. Laborious and expensive traditional methods drive the need of developing effective tools for detecting fish quality and safety properties in a rapid, nondestructive, and effective manner. Recent advances in Raman spectroscopy (RS) and surface-enhanced Raman scattering (SERS) have shown enormous potential in various aspects, which largely boost their applications in fish quality and safety evaluation. They have incomparable merits such as providing molecule fingerprint information and allowing for rapid, sensitive, and noninvasive detection with simple sample preparation. This review provides a comprehensive overview focusing on the applications of RS and SERS for fish quality assessment and safety inspection, highlighting the hazardous substance and illegal behavior both in preharvest (veterinary drug residues and environmental pollutants) and postharvest (freshness and illegal behavior) particularly. Moreover, challenges and prospects are also proposed to facilitate the vigorous development of RS and SERS. This review is aimed to emphasize potential opportunities for applying RS and SERS as promising techniques for routine food quality and safety detection. PRACTICAL APPLICATION: With these applications, it can be clearly indicated that RS and SERS are promising and powerful in fish quality and safety surveillance, thereby reducing the occurrence of commercial fraud and food safety issues. More efforts still should be concentrated on exploiting the high-performance Raman instruments, establishing a universal Raman database, developing reproducible SERS substrates and combing RS with other versatile spectral techniques to promote these technologies from laboratory to practice. It is hoped that this review should arouse more research interests in RS and SERS technologies for fish quality and safety surveillance, as well as provide more insights to make a breakthrough.
Collapse
Affiliation(s)
- Yingchao He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Maozhen Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Chao Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou, China
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| |
Collapse
|
23
|
Saleem A, Sahar A, Pasha I, Shahid M. Determination of Adulteration of Chicken Meat into Minced Beef Mixtures using Front Face Fluorescence Spectroscopy Coupled with Chemometric. Food Sci Anim Resour 2022; 42:672-688. [PMID: 35855273 PMCID: PMC9289803 DOI: 10.5851/kosfa.2022.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to explore the potential of front face fluorescence spectroscopy (FFFS) as rapid, non-destructive and inclusive technique along with multi-variate analysis for predicting meat adulteration. For this purpose (FFFS) was used to discriminate pure minced beef meat and adulterated minced beef meat containing (1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%) of chicken meat as an adulterant in uncooked beef meat samples. Fixed excitation (290 nm, 322 nm, and 340 nm) and fixed emission (410 nm) wavelengths were used for performing analysis. Fluorescence spectra were acquired from pure and adulterated meat samples to differentiate pure and binary mixtures of meat samples. Principle component analysis, partial least square regression and hierarchical cluster analysis were used as chemometric tools to find out the information from spectral data. These chemometric tools predict adulteration in minced beef meat up to 10% chicken meat but are not good in distinguishing adulteration level from 1% to 5%. The results of this research provide baseline for future work for generating spectral libraries using larger datasets for on-line detection of meat authenticity by using fluorescence spectroscopy.
Collapse
Affiliation(s)
- Asima Saleem
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Corresponding author: Amna Sahar, National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture Faisalabad 38000, Pakistan, Tel: +92-03326959611, E-mail:
| | - Imran Pasha
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
24
|
Detection of chicken and fat adulteration in minced lamb meat by VIS/NIR spectroscopy and chemometrics methods. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Meat fraud has been changed to an important challenge to both industry and governments because of the public health issue. The main purpose of this research was to inspect the possibility of using VIS/NIR spectroscopy, combined with chemometric techniques to detect the adulteration of chicken meat and fat in minced lamb meat. 180 samples of pure lamb, chicken and fat and adulterated samples at different levels: 5, 10, 15 and 20% (w/w) were prepared and analyzed after pre-processing techniques. In order to remove additive and multiplicative effects in spectral data, derivatives and scatter-correction preprocessing methods were applied. Principle Component Analysis (PCA) as unsupervised method was applied to compress data. Moreover, Support Vector Machine (SVM) and Soft Independent Modeling Class Analogies (SIMCA) as supervised methods was applied to estimate the discrimination power of these models for nine and three class datasets. The best classification results were 56.15 and 80.70% for classification of nine class and three class datasets respectively with SVM model. This study shows the applicability of VIS/NIR combined with chemometrics to detect the type of fraud in minced lamb meat.
Collapse
|
25
|
Adulteration discrimination and analysis of fresh and frozen-thawed minced adulterated mutton using hyperspectral images combined with recurrence plot and convolutional neural network. Meat Sci 2022; 192:108900. [DOI: 10.1016/j.meatsci.2022.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
|
26
|
Latex-Based Paper Devices with Super Solvent Resistance for On-the-Spot Detection of Metanil Yellow in Food Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe following paper presents a construct for a paper-based device which utilizes latex as the hydrophobic material for the fabrication of its hydrophobic barrier, which was deposited onto the cellulose surface either by free-hand or stenciled drawing. This method demands the least amount of expertise and time from its use, enabling a simple and rapid fabrication experience. Several properties of the hydrophobic material were characterized, such as the hydro head and penetration rate, with the aim of assessing its robustness and stability. The presented hydrophobic barriers fabricated using this approach have a barrier width of 4 mm, a coating thickness of 208 µm, and a hydrophilic resolution of 446.5 µm. This fabrication modality boasts an excellent solvent resistance with regard to the hydrophobic barrier. These devices were employed for on-the-spot detection of Metanil Yellow, a banned food adulterant often used in curcumin and pigeon peas, within successful limits of detection (LOD) of 0.5% (w/w) and 0.25% (w/w), respectively. These results indicate the great potential this fabricated hydrophobic device has in numerous paper-based applications and other closely related domains, such as diagnostics and sensing, signalling its capacity to become commonplace in both industrial and domestic settings.
Collapse
|
27
|
Tsuchikawa S, Ma T, Inagaki T. Application of near-infrared spectroscopy to agriculture and forestry. ANAL SCI 2022; 38:635-642. [DOI: 10.1007/s44211-022-00106-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022]
|
28
|
Rapid identification and quantification of intramuscular fat adulteration in lamb meat with VIS–NIR spectroscopy and chemometrics methods. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Agricultural Potentials of Molecular Spectroscopy and Advances for Food Authentication: An Overview. Processes (Basel) 2022. [DOI: 10.3390/pr10020214] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Meat, fish, coffee, tea, mushroom, and spices are foods that have been acknowledged for their nutritional benefits but are also reportedly targets of fraud and tampering due to their economic value. Conventional methods often take precedence for monitoring these foods, but rapid advanced instruments employing molecular spectroscopic techniques are gradually claiming dominance due to their numerous advantages such as low cost, little to no sample preparation, and, above all, their ability to fingerprint and detect a deviation from quality. This review aims to provide a detailed overview of common molecular spectroscopic techniques and their use for agricultural and food quality management. Using multiple databases including ScienceDirect, Scopus, Web of Science, and Google Scholar, 171 research publications including research articles, review papers, and book chapters were thoroughly reviewed and discussed to highlight new trends, accomplishments, challenges, and benefits of using molecular spectroscopic methods for studying food matrices. It was observed that Near infrared spectroscopy (NIRS), Infrared spectroscopy (IR), Hyperspectral imaging (his), and Nuclear magnetic resonance spectroscopy (NMR) stand out in particular for the identification of geographical origin, compositional analysis, authentication, and the detection of adulteration of meat, fish, coffee, tea, mushroom, and spices; however, the potential of UV/Vis, 1H-NMR, and Raman spectroscopy (RS) for similar purposes is not negligible. The methods rely heavily on preprocessing and chemometric methods, but their reliance on conventional reference data which can sometimes be unreliable, for quantitative analysis, is perhaps one of their dominant challenges. Nonetheless, the emergence of handheld versions of these techniques is an area that is continuously being explored for digitalized remote analysis.
Collapse
|
30
|
Yen CL, Chen JH, Chien HY, Cheng JS, Lee MS, Wang YY. Using a simple spectrophotometer to analyze cypress hydrolat composition. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9033-9049. [PMID: 34814334 DOI: 10.3934/mbe.2021445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Pure Dew (Cypress Hydrolat), which could be extracted from the waste material after the extracting essential oil from Taiwan cypress, has a good bactericidal effect. However, due to the high cost on quality control and concentration measurement of the Pure Dew, its application was restricted. This research tries to find suitable spectral frequencies through which the absorbance detected by the spectrometer could be used as the index of the pure dew concentration. This study used Gas Chromatography-Mass Spectrophotometer (GC-MS) to analyze the composition of Taiwan cypress hydrolat. After obtaining the composition, the raw liquor of cypress hydrolat was diluted to 100, 50, 25 and 0% v/v with pure water. The test samples were then tested by a simple spectrophotometer. After the spectrographic detection of absorbance using a simple spectrophotometer, it is confirmed that the spectrum of wavelength between 205-350 nm is the most representative. The absorptance and the pure dew concentration was roughly in linear relation which suggested that a simple spectrophotometer can be used to develop a low-cost and high.
Collapse
Affiliation(s)
- Chang-Lung Yen
- College of Management, National Chi Nan University, Nantou County 545, Taiwan (R.O.C.)
| | - Jian-Hung Chen
- College of Management, National Chi Nan University, Nantou County 545, Taiwan (R.O.C.)
| | - Hung-Yu Chien
- College of Management, National Chi Nan University, Nantou County 545, Taiwan (R.O.C.)
| | - Jen-Son Cheng
- College of Management, National Chi Nan University, Nantou County 545, Taiwan (R.O.C.)
| | - Meng-Shiu Lee
- College of Management, National Chi Nan University, Nantou County 545, Taiwan (R.O.C.)
| | - Yueh-Ying Wang
- College of Management, National Chi Nan University, Nantou County 545, Taiwan (R.O.C.)
| |
Collapse
|
31
|
Sohn SI, Pandian S, Oh YJ, Zaukuu JLZ, Kang HJ, Ryu TH, Cho WS, Cho YS, Shin EK, Cho BK. An Overview of Near Infrared Spectroscopy and Its Applications in the Detection of Genetically Modified Organisms. Int J Mol Sci 2021; 22:ijms22189940. [PMID: 34576101 PMCID: PMC8469702 DOI: 10.3390/ijms22189940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/12/2023] Open
Abstract
Near-infrared spectroscopy (NIRS) has become a more popular approach for quantitative and qualitative analysis of feeds, foods and medicine in conjunction with an arsenal of chemometric tools. This was the foundation for the increased importance of NIRS in other fields, like genetics and transgenic monitoring. A considerable number of studies have utilized NIRS for the effective identification and discrimination of plants and foods, especially for the identification of genetically modified crops. Few previous reviews have elaborated on the applications of NIRS in agriculture and food, but there is no comprehensive review that compares the use of NIRS in the detection of genetically modified organisms (GMOs). This is particularly important because, in comparison to previous technologies such as PCR and ELISA, NIRS offers several advantages, such as speed (eliminating time-consuming procedures), non-destructive/non-invasive analysis, and is inexpensive in terms of cost and maintenance. More importantly, this technique has the potential to measure multiple quality components in GMOs with reliable accuracy. In this review, we brief about the fundamentals and versatile applications of NIRS for the effective identification of GMOs in the agricultural and food systems.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (S.P.); (H.-J.K.); (T.-H.R.); (W.-S.C.); (Y.-S.C.); (E.-K.S.)
- Correspondence: (S.-I.S.); (B.-K.C.)
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (S.P.); (H.-J.K.); (T.-H.R.); (W.-S.C.); (Y.-S.C.); (E.-K.S.)
| | - Young-Ju Oh
- Institute for Future Environmental Ecology Co., Ltd., Jeonju 54883, Korea;
| | - John-Lewis Zinia Zaukuu
- Department of Measurements and Process Control, Szent István University, H-1118 Budapest, Hungary;
| | - Hyeon-Jung Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (S.P.); (H.-J.K.); (T.-H.R.); (W.-S.C.); (Y.-S.C.); (E.-K.S.)
| | - Tae-Hun Ryu
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (S.P.); (H.-J.K.); (T.-H.R.); (W.-S.C.); (Y.-S.C.); (E.-K.S.)
| | - Woo-Suk Cho
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (S.P.); (H.-J.K.); (T.-H.R.); (W.-S.C.); (Y.-S.C.); (E.-K.S.)
| | - Youn-Sung Cho
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (S.P.); (H.-J.K.); (T.-H.R.); (W.-S.C.); (Y.-S.C.); (E.-K.S.)
| | - Eun-Kyoung Shin
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (S.P.); (H.-J.K.); (T.-H.R.); (W.-S.C.); (Y.-S.C.); (E.-K.S.)
| | - Byoung-Kwan Cho
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (S.-I.S.); (B.-K.C.)
| |
Collapse
|
32
|
Schreuders FK, Schlangen M, Kyriakopoulou K, Boom RM, van der Goot AJ. Texture methods for evaluating meat and meat analogue structures: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108103] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Li X, Liu Z, Huang M, Zhu Q. Line-scan Raman scattering image and multivariate analysis for rapid and noninvasive detection of restructured beef. APPLIED OPTICS 2021; 60:6357-6365. [PMID: 34612869 DOI: 10.1364/ao.430004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The mean spectral (MS) features were extracted from Raman scattering images (RSI) of beef samples over the region of interest covering the spectral range of 789-1710cm-1 and the spatial offset range of 0-5 mm (for two sides of the incident laser). The RSI monitored the main change in the protein, amide bands, lipids, and amino acid residues. The classification model performance based on MS features compared the conventional Raman spectral features and confirmed the usefulness of RSI. Finally, the results showed that RSI technology is a reliable tool for rapid and noninvasive detection of restructured beef.
Collapse
|
34
|
Khaled AY, Parrish CA, Adedeji A. Emerging nondestructive approaches for meat quality and safety evaluation-A review. Compr Rev Food Sci Food Saf 2021; 20:3438-3463. [PMID: 34151512 DOI: 10.1111/1541-4337.12781] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
Meat is one of the most consumed agro-products because it contains proteins, minerals, and essential vitamins, all of which play critical roles in the human diet and health. Meat is a perishable food product because of its high moisture content, and as such there are concerns about its quality, stability, and safety. There are two widely used methods for monitoring meat quality attributes: subjective sensory evaluation and chemical/instrumentation tests. However, these methods are labor-intensive, time-consuming, and destructive. To overcome the shortfalls of these conventional approaches, several researchers have developed fast and nondestructive techniques. Recently, electronic nose (e-nose), computer vision (CV), spectroscopy, hyperspectral imaging (HSI), and multispectral imaging (MSI) technologies have been explored as nondestructive methods in meat quality and safety evaluation. However, most of the studies on the application of these novel technologies are still in the preliminary stages and are carried out in isolation, often without comprehensive information on the most suitable approach. This lack of cohesive information on the strength and shortcomings of each technique could impact their application and commercialization for the detection of important meat attributes such as pH, marbling, or microbial spoilage. Here, we provide a comprehensive review of recent nondestructive technologies (e-nose, CV, spectroscopy, HSI, and MSI), as well as their applications and limitations in the detection and evaluation of meat quality and safety issues, such as contamination, adulteration, and quality classification. A discussion is also included on the challenges and future outlooks of the respective technologies and their various applications.
Collapse
Affiliation(s)
- Alfadhl Y Khaled
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Chadwick A Parrish
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Akinbode Adedeji
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
35
|
Leng T, Li F, Chen Y, Tang L, Xie J, Yu Q. Fast quantification of total volatile basic nitrogen (TVB-N) content in beef and pork by near-infrared spectroscopy: Comparison of SVR and PLS model. Meat Sci 2021; 180:108559. [PMID: 34049182 DOI: 10.1016/j.meatsci.2021.108559] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
With application of PLS regression and SVR, quantitation models of near infrared diffuse reflectance spectroscopy were established for the first time to predict the content of volatile basic nitrogen (TVB-N) content in beef and pork. Results indicated that the best PLS model based on the raw spectra showed an excellent prediction performance with a high value of correlation coefficient at 0.9366 and a low root-mean-square error of prediction value of 3.15, and none of those pretreatment methods could improve the prediction performance of the PLS model. Moreover, comparatively the model obtained by SVR showed inferior quantitative predictive ability (R = 0.8314, RMSEP = 4.61). Analysis on VIP selected wavelengths inferred amino bond containing compounds and lipid may play important roles in the development of PLS models for TVB-N. Results from this study demonstrated the potential of using NIR spectroscopy and PLS for the prediction of TVB-N in beef and pork while more efforts are required to improve the performance of SVR models.
Collapse
Affiliation(s)
- Tuo Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Feng Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China.
| | - Lijun Tang
- Food Inspection and Testing Institute of Jiangxi Province, Nanchang 330046, People's Republic of China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| |
Collapse
|
36
|
|
37
|
Detection of Meat Adulteration Using Spectroscopy-Based Sensors. Foods 2021; 10:foods10040861. [PMID: 33920872 PMCID: PMC8071343 DOI: 10.3390/foods10040861] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Minced meat is a vulnerable to adulteration food commodity because species- and/or tissue-specific morphological characteristics cannot be easily identified. Hence, the economically motivated adulteration of minced meat is rather likely to be practiced. The objective of this work was to assess the potential of spectroscopy-based sensors in detecting fraudulent minced meat substitution, specifically of (i) beef with bovine offal and (ii) pork with chicken (and vice versa) both in fresh and frozen-thawed samples. For each case, meat pieces were minced and mixed so that different levels of adulteration with a 25% increment were achieved while two categories of pure meat also were considered. From each level of adulteration, six different samples were prepared. In total, 120 samples were subjected to visible (Vis) and fluorescence (Fluo) spectra and multispectral image (MSI) acquisition. Support Vector Machine classification models were developed and evaluated. The MSI-based models outperformed the ones based on the other sensors with accuracy scores varying from 87% to 100%. The Vis-based models followed in terms of accuracy with attained scores varying from 57% to 97% while the lowest performance was demonstrated by the Fluo-based models. Overall, spectroscopic data hold a considerable potential for the detection and quantification of minced meat adulteration, which, however, appears to be sensor-specific.
Collapse
|
38
|
Edwards K, Manley M, Hoffman LC, Williams PJ. Non-Destructive Spectroscopic and Imaging Techniques for the Detection of Processed Meat Fraud. Foods 2021; 10:foods10020448. [PMID: 33670564 PMCID: PMC7922372 DOI: 10.3390/foods10020448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/04/2022] Open
Abstract
In recent years, meat authenticity awareness has increased and, in the fight to combat meat fraud, various analytical methods have been proposed and subsequently evaluated. Although these methods have shown the potential to detect low levels of adulteration with high reliability, they are destructive, time-consuming, labour-intensive, and expensive. Therefore, rendering them inappropriate for rapid analysis and early detection, particularly under the fast-paced production and processing environment of the meat industry. However, modern analytical methods could improve this process as the food industry moves towards methods that are non-destructive, non-invasive, simple, and on-line. This review investigates the feasibility of different non-destructive techniques used for processed meat authentication which could provide the meat industry with reliable and accurate real-time monitoring, in the near future.
Collapse
Affiliation(s)
- Kiah Edwards
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (K.E.); (M.M.)
| | - Marena Manley
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (K.E.); (M.M.)
| | - Louwrens C. Hoffman
- Department of Animal Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; or
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Rd, Coopers Plains 4108, Australia
| | - Paul J. Williams
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (K.E.); (M.M.)
- Correspondence: ; Tel.: +27-21-808-3155
| |
Collapse
|
39
|
Fourier-transform infrared spectroscopy and machine learning to predict fatty acid content of nine commercial insects. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00694-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
A comparison of different optical instruments and machine learning techniques to identify sprouting activity in potatoes during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe quality of potato tubers is dependent on several attributes been maintained at appropriate levels during storage. One of these attributes is sprouting activity that is initiated from meristematic regions of the tubers (eyes). Sprouting activity is a major problem that contributes to reduced shelf life and elevated sugar content, which affects the marketability of seed tubers as well as fried products. This study compared the capabilities of three different optical systems (1: visible/near-infrared (Vis/NIR) interactance spectroscopy, 2: Vis/NIR hyperspectral imaging, 3: NIR transmittance) and machine learning methods to detect sprouting activity in potatoes based on the primordial leaf count (LC). The study was conducted on Frito Lay 1879 and Russet Norkotah cultivars stored at different temperatures and classification models were developed that considered both cultivars combined and classified the tubers as having either high or low sprouting activity. Measurements were performed on whole tubers and sliced samples to see the effect this would have on identifying sprouting activity. Sequential forward selection was applied for wavelength selection and the classification was carried out using K-nearest neighbor, partial least squares discriminant analysis, and soft independent modeling class analogy. The highest classification accuracy values obtained by the hyperspectral imaging system and was 87.5% and 90% for sliced and whole samples, respectively. Data fusion did not show classification improvement for whole tubers, whereas a 7.5% classification accuracy increase was illustrated for sliced samples. By investigating different optical techniques and machine learning methods, this study provides a first step toward developing a handheld optical device for early detection of sprouting activity, enabling advanced aid potato storage management.
Collapse
|
41
|
Near-infrared Spectroscopy and Hyperspectral Imaging for Sugar Content Evaluation in Potatoes over Multiple Growing Seasons. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01886-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractSugar content is one of the most important properties of potato tubers as it directly affects their processing and the final product quality, especially for fried products. In this study, data obtained from spectroscopic (interactance and reflectance) and hyperspectral imaging systems were used individually or fused to develop non-cultivar nor growing season-specific regression and classification models for potato tubers based on glucose and sucrose concentration. Data was acquired over three growing seasons for two potato cultivars. The most influential wavelengths were selected from the imaging systems using interval partial least squares for regression and sequential forward selection for classification. Hyperspectral imaging showed the highest regression performance for glucose with a correlation coefficient (ratio of performance to deviation) or r(RPD) of 91.8(2.41) which increased to 94%(2.91) when the data was fused with the interactance data. The sucrose regression results had the highest accuracy using data obtained from the interactance system with r(RPD) values of 74.5%(1.40) that increased to 84.4%(1.82) when the data was fused with the reflectance data. Classification was performed to identify tubers with either high or low sugar content. Classification performance showed accuracy values as high as 95% for glucose and 80.1% for sucrose using hyperspectral imaging, with no noticeable improvement when data was fused from the other spectroscopic systems. When testing the robustness of the developed models over different seasons, it was found that the regression models had r(RPD) values of 55(1.19)–90.3%(2.34) for glucose and 35.8(1.07)–82.2%(1.29) for sucrose. Results obtained in this study demonstrate the feasibility of developing a rapid monitoring system using multispectral imaging and data fusion methods for online evaluation of potato sugar content.
Collapse
|
42
|
Aouadi B, Zaukuu JLZ, Vitális F, Bodor Z, Fehér O, Gillay Z, Bazar G, Kovacs Z. Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue-Critical Overview. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5479. [PMID: 32987908 PMCID: PMC7583984 DOI: 10.3390/s20195479] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023]
Abstract
Amid today's stringent regulations and rising consumer awareness, failing to meet quality standards often results in health and financial compromises. In the lookout for solutions, the food industry has seen a surge in high-performing systems all along the production chain. By virtue of their wide-range designs, speed, and real-time data processing, the electronic tongue (E-tongue), electronic nose (E-nose), and near infrared (NIR) spectroscopy have been at the forefront of quality control technologies. The instruments have been used to fingerprint food properties and to control food production from farm-to-fork. Coupled with advanced chemometric tools, these high-throughput yet cost-effective tools have shifted the focus away from lengthy and laborious conventional methods. This special issue paper focuses on the historical overview of the instruments and their role in food quality measurements based on defined food matrices from the Codex General Standards. The instruments have been used to detect, classify, and predict adulteration of dairy products, sweeteners, beverages, fruits and vegetables, meat, and fish products. Multiple physico-chemical and sensory parameters of these foods have also been predicted with the instruments in combination with chemometrics. Their inherent potential for speedy, affordable, and reliable measurements makes them a perfect choice for food control. The high sensitivity of the instruments can sometimes be generally challenging due to the influence of environmental conditions, but mathematical correction techniques exist to combat these challenges.
Collapse
Affiliation(s)
- Balkis Aouadi
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - John-Lewis Zinia Zaukuu
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Flora Vitális
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Zsanett Bodor
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Orsolya Fehér
- Institute of Agribusiness, Faculty of Economics and Social Sciences, Szent István University, H-2100 Gödöllő, Hungary;
| | - Zoltan Gillay
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - George Bazar
- Department of Nutritional Science and Production Technology, Faculty of Agricultural and Environmental Sciences, Szent István University, H-7400 Kaposvár, Hungary;
- ADEXGO Kft., H-8230 Balatonfüred, Hungary
| | - Zoltan Kovacs
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| |
Collapse
|
43
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|
44
|
Adedeji AA, Ekramirad N, Rady A, Hamidisepehr A, Donohue KD, Villanueva RT, Parrish CA, Li M. Non-Destructive Technologies for Detecting Insect Infestation in Fruits and Vegetables under Postharvest Conditions: A Critical Review. Foods 2020; 9:E927. [PMID: 32674380 PMCID: PMC7404779 DOI: 10.3390/foods9070927] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023] Open
Abstract
In the last two decades, food scientists have attempted to develop new technologies that can improve the detection of insect infestation in fruits and vegetables under postharvest conditions using a multitude of non-destructive technologies. While consumers' expectations for higher nutritive and sensorial value of fresh produce has increased over time, they have also become more critical on using insecticides or synthetic chemicals to preserve food quality from insects' attacks or enhance the quality attributes of minimally processed fresh produce. In addition, the increasingly stringent quarantine measures by regulatory agencies for commercial import-export of fresh produce needs more reliable technologies for quickly detecting insect infestation in fruits and vegetables before their commercialization. For these reasons, the food industry investigates alternative and non-destructive means to improve food quality. Several studies have been conducted on the development of rapid, accurate, and reliable insect infestation monitoring systems to replace invasive and subjective methods that are often inefficient. There are still major limitations to the effective in-field, as well as postharvest on-line, monitoring applications. This review presents a general overview of current non-destructive techniques for the detection of insect damage in fruits and vegetables and discusses basic principles and applications. The paper also elaborates on the specific post-harvest fruit infestation detection methods, which include principles, protocols, specific application examples, merits, and limitations. The methods reviewed include those based on spectroscopy, imaging, acoustic sensing, and chemical interactions, with greater emphasis on the noninvasive methods. This review also discusses the current research gaps as well as the future research directions for non-destructive methods' application in the detection and classification of insect infestation in fruits and vegetables.
Collapse
Affiliation(s)
- Akinbode A. Adedeji
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA; (N.E.); (A.R.); (A.H.); (M.L.)
| | - Nader Ekramirad
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA; (N.E.); (A.R.); (A.H.); (M.L.)
| | - Ahmed Rady
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA; (N.E.); (A.R.); (A.H.); (M.L.)
- Department of Biosystems and Agricultural Engineering, Alexandria University, Alexandria 21526, Egypt
| | - Ali Hamidisepehr
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA; (N.E.); (A.R.); (A.H.); (M.L.)
| | - Kevin D. Donohue
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA; (K.D.D.); (C.A.P.)
| | - Raul T. Villanueva
- Department of Entomology, University of Kentucky, Princeton, KY 42445-0469, USA;
| | - Chadwick A. Parrish
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA; (K.D.D.); (C.A.P.)
| | - Mengxing Li
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA; (N.E.); (A.R.); (A.H.); (M.L.)
| |
Collapse
|
45
|
Rocha WFDC, do Prado CB, Blonder N. Comparison of Chemometric Problems in Food Analysis Using Non-Linear Methods. Molecules 2020; 25:E3025. [PMID: 32630676 PMCID: PMC7411792 DOI: 10.3390/molecules25133025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Food analysis is a challenging analytical problem, often addressed using sophisticated laboratory methods that produce large data sets. Linear and non-linear multivariate methods can be used to process these types of datasets and to answer questions such as whether product origin is accurately labeled or whether a product is safe to eat. In this review, we present the application of non-linear methods such as artificial neural networks, support vector machines, self-organizing maps, and multi-layer artificial neural networks in the field of chemometrics related to food analysis. We discuss criteria to determine when non-linear methods are better suited for use instead of traditional methods. The principles of algorithms are described, and examples are presented for solving the problems of exploratory analysis, classification, and prediction.
Collapse
Affiliation(s)
- Werickson Fortunato de Carvalho Rocha
- National Institute of Metrology, Quality and Technology (INMETRO), Av. N. S. das Graças, 50, Xerém, Duque de Caxias 25250-020, RJ, Brazil; (W.F.C.R.); (C.B.d.P.)
- National Institute of Standards and Technology (NIST), 100 Bureau Drive, Stop 8390 Gaithersburg, MD 20899, USA
| | - Charles Bezerra do Prado
- National Institute of Metrology, Quality and Technology (INMETRO), Av. N. S. das Graças, 50, Xerém, Duque de Caxias 25250-020, RJ, Brazil; (W.F.C.R.); (C.B.d.P.)
| | - Niksa Blonder
- National Institute of Standards and Technology (NIST), 100 Bureau Drive, Stop 8390 Gaithersburg, MD 20899, USA
| |
Collapse
|
46
|
Leng T, Li F, Xiong L, Xiong Q, Zhu M, Chen Y. Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107203] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Li YC, Liu SY, Meng FB, Liu DY, Zhang Y, Wang W, Zhang JM. Comparative review and the recent progress in detection technologies of meat product adulteration. Compr Rev Food Sci Food Saf 2020; 19:2256-2296. [PMID: 33337107 DOI: 10.1111/1541-4337.12579] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Meat adulteration, mainly for the purpose of economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat adulteration. Considering the importance and rapid advances in meat adulteration detection technologies, a comprehensive review to summarize the recent progress in this area and to suggest directions for future progress is beneficial. In this review, destructive meat adulteration technologies based on DNA, protein, and metabolite analyses and nondestructive technologies based on spectroscopy were comparatively analyzed. The advantages and disadvantages, application situations of these technologies were discussed. In the future, determining suitable indicators or markers is particularly important for destructive methods. To improve sensitivity and save time, new interdisciplinary technologies, such as biochips and biosensors, are promising for application in the future. For nondestructive techniques, convenient and effective chemometric models are crucial, and the development of portable devices based on these technologies for onsite monitoring is a future trend. Moreover, omics technologies, especially proteomics, are important methods in laboratory detection because they enable multispecies detection and unknown target screening by using mass spectrometry databases.
Collapse
Affiliation(s)
- Yun-Cheng Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Shu-Yan Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Fan-Bing Meng
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Da-Yu Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Yin Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Jia-Min Zhang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
48
|
Mabood F, Boqué R, Alkindi A, Al-Harrasi A, Al Amri I, Boukra S, Jabeen F, Hussain J, Abbas G, Naureen Z, Haq QM, Shah H, Khan A, Khalaf S, Kadim I. Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis. Meat Sci 2020; 163:108084. [DOI: 10.1016/j.meatsci.2020.108084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
|
49
|
Weng S, Guo B, Tang P, Yin X, Pan F, Zhao J, Huang L, Zhang D. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118005. [PMID: 31951866 DOI: 10.1016/j.saa.2019.118005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
High economic returns induce the continuous occurrence of meat adulteration. In this study, visible/near-infrared (Vis/NIR) reflectance spectroscopy with multivariate methods was used for the rapid detection of adulteration in minced beef. First, the reflectance spectra of different adulterated minced beef samples were measured at 350-2500 nm. Standardization and Savitzky-Golay (SG) smoothing were applied to reduce spectral interference and noise. Then, support vector machine (SVM), random forest (RF), partial least squares regression (PLSR), and deep convolutional neural network (DCNN) were adopted for adulteration type identification and level prediction. Moreover, principal component analysis (PCA), locally linear embedding (LLE), subwindow permutation analysis (SPA), and competitive adaptive reweighted sampling (CARS) were performed to eliminate redundant information. SG smoothing performed better on interference reduction. DCNN and PCA identified adulteration type with the accuracy above 99%. In adulteration level prediction, the RF with spectra of important wavelengths selected by CARS provided optimal performance for beef adulterated with pork, and coefficient of determination of prediction (R2P) and the root mean square error of prediction (RMSEP) were 0.973 and 2.145. The best prediction for beef adulterated with beef heart was obtained using PLSR and CARS with R2P of 0.960 and RMSEP of 2.758. Accordingly, Vis/NIR reflectance spectroscopy coupled with multivariate methods can provide the rapid and accurate detection of adulterated minced beef.
Collapse
Affiliation(s)
- Shizhuang Weng
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei, China.
| | - Bingqing Guo
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei, China
| | - Peipei Tang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei, China
| | - Xun Yin
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei, China
| | - Fangfang Pan
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei, China
| | - Jinling Zhao
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei, China.
| | - Linsheng Huang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei, China
| | - Dongyan Zhang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei, China
| |
Collapse
|
50
|
Zia Q, Alawami M, Mokhtar NFK, Nhari RMHR, Hanish I. Current analytical methods for porcine identification in meat and meat products. Food Chem 2020; 324:126664. [PMID: 32380410 DOI: 10.1016/j.foodchem.2020.126664] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Authentication of meat products is critical in the food industry. Meat adulteration may lead to religious apprehensions, financial gain and food-toxicities such as meat allergies. Thus, empirical validation of the quality and constituents of meat is paramount. Various analytical methods often based on protein or DNA measurements are utilized to identify meat species. Protein-based methods, including electrophoretic and immunological techniques, are at times unsuitable for discriminating closely related species. Most of these methods have been replaced by more accurate and sensitive detection methods, such as DNA-based techniques. Emerging technologies like DNA barcoding and mass spectrometry are still in their infancy when it comes to their utilization in meat detection. Gold nanobiosensors have shown some promise in this regard. However, its applicability in small scale industries is distant. This article comprehensively reviews the recent developments in the field of analytical methods used for porcine identification.
Collapse
Affiliation(s)
- Qamar Zia
- A New Mind, Ash Shati, Al Qatif 32617-3732, Saudi Arabia.
| | - Mohammad Alawami
- A New Mind, Ash Shati, Al Qatif 32617-3732, Saudi Arabia; Depaartment of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | | | - Irwan Hanish
- Halal Product Research Institute, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| |
Collapse
|