1
|
Liu J, Deng S, Wang J, Huang F, Han D, Xu Y, Yang P, Zhang C, Blecker C. Comparison and elucidation of the changes in the key odorants of precooked stewed beef during cooking-refrigeration-reheating. Food Chem X 2024; 23:101654. [PMID: 39170068 PMCID: PMC11338155 DOI: 10.1016/j.fochx.2024.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The key odorants contributing to the warmed-over flavor (WOF) of reheated precooked stewed beef were characterized using a sensomics approach. Overall, 36 odorants were identified, and based on flavor dilution factors, odor activity values, aroma recombination, and omission test, 11 compounds mainly derived from lipid oxidation were characterized as the key odorants contributing to the formation of WOF. In particular, 3-(methylthio)propanal, which was positively correlated with meaty aroma, was implicated in an overall increase in WOF. Thus, these odorants were elected as potential markers of WOF in the reheated precooked stewed beef. In summary, the WOF of the precooked stewed beef could be attributed to an overall increase in lipid oxidation products and a decrease in the odorants with desirable aromas. The characterization of WOF in precooked stewed beef will aid in the flavor quality control of precooked stewed beef dishes.
Collapse
Affiliation(s)
- Junmei Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Unit of Food Science and Formulation, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2B, 5030 Gembloux, Belgium
| | - Siyang Deng
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Unit of Food Science and Formulation, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2B, 5030 Gembloux, Belgium
| | - Jingfan Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Unit of Food Science and Formulation, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2B, 5030 Gembloux, Belgium
| | - Feng Huang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong Han
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Xu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ping Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Yihai Kitchen (Tianjing) Investment Co., Ltd., Tianjin 300461, China
- Jiangsu Huaguoshan Food Co., Ltd., Jiangsu 222000, China
| | - Christophe Blecker
- Unit of Food Science and Formulation, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2B, 5030 Gembloux, Belgium
| |
Collapse
|
2
|
Beriain MJ, Gómez I, García S, Urroz JC, Diéguez PM, Ibañez FC. Hydrogen Gas-Grilling in Meat: Impact on Odor Profile and Contents of Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds. Foods 2024; 13:2443. [PMID: 39123634 PMCID: PMC11311495 DOI: 10.3390/foods13152443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The effect of fuel (hydrogen vs. butane) on the formation of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) was evaluated for grilled horse meat (very low-fat and low-fat) cooking vertically. Gas chromatography-mass spectrometry was used to analyze PAHs and VOCs. An electronic nose was used to evaluate the odor profile. Total high-molecular-weight PAHs ranged from 19.59 to 28.65 µg/kg with butane and from 1.83 to 1.61 µg/kg with hydrogen. Conversely, total low-molecular-weight PAHs went from 184.41 to 286.03 µg/kg with butane and from 36.88 to 41.63 µg/kg with hydrogen. Aldehydes and alkanes were the predominant family in a total of 59 VOCs. Hydrogen gas-grilling reduced significantly (p < 0.05) the generation of VOCs related to lipid oxidation. The odor profile was not modified significantly despite the change of PAHs and VOCs. The findings indicate that hydrogen is a viable alternative to butane for grilling horse meat. Hydrogen gas-grilling may be regarded as a safe cooking procedure of meat from a PAH contamination point and perhaps sustainable environmentally compared to a conventional technique. The present study provides the basis for the use of hydrogen gas in grilled meat.
Collapse
Affiliation(s)
- María José Beriain
- ISFOOD Research Institute, Public University of Navarre, 31006 Pamplona, Spain;
| | - Inmaculada Gómez
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Susana García
- Department of Sciences, Public University of Navarre, 31006 Pamplona, Spain;
| | - José Carlos Urroz
- School of Industrial & ICT Engineering, Public University of Navarre, Campus de Arrosadía, E-31006 Pamplona, Spain; (J.C.U.); (P.M.D.)
| | - Pedro María Diéguez
- School of Industrial & ICT Engineering, Public University of Navarre, Campus de Arrosadía, E-31006 Pamplona, Spain; (J.C.U.); (P.M.D.)
| | - Francisco C. Ibañez
- ISFOOD Research Institute, Public University of Navarre, 31006 Pamplona, Spain;
| |
Collapse
|
3
|
Ahamed Z, Seo JK, Eom JU, Yang HS. Volatile Compounds for Discrimination between Beef, Pork, and Their Admixture Using Solid-Phase-Microextraction-Gas Chromatography-Mass Spectrometry (SPME-GC-MS) and Chemometrics Analysis. Food Sci Anim Resour 2024; 44:934-950. [PMID: 38974721 PMCID: PMC11222689 DOI: 10.5851/kosfa.2024.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 07/09/2024] Open
Abstract
This study addresses the prevalent issue of meat species authentication and adulteration through a chemometrics-based approach, crucial for upholding public health and ensuring a fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-phase-microextraction-gas chromatography-mass spectrometry. Adulterated meat samples were effectively identified through principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance in projection scores and a Random Forest test, 11 key compounds, including nonanal, octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with the first two components capturing 80% and 72.1% of total variance, respectively. This technique could be a reliable method for detecting meat adulteration in cooked meat.
Collapse
Affiliation(s)
- Zubayed Ahamed
- Division of Applied Life Science
(BK21Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Jin-Kyu Seo
- Division of Applied Life Science
(BK21Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Jeong-Uk Eom
- Division of Applied Life Science
(BK21Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Han-Sul Yang
- Division of Applied Life Science
(BK21Four), Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture and Life Science,
Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
4
|
Park H, Noh E, Kim M, Lee KG. Analysis of volatile and nonvolatile compounds in decaffeinated and regular coffee prepared under various roasting conditions. Food Chem 2024; 435:137543. [PMID: 37742465 DOI: 10.1016/j.foodchem.2023.137543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
This study investigated the effect of various roasting conditions on regular and decaffeinated green beans. Regular and decaffeinated green beans from Guatemala, Brazil, Ethiopia, and Colombia were prepared under light, medium, and dark roasting conditions. Analysis of the decaffeination-induced changes in nonvolatile compounds revealed that decaffeinated green coffee beans had significantly lower concentrations of trigonelline (25%) and total carbohydrates (16%) but a higher chlorogenic acid content (10-14%) than regular green coffee beans (bothp < 0.05). Flavor differences between regular and decaffeinated coffee were investigated by analysis of the volatile and nonvolatile compounds in roasted coffee beans. From the odor impact ratio values, 3-ethyl-2,5-dimethyl pyrazine, 5-methyl furfural, and guaiacol were primarily responsible for coffee flavor. 3-Ethyl-2,5-dimethyl pyrazine had 58% lower concentration in decaffeinated coffee than in regular coffee. This study is valuable in providing the chemical composition of decaffeinated coffee and way to improve the quality of decaffeinated coffee.
Collapse
Affiliation(s)
- Hyunbeen Park
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Eunjeong Noh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Mingyu Kim
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
5
|
Anneke, Kim HJ, Kim D, Shin DJ, Do KT, Yang CB, Jeon SW, Jung JH, Jang A. Characteristics of Purified Horse Oil by Supercritical Fluid Extraction with Different Deodorants Agents. Food Sci Anim Resour 2024; 44:443-463. [PMID: 38764514 PMCID: PMC11097038 DOI: 10.5851/kosfa.2024.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 05/21/2024] Open
Abstract
This study investigated the impact of activated carbon, palm activated carbon, and zeolite on horse oil (HO) extracted from horse neck fat using supercritical fluid extraction with deodorant-untreated HO (CON) as a comparison. The yield and lipid oxidation of deodorant untreated HO (CON) were not significantly affected by the three deodorants. However, deodorant-treated HOs exhibited significantly elevated levels of α-linolenic acid (C18:3n3) and eicosenoic acid (C20:1n9) compared to CON (p<0.05), while other fatty acids remained consistent. Zeolite-purified HO demonstrated significantly lower levels of volatile organic compounds (VOCs) than other treatments (p<0.05). Remarkably, zeolite decreased the concentration of pentane, 2,3-dimethyl (gasoline odor), by over 90%, from 177.17 A.U. ×106 in CON to 15.91 A.U. ×106. Zeolite also effectively eliminates sec-butylamine (ammonia and fishy odor) as compared to other deodorant-treated HOs (p<0.05). Additionally, zeolite reduced VOCs associated with the fruity citrus flavor, such as nonanal, octanal, and D-limonene in HO (p<0.05). This study suggests that integrating zeolite in supercritical fluid extraction enhances HO purification by effectively eliminating undesirable VOCs, presenting a valuable approach for producing high-quality HO production in the cosmetic and functional food industries.
Collapse
Affiliation(s)
- Anneke
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Hye-Jin Kim
- Center for Food and Bioconvergence, Seoul
National University, Seoul 08826, Korea
| | - Dongwook Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Dong-Jin Shin
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Kyoung-tag Do
- Major of Animal Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Chang-Beom Yang
- Major of Animal Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Sung-Won Jeon
- Major of Animal Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | | | - Aera Jang
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| |
Collapse
|
6
|
Liu Z, Huang Y, Kong S, Miao J, Lai K. Selection and quantification of volatile indicators for quality deterioration of reheated pork based on simultaneously extracting volatiles and reheating precooked pork. Food Chem 2023; 419:135962. [PMID: 37004364 DOI: 10.1016/j.foodchem.2023.135962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
This study was to screen and quantify characteristic volatiles tied to the quality deterioration of reheated pork via simultaneously reheating (75 °C, 30 min) and collecting headspace volatiles of precooked pork (100 °C, 10 min; stored: 0 °C, 0-14 d) for GC-MS analysis. The concentrations of hexanal (6.05 ± 0.86-12.05 ± 0.44 mg/kg), (E)-2-octenal (1.54 ± 0.16-3.07 ± 0.08 mg/kg), (E,E)-2,4-heptadienal (1.52 ± 0.44-2.58 ± 0.31 mg/kg) and 8 other selected volatiles in reheated pork increased as the storage time of the precooked counterparts increased. The increase rate of hexanal was 2.9-199 times faster than that of other volatiles based on zero-order reaction fitting (R2 = 0.876-0.997). Results from clustering analysis of these volatiles were consistent with their formation pathways tied to lipid autooxidation. This simple approach, reheating and collecting volatiles of precooked meat concurrently, introduces a new possibility for standardizing volatile analysis of precooked meats required being reheated before consumption.
Collapse
Affiliation(s)
- Zhijie Liu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; School of Food Science and Bioengineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China.
| | - Shanshan Kong
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
7
|
Bu N, Yang Q, Chen J, Li Y, Liu D. Characterization and Discrimination of Volatile Compounds in Chilled Tan Mutton Meat during Storage Using HiSorb-TD-GC-MS and E-Nose. Molecules 2023; 28:4993. [PMID: 37446654 DOI: 10.3390/molecules28134993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Chilled Tan mutton is currently the mainstream of Tan mutton production and consumption in China, but the reports on chilled meat quality evaluation and shelf-life discrimination by volatiles are limited. This study aimed to investigate the changes of volatile compounds in chilled Tan mutton at four storage stages (1d, 3d, 5d, 7d) in order to differentiate the various storage stages. An analysis protocol was established for the characterization and discrimination of the volatiles in chilled Tan mutton based on high capacity sorptive extraction-thermal desorption-gas coupled with chromatography-mass spectrometry (HiSorb-TD-GC-MS), electronic nose (E-nose), and multivariate statistical analysis. A total of 96 volatile compounds were identified by HiSorb-TD-GC-MS, in which six compounds with relative odor activity value >1 were screened as the key characteristic volatiles in chilled Tan mutton. Four storage stages were discriminated by partial least squares discriminant analysis, and nine differential volatile compounds showed a variable importance for the projection score >1, including octanoic acid, methyl ester, decanoic acid, methyl ester, acetic acid, heptanoic acid, methyl ester, propanoic acid, 2-hydroxy-, methyl ester, (ñ)-, hexanoic acid, propanoic acid, butanoic acid, and nonanoic acid. With the volcano plot analysis, hexadecanoic acid, methyl ester, was the common volatile marker candidate to discriminate chilled stages of Tan mutton. Meanwhile, E-nose could discriminate chilled Tan mutton at different storage stages rapidly and efficiently using linear discriminant analysis. Furthermore, E-nose sensors could obtain comprehensive volatile profile information, especially in esters, acids, and alcohols, which could confirm the potential of E-nose for meat odor recognition. Thus, this analysis protocol could characterize and discriminate the volatiles in chilled Tan mutton during storage.
Collapse
Affiliation(s)
- Ningxia Bu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qi Yang
- Ningxia Veterinary Drugs and Fodder Inspection Institute, Yinchuan 750011, China
| | - Juan Chen
- Ningxia Veterinary Drugs and Fodder Inspection Institute, Yinchuan 750011, China
| | - Yongqin Li
- Ningxia Veterinary Drugs and Fodder Inspection Institute, Yinchuan 750011, China
| | - Dunhua Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
8
|
Man L, Ren W, Sun M, Du Y, Chen H, Qin H, Chai W, Zhu M, Liu G, Wang C, Li M. Characterization of donkey-meat flavor profiles by GC–IMS and multivariate analysis. Front Nutr 2023; 10:1079799. [PMID: 37006938 PMCID: PMC10060877 DOI: 10.3389/fnut.2023.1079799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The distinctive flavor compounds of donkey meat are unknown. Accordingly, in the present study, the volatile compounds (VOCs) in the meat from SanFen (SF) and WuTou (WT) donkeys were comprehensively analyzed by gas chromatography–ion mobility spectrometry (GC-IMS) combined with multivariate analysis. A total of 38 VOCs, of which 33.33% were ketones, 28.89% were alcohols, 20.00% were aldehydes, and 2.22% were heterocycles, were identified. Ketones and alcohols were significantly more abundant for SF than for WT, whereas aldehydes showed the opposite trend. The donkey meats from the two strains were well differentiated using topographic plots, VOC fingerprinting, and multivariate analysis. A total of 17 different VOCs were identified as potential markers for distinguishing the different strains, including hexanal-m, 3-octenal, oct-1-en-3-ol, and pentanal-d. These results indicate that GC–IMS combined with multivariate analysis is a convenient and powerful method for characterizing and discriminating donkey meat.
Collapse
|
9
|
Zhu B, Gao H, Yang F, Li Y, Yang Q, Liao Y, Guo H, Xu K, Tang Z, Gao N, Zhang Y, He J. Comparative Characterization of Volatile Compounds of Ningxiang Pig, Duroc and Their Crosses (Duroc × Ningxiang) by Using SPME-GC-MS. Foods 2023; 12:foods12051059. [PMID: 36900576 PMCID: PMC10001212 DOI: 10.3390/foods12051059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
With the aim to study the flavor characteristics of Ningxiang pigs (NX), Duroc (DC) pigs, and their crosses (Duroc × Ningxiang, DN), electronic nose and gas chromatography-mass spectrometry analysis were used to detect the volatile flavor substances in NX, DC, and DN (n = 34 pigs per population). A total of 120 volatile substances were detected in the three populations, of which 18 substances were common. Aldehydes were the main volatile substances in the three populations. Further analysis revealed that tetradecanal, 2-undecenal, and nonanal were the main aldehyde substances in the three kinds of pork, and the relative content of benzaldehyde in the three populations had significant differences. The flavor substances of DN were similar to that of NX and showed certain heterosis in flavor substances. These results provide a theoretical basis for the study of flavor substances of China local pig breeds and new ideas for pig breeding.
Collapse
Affiliation(s)
- Bangqiang Zhu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hu Gao
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fang Yang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yiyang Li
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiaoyue Yang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yinchang Liao
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haimin Guo
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Kang Xu
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Zhiqiang Tang
- Ningxiang Animal Husbandry and Fishery Affairs Center, Ningxiang 410600, China
| | - Ning Gao
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuebo Zhang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jun He
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Correspondence:
| |
Collapse
|
10
|
Liu S, Tu Y, Sun J, Cai P, Zhou Y, Huang Y, Zhang S, Chen W, Wang L, Du M, You W, Wang T, Wang Y, Lu Z, Shan T. Fermented mixed feed regulates intestinal microbial community and metabolism and alters pork flavor and umami. Meat Sci 2023; 201:109177. [PMID: 37023593 DOI: 10.1016/j.meatsci.2023.109177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
This study aimed to determine the effects of fermented mixed feed (FMF) supplementation (0%, 5% and 10%) on the intestinal microbial community and metabolism, and the compositions of volatile flavor compounds and inosine monophosphate (IMP) contents in the longissimus thoracis. In this study, 144 finishing pigs (Duroc × Berkshire × Jiaxing Black) were randomly allocated to 3 groups with 4 replicate pens per group and 12 pigs per pen. The experiment lasted 38 days after 4 days of acclimation. The 16S rRNA gene sequences and an untargeted metabolomics analysis showed FMF altered the profiles of microbes and metabolites in the colon. Heracles flash GC e-nose analysis showed that 10% FMF (treatment 3) had a greater influence on the compositions of volatile flavor compounds than 5% FMF (treatment 2). Compared to 0% FMF (treatment 1), the contents of total aldehydes, (E,E)-2,4-nonadienal, dodecanal, nonanal and 2-decenal were significantly increased by treatment 3, and treatment 3 increased IMP concentrations and gene expressions related to its synthesis. Correlations analysis showed significantly different microbes and metabolites had strong correlations with the contents of IMP and volatile flavor compounds. In conclusion, treatment 3 regulated intestinal microbial community and metabolism, that in turn altered the compositions of volatile compounds, which contributed to improving pork flavor and umami.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Jiabao Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yuqin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Shu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Man Du
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Tenghao Wang
- Zhejiang Qinglian Food Co Ltd, Jiaxing, Zhejiang 314317, PR China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Zeqing Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China.
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
11
|
Fu Y, Cao S, Yang L, Li Z. Flavor formation based on lipid in meat and meat products: A review. J Food Biochem 2022; 46:e14439. [PMID: 36183160 DOI: 10.1111/jfbc.14439] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Meat product is popular throughout the world due to its unique taste. Flavor is one of the most important quality characteristics of meat products and also is a key influencing factor in the overall acceptability of meat products. The flavor of meat products is formed by precursors undergoing a series of complex reactions. During meat product processing, lipids are hydrolyzed by lipase to produce flavor precursors such as free fatty acid, then further oxidized to form volatile flavor compounds. This review summarizes lipolysis, lipid oxidation, and interaction of lipid with Maillard reaction and amino acid during meat products processing and storage as well as influencing factors on lipid degradation including raw meat (source of meat, feeding pattern, and castration), processing methods (thermal processing, nonthermal processing, salting, and fermentation) and additives. Meanwhile, the volatile compounds produced by lipids in meat products including aldehydes, alcohols, ketones, and hydrocarbons are summed up. Analytical methods of volatile compounds and the application of lipidomics analysis in mechanisms of flavor formation of meat products are also reviewed. PRACTICAL APPLICATIONS: Flavor is one of the most important quality characteristics of meat products, which influences the acceptability of meat products for consumption. Lipids play an important role in the flavor formation of meat products. Understanding the relationship between flavor compounds and changes in lipid compositions during the processing and storage of meat products will be helpful to control the quality of meat products.
Collapse
Affiliation(s)
- Yinghua Fu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shenyi Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Li Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Zhenglei Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
12
|
GC-IMS-Based Preliminary Analysis of Volatile Flavor Compounds in Ejiao at Different Processing Stages. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3961593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to find out the changes of flavor substances in the processing of Colla corii asini (Ejiao) and provide reference for the flavor and quality control in the production of Ejiao, gas chromatography-ion mobility spectrometry (GC-IMS) was used to analyze the Ejiao products in different processing stages and establish the fingerprint. The differences among these stages were analyzed using multivariate statistical analysis, and the mechanism underlying volatile flavor compound formation was explored by discriminant analysis of Ejiao at different processing stages. The results indicated that Ejiao contains 47 volatile flavor compounds at different processing stages; they mainly include aldehydes, alcohols, esters, ketones, dimethyl disulfide, thiazole, and pyrazines. During Ejiao processing, the formation of these substances is mainly attributable to the Maillard reaction, amino acid or protein-oxidized lipid interaction, lipid oxidation and degradation, and long-chain compound degradation during heating. Principal component analysis results showed that volatile flavor compounds could be used to distinguish different Ejiao processing stages. The current results provide some reference for flavor and quality control of Ejiao products.
Collapse
|
13
|
Formation and Analysis of Volatile and Odor Compounds in Meat-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196703. [PMID: 36235239 PMCID: PMC9572956 DOI: 10.3390/molecules27196703] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
The volatile composition and odor of meat and meat products is based on the precursors present in the raw meat. These are influenced by various pre-slaughter factors (species, breed, sex, age, feed, muscle type). Furthermore, post-mortem conditions (chiller aging, cooking conditions, curing, fermentation, etc.) determine the development of meat volatile organic compounds (VOCs). In this review, the main reactions leading to the development of meat VOCs such as the Maillard reaction; Strecker degradation; lipid oxidation; and thiamine, carbohydrate, and nucleotide degradation are described. The important pre-slaughter factors and post-mortem conditions influencing meat VOCs are discussed. Finally, the pros, cons, and future perspectives of the most commonly used sample preparation techniques (solid-phase microextraction, stir bar sorptive extraction, dynamic headspace extraction) and analytical methods (gas chromatography mass spectrometry and olfactometry, as well as electronic noses) for the analysis of meat VOCs are discussed, and the continued importance of sensorial analysis is pinpointed.
Collapse
|
14
|
Rao JW, Meng FB, Li YC, Chen WJ, Liu DY, Zhang JM. Effect of cooking methods on the edible, nutritive qualities and volatile flavor compounds of rabbit meat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4218-4228. [PMID: 35038172 DOI: 10.1002/jsfa.11773] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rabbit meat is a good edible meat source with high nutritional values. Cooking has a significant impact on the edible properties, nutritional qualities and flavor characteristics of meat. Studying the effect of cooking methods on rabbit meat qualities could encourage more understanding and acceptance of rabbit meat by consumers, and could also provide some reference for rabbit meat processing. Therefore, the effects of boiling, sous-vide cooking, steaming, microwaving, roasting, frying and pressure cooking on the edible, nutritive and volatile qualities of rabbit meat were investigated. RESULTS The sous-vide cooked rabbit meat sample showed higher moisture content, water-holding capacity and lower cooking losses than other samples, but the results of roasted rabbit meat sample were the opposite, and scanning electron microscopy observations also verified the results. There was no significant difference in 2-thiobarbituric acid reactive substance (TBARS) value in the cooked samples except for roasting. Microwaving, roasting and frying exhibited stronger antioxidant activity than the other cooked samples after in vitro digestion. A total of 38 volatiles were identified in the cooked meat samples, and the samples were well divided into four groups by principal component analysis, and 13 volatiles were considered discriminatory variables for the cooked rabbit meat. CONCLUSION The physicochemical characteristics of cooked meat differed significantly between the processing methods. Roasted meat showed lower TBARS value and stronger antioxidant activity after simulated digestion compared to the other meats. However, pressure cooked meat detected the most volatile components while roasting the least. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Wei Rao
- College of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, P. R. China
| | - Wei-Jun Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Jia-Min Zhang
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, P. R. China
| |
Collapse
|
15
|
Soltani Firouz M, Sardari H, Alikhani Chamgordani P, Behjati M. Power ultrasound in the meat industry (freezing, cooking and fermentation): Mechanisms, advances and challenges. ULTRASONICS SONOCHEMISTRY 2022; 86:106027. [PMID: 35569440 PMCID: PMC9112027 DOI: 10.1016/j.ultsonch.2022.106027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 06/01/2023]
Abstract
High intensity ultrasound (HIUS) has a wide range of applications in different sectors of food processing. It is a promising and emerging technology demonstrating the potential to promote food processes without or at least damage to the quality of products. Among the processes of the meat industry, freezing, thawing, cooking and fermentation are very sensitive and important, because they have significant effects on product quality and are also very energy and time consuming. This review paper provides an interpretation of high intensity ultrasound (HIUS) applications, a summary of recent outstanding published research and an overview of the freezing/thawing, cooking/frying and fermentation processes in meat and its products assisted by HIUS. The effects, benefits and drawbacks as well as the challenges ahead in the commercialization of this technology in the meat industry are studied. The research results confirmed that the use of HIUS in the meat freezing/thawing, cooking/frying and fermentation in combination with the corresponding processing methods demonstrates a great potential to promote the process, improve the general quality of the final product and reduce the time and energy required. However, many issues remain that require further research to address these challenges. These challenges and subsequent research that is useful for developing and increasing the efficiency of this technology have been reviewed. After the literature review, it is concluded that HIUS may be a useful technology for meat processing because of its significant effects on the quality factors and related process variables that leads to the preservation of the initial nutritional and sensory properties of meat and its products. Of course, research must be continued to eliminate the disadvantages or minimize the undesirable effects of this technology on the final product and to remove barriers to commercialization and optimization of this method.
Collapse
Affiliation(s)
- Mahmoud Soltani Firouz
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.
| | - Hamed Sardari
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Peyman Alikhani Chamgordani
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Maryam Behjati
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| |
Collapse
|
16
|
Effects of Ageing on Donkey Meat Chemical Composition, Fatty Acid Profile and Volatile Compounds. Foods 2022; 11:foods11060821. [PMID: 35327244 PMCID: PMC8949164 DOI: 10.3390/foods11060821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Donkey meat samples obtained from muscle Longissimus Thoracis Lumborum (LTL) taken from 14 entire donkey males slaughtered at 20 months and aged for 1, 8 and 15 days were analysed with the aim of determining the chemical composition, physical attributes, fatty acid profile and volatile compounds. Ageing did not significantly affect the chemical composition and colour parameters, while cooking loss was significantly (p < 0.05) higher at 8 and 15 days of ageing. Thiobarbituric acid reactive substances (TBARS) content significantly (p < 0.01) increased during ageing, while shear force values significantly (p < 0.01) decreased. Ageing significantly (p < 0.05) increased polyunsaturated fatty acids (PUFAs) determined both at 8 and 15 days after slaughter. Volatile compounds were analysed using solid-phase microextraction (SPME) and gas chromatography−mass spectrometry (GC−MS). Among 109 volatile compounds determined in donkey meat, hydrocarbons were the most common molecules detected. Ageing affected 21 of the detected volatile compounds; both total aldehydes and total ketones contents were significantly (p < 0.05) higher 15 days after slaughter. Total furans and total alcohols were significantly (p < 0.01) higher 15 days after slaughter, as well. Significant modifications of donkey meat volatile compounds can be attributed to ageing periods longer than 7 days.
Collapse
|
17
|
Beldarrain LR, Sentandreu E, Aldai N, Sentandreu MÁ. Horse meat tenderization in relation to post-mortem evolution of the myofibrillar sub-proteome. Meat Sci 2022; 188:108804. [DOI: 10.1016/j.meatsci.2022.108804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
|
18
|
Starch Molecular Structural Features and Volatile Compounds Affecting the Sensory Properties of Polished Australian Wild Rice. Foods 2022; 11:foods11040511. [PMID: 35205988 PMCID: PMC8871513 DOI: 10.3390/foods11040511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cooked high-amylose rices, such as Australian wild rice (AWR) varieties, have slower digestion rates, which is nutritionally advantageous, but may have inferior eating qualities. Here, a comparison is made between sensory and starch molecular fine structure properties, and volatile compounds, of polished AWR varieties and some commercial rices (CRs). Starch structural parameters for amylopectin (Ap) and amylose (Am) were obtained using fluorophore-assisted capillary electrophoresis and size-exclusion chromatography. Volatile compounds were putatively using headspace solid-phase microextraction with gas chromatography-mass spectrometry. Sensory properties were evaluated by a trained panel. AWR had a disintegration texture similar to that of Doongara rice, while AWR had a resinous, plastic aroma different from those of commercial rice varieties. Disintegration texture was affected by the amounts of Ap short chains, resinous aroma by 2-heptenal, nonadecane, 2h-pyran, tetrahydro-2-(12-pentadecynyloxy)-, and estra-1,3,5(10)-trien-17β-ol, and plastic aroma by 2-myristynoyl pantetheine, cis-7-hexadecenoic acid, and estra-1,3,5(10)-trien-17β-ol. These findings suggest that sensory properties and starch structures of AWR varieties support their potential for commercialization.
Collapse
|
19
|
Effects of Anthocyanin Supplementation and Ageing Time on the Volatile Organic Compounds and Sensory Attributes of Meat from Goat Kids. Animals (Basel) 2022; 12:ani12020139. [PMID: 35049761 PMCID: PMC8772539 DOI: 10.3390/ani12020139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to assess the effects of dietary anthocyanin addition on volatile compounds of meat from goat kids during ageing. For this work, 60 male and female kids were divided into two groups: red orange and lemon extract (RLE group; n = 30), which received an RLE extract (90 mg/kg of live weight); and control (CON group; n = 30). The phytoextract in dry powder form was rich in bioflavonoids such as flavanones (about 16%) and anthocyanins (about 3%). After slaughtering, the longissimus thoracis et lumborum muscle was aged at 4 °C. The volatile organic compound (VOC) and sensorial analyses were carried out at 1, 3 and 7 days. A total of 10 chemical families were identified during the ageing process. Aldehydes were the most abundant VOC, followed by ketones and alcohols. Their contents increased during the process, showing after 7 days of ageing mean values of 20,498, 2193 and 1879 ng/g of meat, respectively. Regarding dietary effects, carboxylic acids, hydrocarbons and thiols presented significant differences between treatments, with higher carboxylic acid contents observed in RLE samples (437 vs. 467 ng/g of meat for CON and RLE batches, respectively; p < 0.05). On the contrary, hydrocarbons (436 vs. 254 ng/g of meat for CON and RLE batches, respectively) and thiols (160 vs. 103 ng/g of meat for CON and RLE batches, respectively) displayed significantly (p < 0.01) higher amounts in CON compared to the RLE group. Regarding ageing time, the tenderness, juiciness, odour and overall assessment parameters showed significantly higher scores at the end of the whole process (p < 0.05). On the other hand, only odour displayed significant differences between treatments, reaching higher scores in CON samples (p < 0.05). Therefore, ageing time improved the sensorial properties (tenderness, juiciness, odour and overall assessment) and the VOC content, whereas the inclusion of anthocyanins in the kids' diet did not have a great impact on the properties of aged meat.
Collapse
|