1
|
Liu M, Pang B, Chen S, Zeng Y, Zhang Q, Quan H, Chang Y, Yang Z. Deep learning-based multiple-CT optimization: An adaptive treatment planning approach to account for anatomical changes in intensity-modulated proton therapy for head and neck cancers. Radiother Oncol 2025; 202:110650. [PMID: 39581351 DOI: 10.1016/j.radonc.2024.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUNDS Intensity-modulated proton therapy (IMPT) is particularly susceptible to range and setup uncertainties, as well as anatomical changes. PURPOSE We present a framework for IMPT planning that employs a deep learning method for dose prediction based on multiple-CT (MCT). The extra CTs are created from cone-beam CT (CBCT) using deformable registration with the primary planning CT (PCT). Our method also includes a dose mimicking algorithm. METHODS The MCT IMPT planning pipeline involves prediction of robust dose from input images using a deep learning model with a U-net architecture. Deliverable plans may then be created by solving a dose mimicking problem with the predictions as reference dose. Model training, dose prediction and plan generation are performed using a dataset of 55 patients with head and neck cancer in this retrospective study. Among them, 38 patients were used as training set, 7 patients were used as validation set, and 10 patients were reserved as test set for final evaluation. RESULTS We demonstrated that the deliverable plans generated through subsequent MCT dose mimicking exhibited greater robustness than the robust plans produced by the PCT, as well as enhanced dose sparing for organs at risk. MCT plans had lower D2% (76.1 Gy vs. 82.4 Gy), better homogeneity index (7.7% vs. 16.4%) of CTV1 and better conformity index (70.5% vs. 61.5%) of CTV2 than the robust plans produced by the primary planning CT for all test patients. CONCLUSIONS We demonstrated the feasibility and advantages of incorporating daily CBCT images into MCT optimization. This approach improves plan robustness against anatomical changes and may reduce the need for plan adaptations in head and neck cancer treatments.
Collapse
Affiliation(s)
- Muyu Liu
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Bo Pang
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shuoyan Chen
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yiling Zeng
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Qi Zhang
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hong Quan
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Yu Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhiyong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Sami M, Yousuf M, Hashmi Q, Ahmad M, Ghilman M, Shareef H. Proton Radiation Therapy for Head and Neck Cancers. Cureus 2024; 16:e70752. [PMID: 39493189 PMCID: PMC11531088 DOI: 10.7759/cureus.70752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Head and neck (HnN) cancers are among the most common cancers in the world. Proton therapy (PT) is one of the latest advancements in the treatment modalities of cancers. Proton therapy is specifically used to treat HnN cancer patients due to its less toxic effects on the surrounding critical structures. Keeping in view the opportunities for further advancements, there is a lot of literature covering PT in HnN cancer patients. However, few compiled studies are not enough to compare the toxicities, overall survival (OS), local control (LC), and quality of life (QoL) of PT with that of intensity-modulated radiation therapy (IMRT). The objective of this review is to compile and summarize the literature available on the toxicities, OS, LC, and QoL in HnN cancer patients post PT. We have gathered and summarized the literature found under the keyword "proton therapy for head and neck cancers". Proton therapy is a preferable option over IMRT because it isolates tumors of the HnN, reduces exposure of healthy cells to radiation, and allows accurate tumor scanning using the pencil beam technique. In view of this article, we can say that PT is a preferable mode of radiotherapy for HnN cancer patients in view of its accuracy and lower incidents of acute and late toxicities.
Collapse
Affiliation(s)
| | | | - Qasim Hashmi
- Otolaryngology, Ruth K. M. Pfau, Civil Hospital Karachi, Karachi, PAK
| | | | - Mohammad Ghilman
- Medicine, Dow University of Health Sciences, Civil Hospital Karachi, Karachi, PAK
| | - Huzaifa Shareef
- Medicine, Dow University of Health Sciences, Civil Hospital Karachi, Karachi, PAK
| |
Collapse
|
3
|
Camarda AM, Vincini MG, Russo S, Comi S, Emiro F, Bazani A, Ingargiola R, Vischioni B, Vecchi C, Volpe S, Orecchia R, Jereczek-Fossa BA, Orlandi E, Alterio D. Dosimetric and NTCP analyses for selecting parotid gland cancer patients for proton therapy. TUMORI JOURNAL 2024; 110:273-283. [PMID: 38769916 PMCID: PMC11295422 DOI: 10.1177/03008916241252544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE/OBJECTIVE To perform a dosimetric and a normal tissue complication probability (NTCP) comparison between intensity modulated proton therapy and photon volumetric modulated arc therapy in a cohort of patients with parotid gland cancers in a post-operative or radical setting. MATERIALS AND METHODS From May 2011 to September 2021, 37 parotid gland cancers patients treated at two institutions were eligible. Inclusion criteria were as follows: patients aged ⩾ 18 years, diagnosis of parotid gland cancers candidate for postoperative radiotherapy or definitive radiotherapy, presence of written informed consent for the use of anonymous data for research purposes. Organs at risk (OARs) were retrospectively contoured. Target coverage goal was defined as D95 > 98%. Six NTCP models were selected. NTCP profiles were calculated for each patient using an internally-developed Python script in RayStation TPS. Average differences in NTCP between photon and proton plans were tested for significance with a two-sided Wilcoxon signed-rank test. RESULTS Seventy-four plans were generated. A lower Dmean to the majority of organs at risk (inner ear, cochlea, oral cavity, pharyngeal constrictor muscles, contralateral parotid and submandibular gland) was obtained with intensity modulated proton therapy vs volumetric modulated arc therapy with statistical significance (p < .05). Ten (27%) patients had a difference in NTCP (photon vs proton plans) greater than 10% for hearing loss and tinnitus: among them, seven qualified for both endpoints, two patients for hearing loss only, and one for tinnitus. CONCLUSIONS In the current study, nearly one-third of patients resulted eligible for proton therapy and they were the most likely to benefit in terms of prevention of hearing loss and tinnitus.
Collapse
Affiliation(s)
- Anna Maria Camarda
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy, Pavia, Italy
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Russo
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Stefania Comi
- Unit of Medical Physics, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Emiro
- Unit of Medical Physics, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessia Bazani
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy, Pavia, Italy
| | | | - Stefania Volpe
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences,University of Pavia, Italy
| | - Daniela Alterio
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
4
|
Johnson CL, Hasan S, Huang S, Lin H, Gorovets D, Shim A, Apgar T, Yu F, Tsai P. Advancing knowledge-based intensity modulated proton planning for adaptive treatment of high-risk prostate cancer. Med Dosim 2023; 49:19-24. [PMID: 37914563 DOI: 10.1016/j.meddos.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
To assess the performance of a knowledge-based planning (KBP) model for generating intensity-modulated proton therapy (IMPT) treatment plans as part of an adaptive radiotherapy (ART) strategy for patients with high-risk prostate cancer. A knowledge-based planning (KBP) model for proton adaptive treatment plan generation was developed based on thirty patient treatment plans utilizing RapidPlanTM PT (Varian Medical Systems, Palo Alto, CA). The model was subsequently validated using an additional eleven patient cases. All patients in the study were administered a prescribed dose of 70.2 Gy to the prostate and seminal vesicle (CTV70.2), along with 46.8 Gy to the pelvic lymph nodes (CTV46.8) through simultaneous integrated boost (SIB) technique. To assess the quality of the validation knowledge-based proton plans (KBPPs), target coverage and organ-at-risk (OAR) dose-volume constraints were compared against those of clinically used expert plans using paired t-tests. The KBP model training statistics (R2) (mean ± SD, 0.763 ± 0.167, range, 0.406 to 0.907) and χ² values (1.162 ± 0.0867, 1.039-1.253) indicate acceptable model training quality. Moreover, the average total treatment planning optimization and calculation time for adaptive plan generation is approximately 10 minutes. The CTV70.2 D98% for the KBPPs (mean ± SD, 69.1 ± 0.08 Gy) and expert plans (69.9 ± 0.04 Gy) shows a significant difference (p < 0.05) but are both within 1.1 Gy of the prescribed dose which is clinically acceptable. While the maximum dose for some organs-at-risk (OARs) such as the bladder and rectum is generally higher in the KBPPs, the doses still fall within clinical constraints. Among all the OARs, most of them received comparable results to the expert plan, except the cauda equina Dmax, which shows statistical significance and was lower in the KBPPs than in expert plans (48.5 ± 0.06 Gy vs 49.3 ± 0.05 Gy). The generated KBPPs were clinically comparable to manually crafted plans by expert treatment planners. The adaptive plan generation process was completed within an acceptable timeframe, offering a quick same-day adaptive treatment option. Our study supports the integration of KBP as a crucial component of an ART strategy, including maintaining plan consistency, improving quality, and enhancing efficiency. This advancement in speed and adaptability promises more precise treatment in proton ART.
Collapse
Affiliation(s)
| | | | - Sheng Huang
- New York Proton Center, New York, NY 10035, USA
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA; Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Daniel Gorovets
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andy Shim
- New York Proton Center, New York, NY 10035, USA
| | | | - Francis Yu
- New York Proton Center, New York, NY 10035, USA
| | | |
Collapse
|
5
|
Gordon K, Smyk D, Gulidov I, Golubev K, Fatkhudinov T. An Overview of Head and Neck Tumor Reirradiation: What Has Been Achieved So Far? Cancers (Basel) 2023; 15:4409. [PMID: 37686685 PMCID: PMC10486419 DOI: 10.3390/cancers15174409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The recurrence rate of head and neck cancers (HNCs) after initial treatment may reach 70%, and poor prognosis is reported in most cases. Curative options for recurrent HNCs mainly depend on the treatment history and the recurrent tumor localization. Reirradiation for HNCs is effective and has been included in most guidelines. However, the option remains clinically challenging due to high incidence of severe toxicity, especially in cases of quick infield recurrence. Recent technical advances in radiation therapy (RT) provide the means for upgrade in reirradiation protocols. While the majority of hospitals stay focused on conventional and widely accessible modulated RTs, the particle therapy options emerge as tolerable and providing further treatment opportunities for recurrent HNCs. Still, the progress is impeded by high heterogeneity of the data and the lack of large-scale prospective studies. This review aimed to summarize the outcomes of reirradiation for HNCs in the clinical perspective.
Collapse
Affiliation(s)
- Konstantin Gordon
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia; (D.S.); (I.G.); (K.G.)
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 8, 117198 Moscow, Russia;
| | - Daniil Smyk
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia; (D.S.); (I.G.); (K.G.)
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 8, 117198 Moscow, Russia;
| | - Igor Gulidov
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia; (D.S.); (I.G.); (K.G.)
| | - Kirill Golubev
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia; (D.S.); (I.G.); (K.G.)
| | - Timur Fatkhudinov
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 8, 117198 Moscow, Russia;
| |
Collapse
|
6
|
Yahya N, Manan HA. Quality of Life and Patient-Reported Outcomes Following Proton Therapy for Oropharyngeal Carcinoma: A Systematic Review. Cancers (Basel) 2023; 15:cancers15082252. [PMID: 37190180 DOI: 10.3390/cancers15082252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Complex anatomy surrounding the oropharynx makes proton therapy (PT), especially intensity-modulated PT (IMPT), a potentially attractive option due to its ability to reduce the volume of irradiated healthy tissues. Dosimetric improvement may not translate to clinically relevant benefits. As outcome data are emerging, we aimed to evaluate the evidence of the quality of life (QOL) and patient-reported outcomes (PROs) following PT for oropharyngeal carcinoma (OC). MATERIALS AND METHODS We searched PubMed and Scopus electronic databases (date: 15 February 2023) to identify original studies on QOL and PROs following PT for OC. We employed a fluid strategy in the search strategy by tracking citations of the initially selected studies. Reports were extracted for information on demographics, main results, and clinical and dose factor correlates. Quality assessment was performed using the NIH's Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. The PRISMA guidelines were followed in the preparation of this report. RESULTS Seven reports were selected, including one from a recently published paper captured from citation tracking. Five compared PT and photon-based therapy, although none were randomized controlled trials. Most endpoints with significant differences favored PT, including xerostomia, cough, need for nutritional supplements, dysgeusia, food taste, appetite, and general symptoms. However, some endpoints favored photon-based therapy (sexual symptoms) or showed no significant difference (e.g., fatigue, pain, sleep, mouth sores). The PROs and QOL improve following PT but do not appear to return to baseline. CONCLUSION Evidence suggests that PT causes less QOL and PRO deterioration than photon-based therapy. Biases due to the non-randomized study design remain obstacles to a firm conclusion. Whether or not PT is cost-effective should be the subject of further investigation.
Collapse
Affiliation(s)
- Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Chen Z, Dominello MM, Joiner MC, Burmeister JW. Proton versus photon radiation therapy: A clinical review. Front Oncol 2023; 13:1133909. [PMID: 37064131 PMCID: PMC10091462 DOI: 10.3389/fonc.2023.1133909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
While proton radiation therapy offers substantially better dose distribution characteristics than photon radiation therapy in certain clinical applications, data demonstrating a quantifiable clinical advantage is still needed for many treatment sites. Unfortunately, the number of patients treated with proton radiation therapy is still comparatively small, in some part due to the lack of evidence of clear benefits over lower-cost photon-based treatments. This review is designed to present the comparative clinical outcomes between proton and photon therapies, and to provide an overview of the current state of knowledge regarding the effectiveness of proton radiation therapy.
Collapse
Affiliation(s)
- Zhe Chen
- School of Medicine, Wayne State University, Detroit, MI, United States
- *Correspondence: Zhe Chen,
| | - Michael M. Dominello
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Michael C. Joiner
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jay W. Burmeister
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
8
|
Padannayil NM, Sharma DS, Nangia S, Patro KC, Gaikwad U, Burela N. IMPT of head and neck cancer: unsupervised machine learning treatment planning strategy for reducing radiation dermatitis. Radiat Oncol 2023; 18:11. [PMID: 36639667 PMCID: PMC9840252 DOI: 10.1186/s13014-023-02201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Radiation dermatitis is a major concern in intensity modulated proton therapy (IMPT) for head and neck cancer (HNC) despite its demonstrated superiority over contemporary photon radiotherapy. In this study, dose surface histogram data extracted from forty-four patients of HNC treated with IMPT was used to predict the normal tissue complication probability (NTCP) of skin. Grades of NTCP-skin were clustered using the K-means clustering unsupervised machine learning (ML) algorithm. A new skin-sparing IMPT (IMPT-SS) planning strategy was developed with three major changes and prospectively implemented in twenty HNC patients. Across skin surfaces exposed from 10 (S10) to 70 (S70) GyRBE, the skin's NTCP demonstrated the strongest associations with S50 and S40 GyRBE (0.95 and 0.94). The increase in the NTCP of skin per unit GyRBE is 0.568 for skin exposed to 50 GyRBE as compared to 0.418 for 40 GyRBE. Three distinct clusters were formed, with 41% of patients in G1, 32% in G2, and 27% in G3. The average (± SD) generalised equivalent uniform dose for G1, G2, and G3 clusters was 26.54 ± 6.75, 38.73 ± 1.80, and 45.67 ± 2.20 GyRBE. The corresponding NTCP (%) were 4.97 ± 5.12, 48.12 ± 12.72 and 87.28 ± 7.73 respectively. In comparison to IMPT, new IMPT-SS plans significantly (P < 0.01) reduced SX GyRBE, gEUD, and associated NTCP-skin while maintaining identical dose volume indices for target and other organs at risk. The mean NTCP-skin value for IMPT-SS was 34% lower than that of IMPT. The dose to skin in patients treated prospectively for HNC was reduced by including gEUD for an acceptable radiation dermatitis determined from the local patient population using an unsupervised MLA in the spot map optimization of a new IMPT planning technique. However, the clinical finding of acute skin toxicity must also be related to the observed reduction in skin dose.
Collapse
Affiliation(s)
- Noufal Manthala Padannayil
- grid.506152.5Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu 400053 India
| | - Dayananda Shamurailatpam Sharma
- grid.506152.5Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu 400053 India
| | - Sapna Nangia
- grid.506152.5Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu India
| | - Kartikeshwar C. Patro
- grid.506152.5Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu 400053 India
| | - Utpal Gaikwad
- grid.506152.5Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu India
| | - Nagarjuna Burela
- grid.506152.5Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu India
| |
Collapse
|
9
|
Katerji M, Bertucci A, Filippov V, Vazquez M, Chen X, Duerksen-Hughes PJ. Proton-induced DNA damage promotes integration of foreign plasmid DNA into human genome. Front Oncol 2022; 12:928545. [PMID: 36119491 PMCID: PMC9478911 DOI: 10.3389/fonc.2022.928545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
High-risk human papillomaviruses (HPVs) cause virtually all cervical cancer cases and are also associated with other types of anogenital and oropharyngeal cancers. Normally, HPV exists as a circular episomal DNA in the infected cell. However, in some instances, it integrates into the human genome in such a way as to enable increased expression of viral oncogenes, thereby leading to carcinogenesis. Since viral integration requires breaks in both viral and human genomes, DNA damage likely plays a key role in this critical process. One potentially significant source of DNA damage is exposure to elevated doses of ionizing radiation. Natural background radiation is ubiquitous; however, some populations, including radiological workers, radiotherapy patients, and astronauts, are exposed to significantly higher radiation doses, as well as to different types of radiation such as particle radiation. We hypothesize that ionizing radiation-induced DNA damage facilitates the integration of HPV into the human genome, increasing the risk of developing HPV-related cancers in the exposed population. To test this, we first determined the kinetics of DNA damage in keratinocytes exposed to ionizing radiation (protons) by assessing γ-H2AX foci formation using immunofluorescence (direct damage), and also measured ROS and 8-oxoG levels via DCFDA and Avidin-FITC (indirect damage).As anticipated, direct DNA damage was observed promptly, within 30 min, whereas indirect DNA damage was delayed due to the time required for ROS to accumulate and cause oxidative damage. Although radiation was lethal at high doses, we were able to establish an experimental system where radiation exposure (protons and X-rays) induced DNA damage dose-dependently without causing major cytotoxic effects as assessed by several cytotoxicity assays. Most importantly, we explored the impact of radiation exposure on integration frequency using a clonogenic assay and demonstrated that as predicted, proton-induced DNA damage promotes the integration of HPV-like foreign DNA in oral keratinocytes. Overall, the insights gained from this work enable us to better understand the contribution of radiation exposure and DNA damage to HPV-mediated carcinogenesis and direct us toward strategies aimed at preventing malignancies in HPV-infected individuals.
Collapse
Affiliation(s)
- Meghri Katerji
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Antonella Bertucci
- Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Valery Filippov
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Marcelo Vazquez
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Xin Chen
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Penelope J. Duerksen-Hughes
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
- *Correspondence: Penelope J. Duerksen-Hughes,
| |
Collapse
|
10
|
Woods KE, Ma TM, Cook KA, Morris ED, Gao Y, Sheng K, Kishan AU, Hegde JV, Felix C, Basehart V, Narahara K, Shen Z, Tenn S, Steinberg ML, Chin RK, Cao M. A Prospective Phase II Study of Automated Non-Coplanar VMAT for Recurrent Head and Neck Cancer: Initial Report of Feasibility, Safety, and Patient-Reported Outcomes. Cancers (Basel) 2022; 14:cancers14040939. [PMID: 35205686 PMCID: PMC8870161 DOI: 10.3390/cancers14040939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The delivery of higher radiation doses has been shown to increase local control, and ultimately survival, for head and neck cancer patients, but highly conformal dose distributions are necessary to minimize normal tissue toxicity. Varian’s HyperArc non-coplanar automated treatment planning and delivery technique has been shown to improve dose conformity for intracranial treatment, but its safety and efficacy for head and neck cancer treatment has yet to be verified. This study evaluates the initial results of a prospective clinical trial using HyperArc for recurrent head and neck cancer patients. We demonstrated that HyperArc can enable significant tumor dose escalation compared to conventional volumetric modulated arc therapy (VMAT) planning while minimizing the dose to organs at risk. Treatment delivery was feasible and safe, with minimal treatment-related toxicities and positive patient-reported quality of life measures. Abstract This study reports the initial results for the first 15 patients on a prospective phase II clinical trial exploring the safety, feasibility, and efficacy of the HyperArc technique for recurrent head and neck cancer treatment. Eligible patients were simulated and planned with both conventional VMAT and HyperArc techniques and the plan with superior dosimetry was selected for treatment. Dosimetry, delivery feasibility and safety, treatment-related toxicity, and patient-reported quality of life (QOL) were all evaluated. HyperArc was chosen over conventional VMAT for all 15 patients and enabled statistically significant increases in dose conformity (R50% reduced by 1.2 ± 2.1, p < 0.05) and mean PTV and GTV doses (by 15.7 ± 4.9 Gy, p < 0.01 and 17.1 ± 6.0 Gy, p < 0.01, respectively). The average HyperArc delivery was 2.8 min longer than conventional VMAT (p < 0.01), and the mean intrafraction motion was ≤ 0.5 ± 0.4 mm and ≤0.3 ± 0.1°. With a median follow-up of 12 months, treatment-related toxicity was minimal (only one grade 3 acute toxicity above baseline) and patient-reported QOL metrics were favorable. HyperArc enabled superior dosimetry and significant target dose escalation compared to conventional VMAT planning, and treatment delivery was feasible, safe, and well-tolerated by patients.
Collapse
Affiliation(s)
- Kaley E. Woods
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
- Department of Radiation Oncology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ting Martin Ma
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - Kiri A. Cook
- Department of Radiation Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Eric D. Morris
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - Yu Gao
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - John V. Hegde
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - Carol Felix
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - Vincent Basehart
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - Kelsey Narahara
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - Zhouhuizi Shen
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - Stephen Tenn
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - Michael L. Steinberg
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
| | - Robert K. Chin
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
- Correspondence: (R.K.C.); (M.C.)
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; (K.E.W.); (T.M.M.); (E.D.M.); (Y.G.); (K.S.); (A.U.K.); (J.V.H.); (C.F.); (V.B.); (K.N.); (Z.S.); (S.T.); (M.L.S.)
- Correspondence: (R.K.C.); (M.C.)
| |
Collapse
|
11
|
García-Sevilla M, Moreta-Martinez R, García-Mato D, Arenas de Frutos G, Ochandiano S, Navarro-Cuéllar C, Sanjuán de Moreta G, Pascau J. Surgical Navigation, Augmented Reality, and 3D Printing for Hard Palate Adenoid Cystic Carcinoma En-Bloc Resection: Case Report and Literature Review. Front Oncol 2022; 11:741191. [PMID: 35059309 PMCID: PMC8763795 DOI: 10.3389/fonc.2021.741191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
Adenoid Cystic Carcinoma is a rare and aggressive tumor representing less than 1% of head and neck cancers. This malignancy often arises from the minor salivary glands, being the palate its most common location. Surgical en-bloc resection with clear margins is the primary treatment. However, this location presents a limited line of sight and a high risk of injuries, making the surgical procedure challenging. In this context, technologies such as intraoperative navigation can become an effective tool, reducing morbidity and improving the safety and accuracy of the procedure. Although their use is extended in fields such as neurosurgery, their application in maxillofacial surgery has not been widely evidenced. One reason is the need to rigidly fixate a navigation reference to the patient, which often entails an invasive setup. In this work, we studied three alternative and less invasive setups using optical tracking, 3D printing and augmented reality. We evaluated their precision in a patient-specific phantom, obtaining errors below 1 mm. The optimum setup was finally applied in a clinical case, where the navigation software was used to guide the tumor resection. Points were collected along the surgical margins after resection and compared with the real ones identified in the postoperative CT. Distances of less than 2 mm were obtained in 90% of the samples. Moreover, the navigation provided confidence to the surgeons, who could then undertake a less invasive and more conservative approach. The postoperative CT scans showed adequate resection margins and confirmed that the patient is free of disease after two years of follow-up.
Collapse
Affiliation(s)
- Mónica García-Sevilla
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rafael Moreta-Martinez
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - David García-Mato
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Gema Arenas de Frutos
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Cirugía Oral y Maxilofacial, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Santiago Ochandiano
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Cirugía Oral y Maxilofacial, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Carlos Navarro-Cuéllar
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Cirugía Oral y Maxilofacial, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Guillermo Sanjuán de Moreta
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Otorrinolaringología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier Pascau
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
12
|
Belotti A, Carpenito L, Bulfamante AM, Maccari A, Bulfamante G. Sinonasal teratocarcinosarcoma treated with surgery and proton beam therapy: clinical, histological aspects and differential diagnosis of a new case. Pathologica 2022; 113:469-474. [PMID: 34974554 PMCID: PMC8720401 DOI: 10.32074/1591-951x-215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2020] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
Sinonasal teratocarcinosarcoma is a rare aggressive malignant tumor with a primary setting involving the nasal cavity followed by the ethmoid sinus and maxillary sinus. It accounts for approximately 3% of all head and neck cancers and less than 1% of all tumors. Nasal obstruction, recurrent epistaxis and headache represent the typical clinical presentation. Imaging shows the presence of a mass in the nasal cavity. The treatment usually consists of surgery and adjuvant intensity modulated radiotherapy. The rarity and the variability of the histological features make its diagnosis particularly difficult. In this paper, we report a case of sinonasal teratocarcinosarcoma in a 62-year-old male treated with a multidisciplinary approach. As an alternative to intensity modulated radiotherapy, we proposed proton beam therapy for the first time. The patient benefited from the new and personalized protocol that provided excellent results and few adverse effects. At 45 months follow-up there is no evidence of relapse and the patient is in good health.
Collapse
Affiliation(s)
- Alessia Belotti
- Human Pathology and Medical Genetic Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Laura Carpenito
- Human Pathology and Medical Genetic Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Antonio Mario Bulfamante
- Otolaryngology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Alberto Maccari
- Otolaryngology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Gaetano Bulfamante
- Human Pathology and Medical Genetic Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Mohamed N, Lee A, Lee NY. Proton beam radiation therapy treatment for head and neck cancer. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nader Mohamed
- Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York NY USA
| | - Anna Lee
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Nancy Y. Lee
- Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York NY USA
| |
Collapse
|
14
|
Gordon KB, Smyk DI, Gulidov IA. Proton Therapy in Head and Neck Cancer Treatment: State of the Problem and Development Prospects (Review). Sovrem Tekhnologii Med 2021; 13:70-80. [PMID: 34603766 PMCID: PMC8482826 DOI: 10.17691/stm2021.13.4.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2021] [Indexed: 11/24/2022] Open
Abstract
Proton therapy (PT) due to dosimetric characteristics (Bragg peak formation, sharp dose slowdown) is currently one of the most high-tech techniques of radiation therapy exceeding the standards of photon methods. In recent decades, PT has traditionally been used, primarily, for head and neck cancers (HNC) including skull base tumors. Regardless of the fact that recently PT application area has significantly expanded, HNC still remain a leading indication for proton radiation since PT’s physic-dosimetric and radiobiological advantages enable to achieve the best treatment results in these tumors. The present review is devoted to PT usage in HNC treatment in the world and Russian medicine, the prospects for further technique development, the assessment of PT’s radiobiological features, a physical and dosimetric comparison of protons photons distribution. The paper shows PT’s capabilities in the treatment of skull base tumors, HNC (nasal cavity, paranasal sinuses, nasopharynx, oropharynx, and laryngopharynx, etc.), eye tumors, sialomas. The authors analyze the studies on repeated radiation and provide recent experimental data on favorable profile of proton radiation compared to the conventional radiation therapy. The review enables to conclude that currently PT is a dynamic radiation technique opening up new opportunities for improving therapy of oncology patients, especially those with HNC.
Collapse
Affiliation(s)
- K B Gordon
- Senior Researcher, Proton Therapy Department; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Kaluga Region, Obninsk, 249036, Russia
| | - D I Smyk
- Junior Researcher, Proton Therapy Department; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Kaluga Region, Obninsk, 249036, Russia
| | - I A Gulidov
- Professor, Head of the Proton Therapy Department; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Kaluga Region, Obninsk, 249036, Russia
| |
Collapse
|
15
|
Loizeau N, Fabiano S, Papp D, Stützer K, Jakobi A, Bandurska-Luque A, Troost EGC, Richter C, Unkelbach J. Optimal Allocation of Proton Therapy Slots in Combined Proton-Photon Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:196-207. [PMID: 33848609 DOI: 10.1016/j.ijrobp.2021.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2020] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Proton therapy is a limited resource that is not available to all patients who may benefit from it. We investigated combined proton-photon treatments, in which some fractions are delivered with protons and the remaining fractions with photons, as an approach to maximize the benefit of limited proton therapy resources at a population level. METHODS AND MATERIALS To quantify differences in normal-tissue complication probability (NTCP) between protons and photons, we considered a cohort of 45 patients with head and neck cancer for whom intensity modulated radiation therapy and intensity modulated proton therapy plans were previously created, in combination with NTCP models for xerostomia and dysphagia considered in the Netherlands for proton patient selection. Assuming limited availability of proton slots, we developed methods to optimally assign proton fractions in combined proton-photon treatments to minimize the average NTCP on a population level. The combined treatments were compared with patient selection strategies in which patients are assigned to single-modality proton or photon treatments. RESULTS There is a benefit of combined proton-photon treatments compared with patient selection, owing to the nonlinearity of NTCP functions; that is, the initial proton fractions are the most beneficial, whereas additional proton fractions have a decreasing benefit when a flatter part of the NTCP curve is reached. This effect was small for the patient cohort and NTCP models considered, but it may be larger if dose-response relationships are better known. In addition, when proton slots are limited, patient selection methods face a trade-off between leaving slots unused and blocking slots for future patients who may have a larger benefit. Combined proton-photon treatments with flexible proton slot assignment provide a method to make optimal use of all available resources. CONCLUSIONS Combined proton-photon treatments allow for better use of limited proton therapy resources. The benefit over patient selection schemes depends on the NTCP models and the dose differences between protons and photons.
Collapse
Affiliation(s)
- Nicolas Loizeau
- Physics Institute, University of Zürich, Zürich, Switzerland; Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland.
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Dávid Papp
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina
| | - Kristin Stützer
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Annika Jakobi
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Bandurska-Luque
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Christian Richter
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Press RH, Bakst RL, Sharma S, Kabarriti R, Garg MK, Yeh B, Gelbum DY, Hasan S, Choi JI, Barker CA, Chhabra AM, Simone CB, Lee NY. Clinical Review of Proton Therapy in the Treatment of Unilateral Head and Neck Cancers. Int J Part Ther 2021; 8:248-260. [PMID: 34285951 PMCID: PMC8270109 DOI: 10.14338/ijpt-d-20-00055.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2020] [Accepted: 10/21/2020] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy is a common treatment modality in the management of head and neck malignancies. In select clinical scenarios of well-lateralized tumors, radiotherapy can be delivered to the primary tumor or tumor bed and the ipsilateral nodal regions, while intentional irradiation of the contralateral neck is omitted. Proton beam therapy is an advanced radiotherapy modality that allows for the elimination of exit-dose through nontarget tissues such as the oral cavity. This dosimetric advantage is apt for unilateral treatments. By eliminating excess dose to midline and contralateral organs at risk and conforming dose around complex anatomy, proton beam therapy can reduce the risk of iatrogenic toxicities. Currently, there is no level I evidence comparing proton beam therapy to conventional photon radiation modalities for unilateral head and neck cancers. However, a growing body of retrospective and prospective evidence is now available describing the dosimetric and clinical advantages of proton beam therapy. Subsequently, the intent of this clinical review is to summarize the current evidence supporting the use of proton beam therapy in unilateral irradiation of head and neck cancers, including evaluation of disease site-specific evidence, unique challenging clinical scenarios, and ongoing clinical trials.
Collapse
Affiliation(s)
- Robert H Press
- Department of Radiation Oncology, New York Proton Center, New York, New York, USA
| | - Richard L Bakst
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sonam Sharma
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA
| | - Madhur K Garg
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brian Yeh
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daphna Y Gelbum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shaakir Hasan
- Department of Radiation Oncology, New York Proton Center, New York, New York, USA
| | - J Isabelle Choi
- Department of Radiation Oncology, New York Proton Center, New York, New York, USA
| | - Chris A Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arpit M Chhabra
- Department of Radiation Oncology, New York Proton Center, New York, New York, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York, USA
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
17
|
Spiotto MT, McGovern SL, Gunn GB, Grosshans D, McAleer MF, Frank SJ, Paulino AC. Proton Radiotherapy to Reduce Late Complications in Childhood Head and Neck Cancers. Int J Part Ther 2021; 8:155-167. [PMID: 34285943 PMCID: PMC8270100 DOI: 10.14338/ijpt-20-00069.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
In most childhood head and neck cancers, radiotherapy is an essential component of treatment; however, it can be associated with problematic long-term complications. Proton beam therapy is accepted as a preferred radiation modality in pediatric cancers to minimize the late radiation side effects. Given that childhood cancers are a rare and heterogeneous disease, the support for proton therapy comes from risk modeling and a limited number of cohort series. Here, we discuss the role of proton radiotherapy in pediatric head and neck cancers with a focus on reducing radiation toxicities. First, we compare the efficacy and expected toxicities in proton and photon radiotherapy for childhood cancers. Second, we review the benefit of proton radiotherapy in reducing acute and late radiation toxicities, including risks for secondary cancers, craniofacial development, vision, and cognition. Finally, we review the cost effectiveness for proton radiotherapy in pediatric head and neck cancers. This review highlights the benefits of particle radiotherapy for pediatric head and neck cancers to improve the quality of life in cancer survivors, to reduce radiation morbidities, and to maximize efficient health care use.
Collapse
Affiliation(s)
- Michael T Spiotto
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G Brandon Gunn
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven J Frank
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arnold C Paulino
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Bridhikitti J, Viehman JK, Harmsen WS, Amundson AC, Shiraishi S, Mundy DW, Rwigema JCM, McGee LA, Patel SH, Routman DM, Lester SC, Neben-Wittich MA, Garces YI, Ma DJ, Foote RL. Oncologic Outcomes for Head and Neck Skin Malignancies Treated with Protons. Int J Part Ther 2021; 8:294-303. [PMID: 34285955 PMCID: PMC8270091 DOI: 10.14338/ijpt-20-00045.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2020] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Radiation therapy (RT) is the standard treatment for patients with inoperable skin malignancies of the head and neck region (H&N), and as adjuvant treatment post surgery in patients at high risk for local or regional recurrence. This study reports clinical outcomes of intensity-modulated proton therapy (IMPT) for these malignancies. Materials and Methods We retrospectively reviewed cases involving 47 patients with H&N malignancies of the skin (squamous cell, basal cell, melanoma, Merkel cell, angiosarcoma, other) who underwent IMPT for curative intent between July 2016 and July 2019. Overall survival was estimated via Kaplan-Meier analysis, and oncologic outcomes were reported as cumulative incidence with death as a competing risk. Results The 2-year estimated local recurrence rate, regional recurrence rate, local regional recurrence rate, distant metastasis rate, and overall survival were 11.1% (95% confidence interval [CI], 4.1%-30.3%), 4.4% (95% CI, 1.1%-17.4%), 15.5% (95% CI, 7%-34.3%), 23.4% (95% CI, 5.8%-95.5%), and 87.2% (95% CI, 75.7%-100%), respectively. No patient was reported to have a grade 3 or higher adverse event during the last week of treatment or at the 3-month follow-up visit. Conclusion IMPT is safe and effective in the treatment of skin malignancies of the H&N.
Collapse
Affiliation(s)
| | - Jason K Viehman
- Division of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN, USA
| | - W Scott Harmsen
- Department of Biostatistics and Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Adam C Amundson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Satomi Shiraishi
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Daniel W Mundy
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Lisa A McGee
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - David M Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Scott C Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Yolanda I Garces
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Sherry AD, Pasalic D, Gunn GB, Fuller CD, Phan J, Rosenthal DI, Morrison WH, Sturgis EM, Gross ND, Gillison ML, Ferrarotto R, El-Naggar AK, Garden AS, Frank SJ. Proton Beam Therapy for Head and Neck Carcinoma of Unknown Primary: Toxicity and Quality of Life. Int J Part Ther 2021; 8:234-247. [PMID: 34285950 PMCID: PMC8270080 DOI: 10.14338/ijpt-20-00034.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose Proton radiation therapy (PRT) may offer dosimetric and clinical benefit in the treatment of head and neck carcinoma of unknown primary (HNCUP). We sought to describe toxicity and quality of life (QOL) in patients with HNCUP treated with PRT. Patients and Methods Toxicity and QOL were prospectively tracked in patients with HNCUP from 2011 to 2019 after institutional review board approval. Patients received PRT to the mucosa of the nasopharynx, oropharynx, and bilateral cervical lymph nodes with sparing of the larynx and hypopharynx. Patient-reported outcomes were tracked with the MD Anderson Symptom Inventory–Head and Neck Module, the Functional Assessment of Cancer Therapy–Head and Neck, the MD Anderson Dysphagia Inventory, and the Xerostomia-Related QOL Scale. Primary study endpoints were the incidence of grade ≥ 3 (G3) toxicity and QOL patterns. Results Fourteen patients (median follow-up, 2 years) were evaluated. Most patients presented with human papillomavirus–positive disease (n = 12, 86%). Rates of G3 oral mucositis, xerostomia, and dermatitis were 7% (n = 1), 21% (n = 3), and 36% (n = 5), respectively. None required a gastrostomy. During PRT, QOL was reduced relative to baseline and recovered shortly after PRT. At 2 years after PRT, the local regional control, disease-free survival, and overall survival were 100% (among 7 patients at risk), 79% (among 6 patients at risk), and 90% (among 7 patients at risk), respectively. Conclusion Therefore, PRT for HNCUP was associated with highly favorable dosimetric and clinical outcomes, including minimal oral mucositis, xerostomia, and dysphagia. Toxicity and QOL may be superior with PRT compared with conventional radiation therapy and PRT maintains equivalent oncologic control. Further prospective studies are needed to evaluate late effects and cost-effectiveness.
Collapse
Affiliation(s)
| | - Dario Pasalic
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David I Rosenthal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William H Morrison
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neil D Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura L Gillison
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam S Garden
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Proton Therapy for HPV-Associated Oropharyngeal Cancers of the Head and Neck: a De-Intensification Strategy. Curr Treat Options Oncol 2021; 22:54. [PMID: 34086150 PMCID: PMC8178129 DOI: 10.1007/s11864-021-00847-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/16/2021] [Indexed: 12/02/2022]
Abstract
The rise in the incidence of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPC), the relatively young age at which it is diagnosed, and its favorable prognosis necessitate the use of treatment techniques that reduce the likelihood of side effects during and after curative treatment. Intensity-modulated proton therapy (IMPT) is a form of radiotherapy that de-intensifies treatment through dose de-escalation to normal tissues without compromising dose to the primary tumor and involved, regional lymph nodes. Preclinical studies have demonstrated that HPV-positive squamous cell carcinoma is more sensitive to proton radiation than is HPV-negative squamous cell carcinoma. Retrospective studies comparing intensity-modulated photon (X-ray) radiotherapy to IMPT for OPC suggest comparable rates of disease control and lower rates of pain, xerostomia, dysphagia, dysgeusia, gastrostomy tube dependence, and osteoradionecrosis with IMPT—all of which meaningfully affect the quality of life of patients treated for HPV-associated OPC. Two phase III trials currently underway—the “Randomized Trial of IMPT versus IMRT for the Treatment of Oropharyngeal Cancer of the Head and Neck” and the “TOxicity Reduction using Proton bEam therapy for Oropharyngeal cancer (TORPEdO)” trial—are expected to provide prospective, level I evidence regarding the effectiveness of IMPT for such patients.
Collapse
|
21
|
Valdetaro LB, Høye EM, Skyt PS, Petersen JBB, Balling P, Muren LP. Empirical quenching correction in radiochromic silicone-based three-dimensional dosimetry of spot-scanning proton therapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 18:11-18. [PMID: 34258402 PMCID: PMC8254200 DOI: 10.1016/j.phro.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/09/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 11/24/2022]
Abstract
Background and purpose Three-dimensional dosimetry of proton therapy (PT) with chemical dosimeters is challenged by signal quenching, which is a lower dose-response in regions with high ionization density due to high linear-energy-transfer (LET) and dose-rate. This study aimed to assess the viability of an empirical correction model for 3D radiochromic silicone-based dosimeters irradiated with spot-scanning PT, by parametrizing its LET and dose-rate dependency. Materials and methods Ten cylindrical radiochromic dosimeters (Ø50 and Ø75 mm) were produced in-house, and irradiated with different spot-scanning proton beam configurations and machine-set dose rates ranging from 56 to 145 Gy/min. Beams with incident energies of 75, 95 and 120 MeV, a spread-out Bragg peak and a plan optimized to an irregular target volume were included. Five of the dosimeters, irradiated with 120 MeV beams, were used to estimate the quenching correction factors. Monte Carlo simulations were used to obtain dose and dose-averaged-LET (LETd) maps. Additionally, a local dose-rate map was estimated, using the simulated dose maps and the machine-set dose-rate information retrieved from the irradiation log-files. Finally, the correction factor was estimated as a function of LETd and local dose-rate and tested on the different fields. Results Gamma-pass-rates of the corrected measurements were >94% using a 3%-3 mm gamma analysis and >88% using 2%-2 mm, with a dose deviation of <5.6 ± 1.8%. Larger dosimeters showed a 20% systematic increase in dose-response, but the same quenching in signal when compared to the smaller dosimeters. Conclusion The quenching correction model was valid for different dosimeter sizes to obtain relative dosimetric maps of complex dose distributions in PT.
Collapse
Affiliation(s)
- Lia Barbosa Valdetaro
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Ellen Marie Høye
- Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Peter Sandegaard Skyt
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | | | - Peter Balling
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Ludvig Paul Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.,Medical Physics, Department of Oncology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
22
|
Intensity-modulated proton therapy for oropharyngeal cancer reduces rates of late xerostomia. Radiother Oncol 2021; 160:32-39. [PMID: 33839202 DOI: 10.1016/j.radonc.2021.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE To determine rates of xerostomia after intensity-modulated radiotherapy (IMRT) or intensity-modulated proton therapy (IMPT) for oropharyngeal cancer (OPC) and identify dosimetric factors associated with xerostomia risk. MATERIALS AND METHODS Patients with OPC who received IMRT (n = 429) or IMPT (n = 103) from January 2011 through June 2015 at a single institution were studied retrospectively. Every 3 months after treatment, each patient completed an eight-item self-reported xerostomia-specific questionnaire (XQ; summary XQ score, 0-100). An XQ score of 50 was selected as the demarcation value for moderate-severe (XQs ≥ 50) and no-mild (XQs < 50) xerostomia. The mean doses and percent volumes of organs at risk receiving various doses (V5-V70) were extracted from the initial treatment plans. The dosimetric variables and xerostomia risk were compared using an independent-sample t-test or chi-square test. RESULTS The median follow-up time was 36.2 months. The proportions of patients with moderate-severe xerostomia were similar in the two treatment groups up to 18 months after treatment. However, moderate-severe xerostomia was less common in the IMPT group than in the IMRT group at 18-24 months (6% vs. 20%; p = 0.025) and 24-36 months (6% vs. 20%; p = 0.01). During the late xerostomia period (24-36 months), high dose/volume exposures (V25-V70) in the oral cavity were associated with high proportions of patients with moderate-severe xerostomia (all p < 0.05), but dosimetric variables regarding the salivary glands were not associated with late xerostomia. CONCLUSION IMPT was associated with less late xerostomia than was IMRT in OPC patients. Oral cavity dosimetric variables were related to the occurrence of late xerostomia.
Collapse
|
23
|
Hernandez M, Lee JJ, Yeap BY, Ye R, Foote RL, Busse P, Patel SH, Dagan R, Snider J, Mohammed N, Lin A, Blanchard P, Cantor SB, Teferra MY, Hutcheson K, Yepes P, Mohan R, Liao Z, DeLaney TF, Frank SJ. The Reality of Randomized Controlled Trials for Assessing the Benefit of Proton Therapy: Critically Examining the Intent-to-Treat Principle in the Presence of Insurance Denial. Adv Radiat Oncol 2020; 6:100635. [PMID: 33732960 PMCID: PMC7940795 DOI: 10.1016/j.adro.2020.100635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose This study hypothesized that insurance denial would lead to bias and loss of statistical power when evaluating the results from an intent-to-treat (ITT), per-protocol, and as-treated analyses using a simulated randomized clinical trial comparing proton therapy to intensity modulated radiation therapy where patients incurred increasing rates of insurance denial. Methods and Materials Simulations used a binary endpoint to assess differences between treatment arms after applying ITT, per-protocol, and as-treated analyses. Two scenarios were developed: 1 with clinical success independent of age and another assuming dependence on age. Insurance denial was assumed possible for patients <65 years. All scenarios considered an age distribution with mean ± standard deviation: 55 ± 15 years, rates of insurance denial ranging from 0%-40%, and a sample of N = 300 patients (150 per arm). Clinical success rates were defined as 70% for proton therapy and 50% for intensity modulated radiation therapy. The average treatment effect, bias, and power were compared after applying 5000 simulations. Results Increasing rates of insurance denial demonstrated inherent weaknesses among all 3 analytical approaches. With clinical success independent of age, a per-protocol analysis demonstrated the least bias and loss of power. When clinical success was dependent on age, the per-protocol and ITT analyses resulted in a similar trend with respect to bias and loss of power, with both outperforming the as-treated analysis. Conclusions Insurance denial leads to misclassification bias in the ITT analysis, a missing data problem in the per-protocol analysis, and covariate imbalance between treatment arms in the as-treated analysis. Moreover, insurance denial forces the critical appraisal of patient features (eg, age) affected by the denial and potentially influencing clinical success. In the presence of insurance denial, our study suggests cautious reporting of ITT and as-treated analyses, and placing primary emphasis on the results of the per-protocol analysis.
Collapse
Affiliation(s)
- Mike Hernandez
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Rong Ye
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Paul Busse
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Roi Dagan
- Department of Radiation Oncology, University of Florida Health, Gainesville, Florida
| | - James Snider
- Department of Radiation Oncology, University of Maryland Medical System, Baltimore, Maryland
| | - Nasiruddin Mohammed
- Department of Radiation Oncology, Northwestern Medicine, Warrenville, Illinois
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Pierre Blanchard
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott B Cantor
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Menna Y Teferra
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kate Hutcheson
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pablo Yepes
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Physics and Astronomy, Rice University, Houston, Texas
| | - Radhe Mohan
- Department of Physics and Astronomy, Rice University, Houston, Texas
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Thomas F DeLaney
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Li X, Lee A, Cohen MA, Sherman EJ, Lee NY. Past, present and future of proton therapy for head and neck cancer. Oral Oncol 2020; 110:104879. [PMID: 32650256 DOI: 10.1016/j.oraloncology.2020.104879] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Proton therapy has recently gained substantial momentum worldwide due to improved accessibility to the technology and sustained interests in its advantage of better tissue sparing compared to traditional photon radiation. Proton therapy in head and neck cancer has a unique advantage given the complex anatomy and proximity of targets to vital organs. As head and neck cancer patients are living longer due to epidemiological shifts and advances in treatment options, long-term toxicity from radiation treatment has become a major concern that may be better mitigated by proton therapy. With increased utilization of proton therapy, new proton centers breaking ground, and as excitement about the technology continue to increase, we aim to comprehensively review the evidence of proton therapy in major subsites within the head and neck, hoping to facilitate a greater understanding of the full risks and benefits of proton therapy for head and neck cancer.
Collapse
Affiliation(s)
- Xingzhe Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, United States
| | - Anna Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, United States
| | - Marc A Cohen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, United States
| | - Eric J Sherman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, United States
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, United States.
| |
Collapse
|
25
|
Kumari S, Mukherjee S, Sinha D, Abdisalaam S, Krishnan S, Asaithamby A. Immunomodulatory Effects of Radiotherapy. Int J Mol Sci 2020; 21:E8151. [PMID: 33142765 PMCID: PMC7663574 DOI: 10.3390/ijms21218151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.
Collapse
Affiliation(s)
- Sharda Kumari
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Shibani Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Debapriya Sinha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Salim Abdisalaam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| |
Collapse
|
26
|
Hashemi Z, Tatari M, Naik H. Simulation of dose distribution and secondary particle production in proton therapy of brain tumor. Rep Pract Oncol Radiother 2020; 25:927-933. [PMID: 33088228 DOI: 10.1016/j.rpor.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2020] [Revised: 08/01/2020] [Accepted: 08/26/2020] [Indexed: 11/18/2022] Open
Abstract
Aim The aim of this study is simulation of the proton depth-dose distribution and dose evaluation of secondary particles in proton therapy of brain tumor using the GEANT4 and FLUKA Monte Carlo codes. Background Proton therapy is a treatment method for variety of tumors such as brain tumor. The most important feature of high energy proton beams is the energy deposition as a Bragg curve and the possibility of creating the spread out Bragg peak (SOBP) for full coverage of the tumor. Materials and methods A spherical tumor with the radius of 1 cm in the brain is considered. A SNYDER head phantom has been irradiated with 30-130 MeV proton beam energy. A PMMA modulator wheel is used for covering the tumor. The simulations are performed using the GEANT4 and FLUKA codes. Results Using a modulator wheel, the Spread Out Bragg Peak longitudinally and laterally covers the tumor. Flux and absorbed dose of secondary particles produced by nuclear interactions of protons with elements in the head are considerably small compared to protons. Conclusions Using 76.85 MeV proton beam and a modulator wheel, the tumor can be treated accurately in the 3-D, so that the distribution of proton dose in the surrounding tissues is very low. The results show that more than 99% of the total dose of secondary particles and protons is absorbed in the tumor.
Collapse
Affiliation(s)
- Zahra Hashemi
- Physics Department, Faculty of Science, Yazd University, Yazd 89195-741, Iran
| | - Mansoureh Tatari
- Physics Department, Faculty of Science, Yazd University, Yazd 89195-741, Iran
| | - Haladhara Naik
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
27
|
Grant SR, Williamson TD, Stieb S, Shah SJ, David Fuller C, Rosenthal DI, Frank SJ, Garden AS, Morrison WH, Phan J, Moreno AC, Reddy JP, Cardoso RC, Liu AY, Wu RY, Gunn GB. A Dosimetric Comparison of Oral Cavity Sparing in the Unilateral Treatment of Early Stage Tonsil Cancer: IMRT, IMPT, and Tongue-Deviating Oral Stents. Adv Radiat Oncol 2020; 5:1359-1363. [PMID: 33305099 PMCID: PMC7718552 DOI: 10.1016/j.adro.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction Tongue-deviating oral stents (TDOS) are commonly used during unilateral neck radiation therapy to reduce unnecessary dose to nontarget oral structures. Their benefit in the setting of highly conformal treatment techniques, however, is not defined. The goal of this study was to investigate the potential benefit of TDOS use on dosimetric parameters in unilateral intensity modulated radiation therapy (IMRT) and intensity modulated proton therapy (IMPT). Methods A total of 16 patients with T1-2 tonsil cancer treated at a single institution were selected, of which 8 were simulated/treated with a TDOS and 8 without a TDOS. All received definitive unilateral IMRT to a dose of 66 Gy in 30 fx. IMPT plans were generated for each patient for study purposes and optimized according to standard institutional practice. Results For IMRT plans, the presence of a TDOS (vs without) was associated with a significantly lower oral mucosa mean dose (31.4 vs 35.3 Gy; P = .020) and V30 (42.7% vs 57.1%; P = .025). For IMPT plans, the presence of TDOS (vs without) was not associated with any improvement in oral mucosa mean dose (18.3 vs 19.9 Gy; P = .274) or V30 (25.0% vs 26.2%; P = .655). IMPT plans without TDOS compared with IMRT plans with TDOS demonstrated reduced oral mucosa mean dose (P < .001) and V30 (P < .001). Conclusion The use of a TDOS for the unilateral treatment of well-lateralized tonsil cancers was associated with oral mucosa sparing for IMRT, but not for IMPT. Moreover, mucosa sparing was improved for IMPT plans without a TDOS compared to IMRT plans with a TDOS.
Collapse
Affiliation(s)
- Stephen R Grant
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tyler D Williamson
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sonja Stieb
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shalin J Shah
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - C David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David I Rosenthal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adam S Garden
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William H Morrison
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy C Moreno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jay P Reddy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard C Cardoso
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy Y Liu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard Y Wu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - G Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
28
|
Sorolla MA, Parisi E, Sorolla A. Determinants of Sensitivity to Radiotherapy in Endometrial Cancer. Cancers (Basel) 2020; 12:E1906. [PMID: 32679719 PMCID: PMC7409033 DOI: 10.3390/cancers12071906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is one of the cornerstone treatments for endometrial cancer and has successfully diminished the risk of local recurrences after surgery. However, a considerable percentage of patients suffers tumor relapse due to radioresistance mechanisms. Knowledge about the molecular determinants that confer radioresistance or radiosensitivity in endometrial cancer is still partial, as opposed to other cancers. In this review, we have highlighted different central cellular signaling pathways and processes that are known to modulate response to radiotherapy in endometrial cancer such as PI3K/AKT, MAPK and NF-κB pathways, growth factor receptor signaling, DNA damage repair mechanisms and the immune system. Moreover, we have listed different clinical trials employing targeted therapies against some of the aforementioned signaling pathways and members with radiotherapy. Finally, we have identified the latest advances in radiotherapy that have started being utilized in endometrial cancer, which include modern radiotherapy and radiogenomics. New molecular and genetic studies in association with the analysis of radiation responses in endometrial cancer will assist clinicians in taking suitable decisions for each individual patient and pave the path for personalized radiotherapy.
Collapse
Affiliation(s)
- Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRB Lleida), 25198 Lleida, Spain; (M.A.S.); (E.P.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRB Lleida), 25198 Lleida, Spain; (M.A.S.); (E.P.)
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
29
|
Saini G, Shukla R, Sood KS, Shukla SK, Chandra R. Role of Proton Beam Therapy in Current Day Radiation Oncology Practice. ASIAN JOURNAL OF ONCOLOGY 2020. [DOI: 10.1055/s-0040-1713703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022] Open
Abstract
AbstractProton beam therapy (PBT), because of its unique physics of no–exit dose deposition in the tissue, is an exciting prospect. The phenomenon of Bragg peak allows protons to deposit their almost entire energy towards the end of the path of the proton and stops any further dose delivery. Braggs peak equips PBT with superior dosimetric advantage over photons or electrons because PBT doesn’t traverse the target/body but is stopped sharply at an energy dependent depth in the target/body. It also has no exit dose. Because of no exit dose and normal tissue sparing, PBT is hailed for its potential to bring superior outcomes. Pediatric malignancies is the most common malignancy where PBT have found utmost application. Nowadays, PBT is also being used in the treatment of other malignancies such as carcinoma prostate, carcinoma breast, head and neck malignancies, and gastrointestinal (GI) malignancies. Despite advantages of PBT, there is not only a high cost of setting up of PBT centers but also a lack of definitive phase-III data. Therefore, we review the role of PBT in current day practice of oncology to bring out the nuances that must guide the practice to choose suitable patients for PBT.
Collapse
Affiliation(s)
- Gagan Saini
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| | - Rashmi Shukla
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| | - Kanika S. Sood
- Department of Radiation Oncology, Dharamshila Narayana Superspeciality Hospital, New Delhi, India
| | - Sujit K. Shukla
- Department of Radiation Oncology, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Ritu Chandra
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| |
Collapse
|
30
|
Hwang EJ, Gorayski P, Le H, Hanna GG, Kenny L, Penniment M, Buck J, Thwaites D, Ahern V. Particle therapy toxicity outcomes: A systematic review. J Med Imaging Radiat Oncol 2020; 64:725-737. [PMID: 32421259 DOI: 10.1111/1754-9485.13036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Owing to its physical properties, particle therapy (PT), including proton beam therapy (PBT) and carbon ion therapy (CIT), can enhance the therapeutic ratio in radiation therapy. The major factor driving PT implementation is the reduction in exit and integral dose compared to photon plans, which is expected to translate to reduced toxicity and improved quality of life. This study extends the findings from a recent systematic review by the current authors which concentrated on tumour outcomes for PT, to now examine toxicity as a separate focus. Together, these reviews provide a comprehensive collation of the evidence relating to PT outcomes in clinical practice. Three major databases were searched by two independent researchers, and evidence quality was classified according to the National Health and Medical Research Council evidence hierarchy. One hundred and seventy-nine studies were included. Most demonstrated acceptable and favourable toxicity results. Comparative evidence reported reduced morbidities and improvement in quality of life in head and neck, paediatrics, sarcomas, adult central nervous system, gastrointestinal, ocular and prostate cancers compared to photon radiotherapy. This suggestion for reduced morbidity must be counterbalanced by the overall low quality of evidence. A concerted effort in the design of appropriate comparative clinical trials is needed which takes into account integration of PT's pace of technological advancements, including evolving delivery techniques, image guidance availability and sophistication of planning algorithms.
Collapse
Affiliation(s)
- Eun Ji Hwang
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Gerard G Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Liz Kenny
- Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Michael Penniment
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jacqueline Buck
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - David Thwaites
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Verity Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Proton therapy for head and neck squamous cell carcinomas: A review of the physical and clinical challenges. Radiother Oncol 2020; 147:30-39. [PMID: 32224315 DOI: 10.1016/j.radonc.2020.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
The quality of radiation therapy has been shown to significantly influence the outcomes for head and neck squamous cell carcinoma (HNSCC) patients. The results of dosimetric studies suggest that intensity-modulated proton therapy (IMPT) could be of added value for HNSCC by being more effective than intensity-modulated (photon) radiation therapy (IMRT) for reducing side effects of radiation therapy. However, the physical properties of protons make IMPT more sensitive than photons to planning uncertainties. This could potentially have a negative effect on the quality of IMPT planning and delivery. For this review, the three French proton therapy centers collaborated to evaluate the differences between IMRT and IMPT. The review explored the effects of these uncertainties and their management for developing a robust and optimized IMPT treatment delivery plan to achieve clinical outcomes that are superior to those for IMRT. We also provide practical suggestions for the management of HNSCC carcinoma with IMPT. Because metallic dental implants can increase range uncertainties (3-10%), patient preparation for IMPT may require more systematic removal of in-field alien material than is done for IMRT. Multi-energy CT may be an alternative to calculate more accurately the dose distribution. The practical aspects that we describe are essential to guarantee optimal quality in radiation therapy in both model-based and randomized clinical trials.
Collapse
|
32
|
Meijer TWH, Scandurra D, Langendijk JA. Reduced radiation-induced toxicity by using proton therapy for the treatment of oropharyngeal cancer. Br J Radiol 2020; 93:20190955. [PMID: 31971818 DOI: 10.1259/bjr.20190955] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022] Open
Abstract
Patients with squamous cell carcinoma of the oropharynx are generally treated with (chemo) radiation. Patients with oropharyngeal cancer have better survival than patients with squamous cell carcinoma of other head and neck subsites, especially when related to human papillomavirus. However, radiotherapy results in a substantial percentage of survivors suffering from significant treatment-related side-effects. Late radiation-induced side-effects are mostly irreversible and may even be progressive, and particularly xerostomia and dysphagia affect health-related quality of life. As the risk of radiation-induced side-effects highly depends on dose to healthy normal tissues, prevention of radiation-induced xerostomia and dysphagia and subsequent improvement of health-relatedquality of life can be obtained by applying proton therapy, which offers the opportunity to reduce the dose to both the salivary glands and anatomic structures involved in swallowing.This review describes the results of the first cohort studies demonstrating that proton therapy results in lower dose levels in multiple organs at risk, which translates into reduced acute toxicity (i.e. up to 3 months after radiotherapy), while preserving tumour control. Next to reducing mucositis, tube feeding, xerostomia and distortion of the sense of taste, protons can improve general well-being by decreasing fatigue and nausea. Proton therapy results in decreased rates of tube feeding dependency and severe weight loss up to 1 year after radiotherapy, and may decrease the risk of radionecrosis of the mandible. Also, the model-based approach for selecting patients for proton therapy in the Netherlands is described in this review and future perspectives are discussed.
Collapse
Affiliation(s)
- Tineke W H Meijer
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Dan Scandurra
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Combined proton-photon treatments - A new approach to proton therapy without a gantry. Radiother Oncol 2020; 145:81-87. [PMID: 31923713 DOI: 10.1016/j.radonc.2019.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Although the number of proton therapy centres is growing worldwide, proton therapy is still a limited resource. The primary reasons are gantry size and cost. Therefore, we investigate the potential of a new design for proton therapy, which may facilitate proton treatments in conventional bunkers and allow the widespread use of protons. MATERIALS AND METHODS The treatment room consists of a standard Linac for IMRT, a motorized couch for treatments in lying position, and a horizontal proton beamline equipped with pencil beam scanning. As proton beams are limited to a coronal plane, treatment plans may be suboptimal for many tumour sites. However, high-quality plans may be realized by combining protons and photons. Treatment planning is performed by simultaneously optimizing IMRT and IMPT plans based on their cumulative physical dose. We demonstrate this concept for three head&neck cancer cases. RESULTS Optimal combinations use photons to improve dose conformity while protons reduce the integral dose to normal tissues. In fact, combined treatments improve on single-modality IMRT and fixed beamline IMPT plans for quality-of-life-limiting OARs and retain most of the integral dose reduction in the healthy tissues of the pure IMPT plans. The lower doses that can be obtained with multi-modality treatments reduce the risk for side effects compared to single-modality IMRT plans. CONCLUSION Combined proton-photon treatments may play a role in developing a new solution for proton therapy without a gantry. Optimal combinations improve on IMRT plans and reduce the risk of side effects while making protons available to more patients.
Collapse
|
34
|
Yang Z, Zhang X, Wang X, Zhu XR, Gunn B, Frank SJ, Chang Y, Li Q, Yang K, Wu G, Liao L, Li Y, Chen M, Li H. Multiple-CT optimization: An adaptive optimization method to account for anatomical changes in intensity-modulated proton therapy for head and neck cancers. Radiother Oncol 2020; 142:124-132. [PMID: 31564553 PMCID: PMC8564505 DOI: 10.1016/j.radonc.2019.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE We aimed to determine whether multiple-CT (MCT) optimization of intensity-modulated proton therapy (IMPT) could improve plan robustness to anatomical changes and therefore reduce the additional need for adaptive planning. METHODS AND MATERIALS Ten patients with head and neck cancer who underwent IMPT were included in this retrospective study. Each patient had primary planning CT (PCT), a first adaptive planning CT (ACT1), and a second adaptive planning CT (ACT2). Selective robust IMPT plans were generated using each CT data set (PCT, ACT1, and ACT2). Moreover, a MCT optimized plan was generated using the PCT and ACT1 data sets together. Dose distributions optimized using each of the four plans (PCT, ACT1, ACT2, and MCT plans) were re-calculated on ACT2 data. The doses to the target and to organs at risk were compared between optimization strategies. RESULTS MCT plans for all patients met all target dose and organs-at-risk criteria for all three CT data sets. Target dose and organs-at-risk dose for PCT and ACT1 plans re-calculated on ACT2 data set were compromised, indicating the need for adaptive planning on ACT2 if PCT or ACT1 plans were used. The D98% of CTV1 and CTV3 of MCT plan re-calculated on ACT2 were both above the coverage criteria. The CTV2 coverage of the MCT plan re-calculated on ACT2 was worse than ACT2 plan. The MCT plan re-calculated on ACT2 data set had lower chiasm, esophagus, and larynx doses than did PCT, ACT1, or ACT2 plans re-calculated on ACT2 data set. CONCLUSIONS MCT optimization can improve plan robustness toward anatomical change and may reduce the number of plan adaptation for head and neck cancers.
Collapse
Affiliation(s)
- Zhiyong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Xianliang Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, China
| | - X Ronald Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Brandon Gunn
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Steven J Frank
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Yu Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liao
- Global Oncology One, Houston, USA
| | - Yupeng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Mei Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Heng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, USA.
| |
Collapse
|
35
|
Aljabab S, Liu A, Wong T, Liao JJ, Laramore GE, Parvathaneni U. Proton Therapy for Locally Advanced Oropharyngeal Cancer: Initial Clinical Experience at the University of Washington. Int J Part Ther 2019; 6:1-12. [PMID: 32582809 DOI: 10.14338/ijpt-19-00053.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Proton therapy can potentially improve the therapeutic ratio over conventional radiation therapy for oropharyngeal squamous cell cancer (OPSCC) by decreasing acute and late toxicity. We report our early clinical experience with intensity-modulated proton therapy (IMPT). Materials and Methods We retrospectively reviewed patients with OPSCC treated with IMPT at our center. Endpoints include local regional control (LRC), progression-free survival (PFS), overall survival (OS), tumor response, and toxicity outcomes. Toxicity was graded as per the Common Terminology Criteria for Adverse Events v4.03. Descriptive statistics and Kaplan-Meier method were used. Results We treated 46 patients from March 2015 to August 2017. Median age was 58 years, 93.5% were male, 67% were nonsmokers, 98% had stage III-IVB disease per the 7th edition of the AJCC [American Joint Committee on Cancer] Cancer Staging Manual, and 89% were p16 positive. Twenty-eight patients received definitive IMPT to total dose of 70 to 74.4 Gy(RBE), and 18 patients received postoperative IMPT to 60 to 66 Gy(RBE) following transoral robotic surgery (TORS). Sixty-four percent of patients received concurrent systemic therapy. There were no treatment interruptions or observed acute grade 4 or 5 toxicities. Eighteen patients had percutaneous endoscopic gastrostomy (PEG) tube placement; the majority (14) were placed prophylactically. The most common grade 3 acute toxicities were dermatitis (76%) and mucositis (72%). The most common late toxicity was grade 2 xerostomia (30%). At a median follow-up time of 19.2 months (interquartile range [IQR], 11.2-28.4), primary complete response was 100% and nodal complete response was 92%. One patient required a salvage neck dissection owing to an incomplete response at 4 months. There were no recorded local regional or marginal recurrences, PFS was 93.5%, and OS was 95.7%. Conclusion Our early results for IMPT in OPSCC are promising with no local regional or marginal recurrences and a favorable toxicity profile. Our data add to a body of evidence that supports the clinical use of IMPT. Randomized comparative trials are encouraged.
Collapse
Affiliation(s)
- Saif Aljabab
- Department of Radiation Oncology, Roswell Park Cancer Center, Buffalo, NY, USA
| | - Andrew Liu
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA, USA
| | - Tony Wong
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| | - Jay J Liao
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA, USA
| | - George E Laramore
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA, USA
| | - Upendra Parvathaneni
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
36
|
Kim J, Park YK, Sharp G, Busse P, Winey B. Beam angle optimization using angular dependency of range variation assessed via water equivalent path length (WEPL) calculation for head and neck proton therapy. Phys Med 2019; 69:19-27. [PMID: 31812726 DOI: 10.1016/j.ejmp.2019.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/11/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To investigate angular sensitivity of proton range variation due to anatomic change in patients and patient setup error via water equivalent path length (WEPL) calculations. METHODS Proton range was estimated by calculating WEPL to the distal edge of target volume using planning CT (pCT) and weekly scatter-corrected cone-beam CT (CBCT) images of 11 head and neck patients. Range variation was estimated as the difference between the distal WEPLs calculated on pCT and scatter-corrected CBCT (cCBCT). This WEPL analysis was performed every five degrees ipsilaterally to the target. Statistics of the distal WEPL difference were calculated over the distal area to compare between different beam angles. Physician-defined contours were used for the WEPL calculation on both pCT and cCBCT, not considering local deformation of target volume. It was also tested if a couch kick (10°) can mitigate the range variation due to anatomic change and patient setup error. RESULTS For most of the patients considered, median, 75% quantile, and 95% quantile of the distal WEPL difference were largest for posterior oblique angles, indicating a higher chance of overdosing normal tissues at distal edge with these angles. Using a couch kick resulted in decrease in the WEPL difference for some posterior oblique angles. CONCLUSIONS It was demonstrated that the WEPL change has angular dependency for the cohort of head and neck cancer patients. Selecting beam configuration robust to anatomic change in patient and patient setup error may improve the treatment outcome of head and neck proton therapy.
Collapse
Affiliation(s)
- Jihun Kim
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang-Kyun Park
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gregory Sharp
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Paul Busse
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Brian Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
37
|
Newpower M, Schuemann J, Mohan R, Paganetti H, Titt U. Comparing 2 Monte Carlo Systems in Use for Proton Therapy Research. Int J Part Ther 2019; 6:18-27. [PMID: 31773045 DOI: 10.14338/ijpt-18-00043.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2018] [Accepted: 03/20/2019] [Indexed: 11/21/2022] Open
Abstract
Purpose Several Monte Carlo transport codes are available for medical physics users. To ensure confidence in the accuracy of the codes, they must be continually cross-validated. This study provides comparisons between MC2 and Tool for Particle Simulation (TOPAS) simulations, that is, between medical physics applications for Monte Carlo N-Particle Transport Code (MCNPX) and Geant4. Materials and Methods Monte Carlo simulations were repeated with 2 wrapper codes: TOPAS (based on Geant4) and MC2 (based on MCNPX). Simulations increased in geometrical complexity from a monoenergetic beam incident on a water phantom, to a monoenergetic beam incident on a water phantom with a bone or tissue slab at various depths, to a spread-out Bragg peak incident on a voxelized computed tomography (CT) geometry. The CT geometry cases consisted of head and neck tissue and lung tissue. The results of the simulations were compared with one another through dose or energy deposition profiles, r 90 calculations, and γ-analyses. Results Both codes gave very similar results with monoenergetic beams incident on a water phantom. Systematic differences were observed between MC2 and TOPAS simulations when using a lung or bone slab in a water phantom, particularly in the r 90 values, where TOPAS consistently calculated r 90 to be deeper by about 0.4%. When comparing the performance of the 2 codes in a CT geometry, the results were still very similar, exemplified by a 3-dimensional γ-analysis pass rate > 95% at the 2%-2-mm criterion for tissues from both head and neck and lung. Conclusion Differences between TOPAS and MC2 were minor and were not considered clinically relevant.
Collapse
Affiliation(s)
- Mark Newpower
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX 77030, USA.,Medical Physics Program, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Radhe Mohan
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Uwe Titt
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Yuan TZ, Zhan ZJ, Qian CN. New frontiers in proton therapy: applications in cancers. Cancer Commun (Lond) 2019; 39:61. [PMID: 31640788 PMCID: PMC6805548 DOI: 10.1186/s40880-019-0407-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Proton therapy offers dominant advantages over photon therapy due to the unique depth-dose characteristics of proton, which can cause a dramatic reduction in normal tissue doses both distal and proximal to the tumor target volume. In turn, this feature may allow dose escalation to the tumor target volume while sparing the tumor-neighboring susceptible organs at risk, which has the potential to reduce treatment toxicity and improve local control rate, quality of life and survival. Some dosimetric studies in various cancers have demonstrated the advantages over photon therapy in dose distributions. Further, it has been observed that proton therapy confers to substantial clinical advantage over photon therapy in head and neck, breast, hepatocellular, and non-small cell lung cancers. As such, proton therapy is regarded as the standard modality of radiotherapy in many pediatric cancers from the technical point of view. However, due to the limited clinical evidence, there have been concerns about the high cost of proton therapy from an economic point of view. Considering the treatment expenses for late radiation-induced toxicities, cost-effective analysis in many studies have shown that proton therapy is the most cost-effective option for brain, head and neck and selected breast cancers. Additional studies are warranted to better unveil the cost-effective values of proton therapy and to develop newer ways for better protection of normal tissues. This review aims at reviewing the recent studies on proton therapy to explore its benefits and cost-effectiveness in cancers. We strongly believe that proton therapy will be a common radiotherapy modality for most types of solid cancers in the future.
Collapse
Affiliation(s)
- Tai-Ze Yuan
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, 510045, Guangdong, P. R. China
| | - Ze-Jiang Zhan
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, 510095, Guangdong, P. R. China
| | - Chao-Nan Qian
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, 510045, Guangdong, P. R. China.
| |
Collapse
|
39
|
Beddok A, Vela A, Calugaru V, Tessonnier T, Kubes J, Dutheil P, Gérard A, Vidal M, Goudjil F, Florescu C, Kammerer E, Bénézery K, Hérault J, Bourhis J, Thariat J. [Proton therapy for head and neck squamous cell carcinomas: From physics to clinic]. Cancer Radiother 2019; 23:439-448. [PMID: 31358445 DOI: 10.1016/j.canrad.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/17/2022]
Abstract
Intensity-modulated radiation therapy (IMRT) is presently the recommended technique for the treatment of locally advanced head and neck carcinomas. Proton therapy would allow to reduce the volume of irradiated normal tissue and, thus, to decrease the risk of late dysphagia, xerostomia, dysgeusia and hypothyroidism. An exhaustive research was performed with the search engine PubMed by focusing on the papers about the physical difficulties that slow down use of proton therapy for head and neck carcinomas. Range uncertainties in proton therapy (±3 %) paradoxically limit the use of the steep dose gradient in distality. Calibration uncertainties can be important in the treatment of head and neck cancer in the presence of materials of uncertain stoichiometric composition (such as with metal implants, dental filling, etc.) and complex heterogeneities. Dental management for example may be different with IMRT or proton therapy. Some uncertainties can be somewhat minimized at the time of optimization. Inter- and intrafractional variations and uncertainties in Hounsfield units/stopping power can be integrated in a robust optimization process. Additional changes in patient's anatomy (tumour shrinkage, changes in skin folds in the beam patch, large weight loss or gain) require rescanning. Dosimetric and small clinical studies comparing photon and proton therapy have well shown the interest of proton therapy for head and neck cancers. Intensity-modulated proton therapy is a promising treatment as it can reduce the substantial toxicity burden of patients with head and neck squamous cell carcinoma compared to IMRT. Robust optimization will allow to perform an optimal treatment and to use proton therapy in current clinical practice.
Collapse
Affiliation(s)
- A Beddok
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France
| | - A Vela
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - V Calugaru
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France
| | - T Tessonnier
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - J Kubes
- Proton Therapy Centre Czech, Prague, République tchèque
| | - P Dutheil
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - A Gérard
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - M Vidal
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - F Goudjil
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France
| | - C Florescu
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - E Kammerer
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - K Bénézery
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - J Hérault
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - J Bourhis
- Département d'oncologie-radiothérapie, centre hospitalier universitaire vaudois, Lausanne, Suisse
| | - J Thariat
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France; Laboratoire de physique corpusculaire IN2P3/Ensicaen - UMR6534, Unicaen - Normandie Université, 14000 Caen, France.
| | -
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France; Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Proton Therapy Centre Czech, Prague, République tchèque; Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France; Département d'oncologie-radiothérapie, centre hospitalier universitaire vaudois, Lausanne, Suisse; Laboratoire de physique corpusculaire IN2P3/Ensicaen - UMR6534, Unicaen - Normandie Université, 14000 Caen, France
| |
Collapse
|
40
|
Lee A, Kang J, Yu Y, McBride S, Riaz N, Cohen M, Sherman E, Michel L, Lee N, Tsai CJ. Trends and Disparities of Proton Therapy Use among Patients with Head and Neck Cancer: Analysis from the National Cancer Database (2005-14). Int J Part Ther 2019; 5:1-10. [PMID: 31773036 DOI: 10.14338/ijpt-19-00051.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023] Open
Abstract
Purpose The purpose of this study was to analyze national trends and disparities in proton therapy use among patients with head and neck cancer receiving radiotherapy to primary disease sites. Patients and Methods Using the National Cancer Database, we identified patients diagnosed with any nonmetastatic head and neck primary malignancy between 2005 and 2014 who were treated with radiation therapy or proton therapy directed specifically at the primary disease site. Distributions of patient and clinical factors between the two groups were evaluated. Multivariable logistic regression was used to correlate factors associated with proton therapy use compared with other modalities of radiation therapy. Results There were 220 491 patients who received any radiation therapy as part of their initial treatment course, only 417 (0.2%) of whom received proton therapy. The use of protons underwent a small increase from 0.13% in 2005-06 to 0.41% by 2013-14 (P < .001). The most common primary sites treated with proton therapy were the nasal cavity/nasopharynx (n = 151, 36.2%) and the oral cavity (n = 98, 23.5%). Most patients had T4 disease (n = 94, 31.0%). On multivariable logistic regression, all primary sites compared with hypopharynx/larynx sites (odds ratio [OR], 2.53-10.53; P < .001), treatment at an academic facility (OR, 2.54; P < .001), ≥ 13-mile distance from the treating facility (OR, 1.94; P < .001), and highest median household income quartile (> $63 000; OR, 2.52; P = .002) were associated with an increased likelihood of receiving proton therapy. Conclusion Proton use has undergone an incremental increase in the United States but remains an uncommon modality for the treatment of primary head and neck cancer.
Collapse
Affiliation(s)
- Anna Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiation Oncology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Julie Kang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean McBride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Cohen
- Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Sherman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Loren Michel
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
41
|
Effect of setup and inter-fraction anatomical changes on the accumulated dose in CT-guided breath-hold intensity modulated proton therapy of liver malignancies. Radiother Oncol 2019; 134:101-109. [PMID: 31005203 DOI: 10.1016/j.radonc.2019.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2018] [Revised: 12/04/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the effect of setup uncertainties including uncertainties between different breath holds (BH) and inter-fractional anatomical changes under CT-guided BH with intensity-modulated proton therapy (IMPT) in patients with liver cancer. METHODS AND MATERIALS This retrospective study considered 17 patients with liver tumors who underwent feedback-guided BH (FGBH) IMRT treatment with daily CT-on-rail imaging. Planning CT images were acquired at simulation using FGBH, and FGBH CT-on-rail images were also acquired prior to each treatment. Selective robust IMPT plans were generated using planning CT and re-calculated on each daily CT-on-rail image. Subsequently, the fractional doses were deformed and accumulated onto the planning CT according to the deformable image registration between daily and planning CTs. The doses to the target and organs at risk (OARs) were compared between IMRT, planned IMPT, and accumulated IMPT doses. RESULTS For IMPT plans, the mean of D98% of CTV for all 17 patients was slightly reduced from the planned dose of 68.90 ± 1.61 Gy to 66.48 ± 1.67 Gy for the accumulated dose. The target coverage could be further improved by adjusting planning techniques. The dose-volume histograms of both planned and accumulated IMPT doses showed better sparing of OARs than that of the IMRT. CONCLUSIONS IMPT with FGBH and CT-on-rail guidance is a robust treatment approach for liver tumor cases.
Collapse
|
42
|
Charters EK, Bogaardt H, Freeman-Sanderson AL, Ballard KJ. Systematic review and meta-analysis of the impact of dosimetry to dysphagia and aspiration related structures. Head Neck 2019; 41:1984-1998. [PMID: 30680831 DOI: 10.1002/hed.25631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2018] [Revised: 10/21/2018] [Accepted: 12/14/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Technological advances in radiotherapy have allowed investigations into new methods to spare healthy tissue in those treated for head and neck cancer. This systematic review with meta-analysis demonstrates the effect that radiation has on swallowing. METHODS Selection and analysis of studies examining the effect of radiation to swallowing structures. A fixed effects meta-analysis calculated the pooled proportions for select outcomes of dysphagia, common across many studies. RESULTS The majority of the papers found a correlation between radiation dose to the swallowing structures and dysphagia, however a meta-analysis found the studies carried a significant degree of heterogeneity. The appraisal demonstrates the need for large-scale studies using a randomized design and instrumental dysphagia assessments. CONCLUSIONS Radiation dose to dysphagia and aspiration structures is correlated with incidence of dysphagia and aspiration. The variables in this population contribute to the heterogeneity within and cross studies and future studies should consider controlling for this.
Collapse
Affiliation(s)
| | - Hans Bogaardt
- Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | | | - Kirrie J Ballard
- Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
43
|
Abstract
Because of its sharp lateral penumbra and steep distal fall-off, proton therapy offers dosimetric advantages over photon therapy. In head and neck cancer, proton therapy has been used for decades in the treatment of skull-base tumors. In recent years the use of proton therapy has been extended to numerous other disease sites, including nasopharynx, oropharynx, nasal cavity and paranasal sinuses, periorbital tumors, skin, and salivary gland, or to reirradiation. The aim of this review is to present the physical properties and dosimetric benefit of proton therapy over advanced photon therapy; to summarize the clinical benefit described for each disease site; and to discuss issues of patient selection and cost-effectiveness.
Collapse
Affiliation(s)
- Pierre Blanchard
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Gary Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Robert L Foote
- Departments of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
44
|
Frank SJ, Blanchard P, Lee JJ, Sturgis EM, Kies MS, Machtay M, Vikram B, Garden AS, Rosenthal DI, Gunn GB, Fuller CD, Hutcheson K, Lai S, Busse PM, Lee NY, Lin A, Foote RL. Comparing Intensity-Modulated Proton Therapy With Intensity-Modulated Photon Therapy for Oropharyngeal Cancer: The Journey From Clinical Trial Concept to Activation. Semin Radiat Oncol 2018; 28:108-113. [PMID: 29735186 PMCID: PMC5942581 DOI: 10.1016/j.semradonc.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022]
Abstract
Intensity-modulated proton therapy minimizes the incidental irradiation of normal tissues in patients with head and neck cancer relative to intensity-modulated photon (x-ray) therapy and has been associated with lesser treatment-related toxicity and improved quality of life. A phase II/III randomized trial sponsored by the US National Cancer Institute is currently underway to compare deintensification treatment strategies with intensity-modulated proton therapy vs intensity-modulated photon (x-ray) therapy for patients with advanced-stage oropharyngeal tumors. After significant input from numerous stakeholders, the phase III portion of the randomized trial was redesigned as a noninferiority trial with progression-free survival as the primary endpoint. The process by which that redesign took place is described here.
Collapse
Affiliation(s)
- Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Pierre Blanchard
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Merrill S Kies
- Department of Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mitchell Machtay
- Department of Radiation Oncology, UH Cleveland Medical Center, Cleveland, OH
| | - Bhadrasain Vikram
- Clinical Radiation Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Adam S Garden
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David I Rosenthal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - G Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - C David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katherine Hutcheson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephen Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paul M Busse
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Robert L Foote
- Department of Radiation Oncology, The Mayo Clinic, Rochester, MN
| |
Collapse
|
45
|
Vogel J, Both S, Kirk M, Chao HH, Bagatell R, Li Y, Womer R, Balamuth N, Reilly A, Kurtz G, Lustig R, Tochner Z, Hill-Kayser C. Proton therapy for pediatric head and neck malignancies. Pediatr Blood Cancer 2018; 65. [PMID: 29058370 DOI: 10.1002/pbc.26858] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/28/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Pediatric head and neck malignancies are managed with intensive multimodality therapy. Proton beam therapy (PBT) may reduce toxicity by limiting exposure of normal tissue to radiation. In this study, we report acute toxicities and early outcomes following PBT for pediatric head and neck malignancies. MATERIALS AND METHODS Between 2010 and 2016, pediatric patients with nonhematologic malignancies of the head and neck were treated with PBT. Clinical and dosimetric data were abstracted from the medical record and treatment planning system with institutional review board approval. RESULTS Sixty-nine consecutive pediatric patients were treated with proton-based radiotherapy for head and neck malignancies. Thirty-five were treated for rhabdomyosarcoma to a median dose of 50.4 Gy relative biological effectiveness [RBE]. Ten patients were treated for Ewing sarcoma to a median dose of 55.8 Gy[RBE]. Twenty-four patients were treated for other histologies to a median dose of 63.0 Gy[RBE]. Grade 3 oral mucositis, anorexia, and dysphagia were reported to be 4, 22, and 7%, respectively. Actuarial 1-year freedom from local recurrence was 92% (95% CI 80-97). Actuarial 1-year overall survival was 93% (95% CI 79-98) in the entire cohort. Oral cavity mucositis was significantly correlated with oral cavity dose (D80 and D50 [P < 0.05], where D80 and D50 are dose to 50% of the volume and dose to 80% of the volume, respectively). CONCLUSIONS In this study, we report low rates of acute toxicity in a cohort of pediatric patients with head and neck malignancies. PBT appears safe for this patient population, with local control rates similar to historical reports. Longer follow-up will be required to evaluate late toxicity and long-term disease control.
Collapse
Affiliation(s)
- Jennifer Vogel
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefan Both
- Medical Physics Department, University Medical Center Groningen, Groningen, The Netherlands
| | - Maura Kirk
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hann-Hsiang Chao
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rochelle Bagatell
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yimei Li
- Department of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Richard Womer
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Naomi Balamuth
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Anne Reilly
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Goldie Kurtz
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Lustig
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zelig Tochner
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christine Hill-Kayser
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Cubillos-Mesías M, Baumann M, Troost EGC, Lohaus F, Löck S, Richter C, Stützer K. Impact of robust treatment planning on single- and multi-field optimized plans for proton beam therapy of unilateral head and neck target volumes. Radiat Oncol 2017; 12:190. [PMID: 29183377 PMCID: PMC5706329 DOI: 10.1186/s13014-017-0931-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2017] [Accepted: 11/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proton beam therapy is promising for the treatment of head and neck cancer (HNC), but it is sensitive to uncertainties in patient positioning and particle range. Studies have shown that the planning target volume (PTV) concept may not be sufficient to ensure robustness of the target coverage. A few planning studies have considered irradiation of unilateral HNC targets with protons, but they have only taken into account the dose on the nominal plan, without considering anatomy changes occurring during the treatment course. METHODS Four pencil beam scanning (PBS) proton therapy plans were calculated for 8 HNC patients with unilateral target volumes: single-field (SFO) and multi-field optimized (MFO) plans, either using the PTV concept or clinical target volume (CTV)-based robust optimization. The dose was recalculated on computed tomography (CT) scans acquired during the treatment course. Doses to target volumes and organs at risk (OARs) were compared for the nominal plans, cumulative doses considering anatomical changes, and additional setup and range errors in each fraction. If required, the treatment plan was adapted, and the dose was compared with the non-adapted plan. RESULTS All nominal plans fulfilled the clinical specifications for target coverage, but significantly higher doses on the ipsilateral parotid gland were found for both SFO approaches. MFO PTV-based plans had the lowest robustness against range and setup errors. During the treatment course, the influence of the anatomical variation on the dose has shown to be patient specific, mostly independent of the chosen planning approach. Nine plans in four patients required adaptation, which led to a significant improvement of the target coverage and a slight reduction in the OAR dose in comparison to the cumulative dose without adaptation. CONCLUSIONS The use of robust MFO optimization is recommended for ensuring plan robustness and reduced doses in the ipsilateral parotid gland. Anatomical changes occurring during the treatment course might degrade the target coverage and increase the dose in the OARs, independent of the chosen planning approach. For some patients, a plan adaptation may be required.
Collapse
Affiliation(s)
- Macarena Cubillos-Mesías
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
| | - Michael Baumann
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
| | - Esther G. C. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
| | - Fabian Lohaus
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Löck
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Richter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| |
Collapse
|
47
|
Niedzielski JS, Yang J, Mohan R, Titt U, Mirkovic D, Stingo F, Liao Z, Gomez DR, Martel MK, Briere TM, Court LE. Differences in Normal Tissue Response in the Esophagus Between Proton and Photon Radiation Therapy for Non-Small Cell Lung Cancer Using In Vivo Imaging Biomarkers. Int J Radiat Oncol Biol Phys 2017; 99:1013-1020. [PMID: 29063837 DOI: 10.1016/j.ijrobp.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2017] [Revised: 06/26/2017] [Accepted: 07/01/2017] [Indexed: 01/21/2023]
Abstract
PURPOSE To determine whether there exists any significant difference in normal tissue toxicity between intensity modulated radiation therapy (IMRT) or proton therapy for the treatment of non-small cell lung cancer. METHODS AND MATERIALS A total of 134 study patients (n=49 treated with proton therapy, n=85 with IMRT) treated in a randomized trial had a previously validated esophageal toxicity imaging biomarker, esophageal expansion, quantified during radiation therapy, as well as esophagitis grade (Common Terminology Criteria for Adverse Events version 3.0), on a weekly basis during treatment. Differences between the 2 modalities were statically analyzed using the imaging biomarker metric value (Kruskal-Wallis analysis of variance), as well as the incidence and severity of esophagitis grade (χ2 and Fisher exact tests, respectively). The dose-response of the imaging biomarker was also compared between modalities using esophageal equivalent uniform dose, as well as delivered dose to an isotropic esophageal subvolume. RESULTS No statistically significant difference in the distribution of esophagitis grade, the incidence of grade ≥3 esophagitis (15 and 11 patients treated with IMRT and proton therapy, respectively), or the esophageal expansion imaging biomarker between cohorts (P>.05) was found. The distribution of imaging biomarker metric values had similar distributions between treatment arms, despite a slightly higher dose volume in the proton arm (P>.05). Imaging biomarker dose-response was similar between modalities for dose quantified as esophageal equivalent uniform dose and delivered esophageal subvolume dose. Regardless of treatment modality, there was high variability in imaging biomarker response, as well as esophagitis grade, for similar esophageal doses between patients. CONCLUSIONS There was no significant difference in esophageal toxicity from either proton- or photon-based radiation therapy as quantified by esophagitis grade or the esophageal expansion imaging biomarker.
Collapse
Affiliation(s)
- Joshua S Niedzielski
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas.
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Uwe Titt
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Dragan Mirkovic
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Francesco Stingo
- Department of Statistics, Computer Science, Applications "G. Parenti," University of Florence, Florence, Italy
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Mary K Martel
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Tina M Briere
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Laurence E Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| |
Collapse
|
48
|
Jensen GL, Blanchard P, Gunn GB, Garden AS, David Fuller C, Sturgis EM, Gillison ML, Phan J, Morrison WH, Rosenthal DI, Frank SJ. Prognostic impact of leukocyte counts before and during radiotherapy for oropharyngeal cancer. Clin Transl Radiat Oncol 2017; 7:28-35. [PMID: 29594226 PMCID: PMC5862666 DOI: 10.1016/j.ctro.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction Peripheral blood count components are accessible and evidently predictive in other cancers but have not been explored in oropharyngeal carcinoma. We examine if there is an association between the use of intensity-modulated radiotherapy (IMRT) or intensity-modulated proton therapy (IMPT) and lymphopenia, as well as if there is an association between baseline neutrophilia, baseline leukocytosis and lymphocyte nadir in oropharyngeal cancer. Materials and Methods Analysis started with 150 patients from a previous case to case study design, which retrospectively identified adults with oropharyngeal carcinoma, 100 treated with IMRT in 2010-2012 and 50 treated with IMPT in 2011-2014. Pretreatment leukocyte, neutrophil, lymphocyte, and hemoglobin levels were extracted, as were neutrophil and lymphocyte nadir levels during radiotherapy. We retained 137 patients with recorded pre-treatment leukocyte and neutrophil levels for associated analysis and 114 patients with recorded lymphocyte levels during radiation and associated analysis. Multivariate survival analyses were done with Cox regression. Results The radiotherapy type (IMRT vs. IMPT) was not associated with lymphopenia (grade 3 P > .99; grade 4 P = .55). In univariate analyses, poor overall survival was associated with pretreatment neutrophilia (hazard ratio [HR] 5.58, 95% confidence interval [CI] 1.99-15.7, P = .001), pretreatment leukocytosis (HR 4.85, 95% CI 1.73-13.6, P = .003), grade 4 lymphopenia during radiotherapy (HR 3.28, 95% CI 1.14-9.44, P = .03), and possibly smoking status >10 pack-years (HR 2.88, 95% CI 1.01-8.18, P = .05), but only T status was possibly significant in multivariate analysis (HR 2.64, 95% CI 0.99-7.00, P = .05). Poor progression-free survival was associated with pretreatment leukocytosis and T status in univariate analysis, and pretreatment neutrophilia and advanced age on multivariate analysis. Conclusions Treatment modality did not affect blood counts during radiotherapy. Pretreatment neutrophilia, pretreatment leukocytosis, and grade 4 lymphopenia during radiotherapy were associated with worse outcomes after, but establishing causality will require additional work with increased statistical power.
Collapse
Affiliation(s)
- Garrett L Jensen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pierre Blanchard
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - G Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam S Garden
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura L Gillison
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William H Morrison
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David I Rosenthal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Blanchard P, Frank SJ. [Proton therapy for head and neck cancers]. Cancer Radiother 2017; 21:515-520. [PMID: 28869195 DOI: 10.1016/j.canrad.2017.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/23/2022]
Abstract
The absence of exit dose and the sharp lateral penumbra are key assets for proton therapy, which are responsible for its dosimetric superiority over advanced photon radiotherapy. Dosimetric comparisons have consistently shown a reduction of the integral dose and the dose to organs at risk favouring intensity-modulated proton therapy (IMPT) over intensity-modulated radiotherapy (IMRT). The structures that benefit the most of these dosimetric improvements in head and neck cancers are the anterior oral cavity, the posterior fossa, the visual apparatus and swallowing structures. A number of publications have concluded that these dosimetric differences actually translate into reduced toxicities with IMPT, for example with regards to reduced weight loss or need for feeding tube. Patient survival is usually similar to IMRT series, except in base of skull or sinonasal malignancies, where a survival advantage of IMPT could exist. The goals of the present review is to describe the major characteristics of proton therapy, to analyse the clinical data with regards to head and neck cancer patients, and to highlight the issue of patient selection and physical and biological uncertainties.
Collapse
Affiliation(s)
- P Blanchard
- Department of radiation oncology, MD Anderson cancer center, the university of Texas, Houston, Texas, États-Unis; Département de radiothérapie, Gustave-Roussy cancer campus, 114, rue Édouard-Vaillant, 94800 Villejuif, France.
| | - S J Frank
- Department of radiation oncology, MD Anderson cancer center, the university of Texas, Houston, Texas, États-Unis
| |
Collapse
|
50
|
Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas AG. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis. Cancers (Basel) 2017; 9:cancers9070091. [PMID: 28718816 PMCID: PMC5532627 DOI: 10.3390/cancers9070091] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.
Collapse
Affiliation(s)
- Ifigeneia V Mavragani
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Maria P Souli
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Asef Aziz
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Somaira Nowsheen
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Khaled Aziz
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA.
| | - Emmy Rogakou
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, 11527 Athens, Greece.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|