1
|
Kużdżał A, Clemente FM, Kawczyński A, Ryszkiel I, Trybulski R. Comparing The Effects of Compression Contrast Therapy and Dry Needling on Muscle Functionality, Pressure Pain Threshold, and Perfusion after Isometric Fatigue in Forearm Muscles of Combat Sports Athletes: A Single-Blind Randomized Controlled Trial. J Sports Sci Med 2024; 23:548-558. [PMID: 39228772 PMCID: PMC11366852 DOI: 10.52082/jssm.2024.548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 09/05/2024]
Abstract
The aim of this study was to compare the acute effects of compression contrast therapy (CT) and dry needling therapy (DN) on muscle tension (MT), muscle strength (Fmax), pressure pain threshold (PPT), and perfusion (PU) following fatigue of forearm muscles (e.g., flexor carpi radialis) in combat sports athletes. A single-blind randomized controlled trial was employed. Participants first underwent muscle fatigue induction, which involved sustaining an isometric handgrip at 60% of their maximum voluntary contraction in 5-second cycles. This was followed by exposure to one of the regenerative therapies. Forty-five participants were randomly assigned to one of three groups: CT/DN (n = 15), CT/ShDN (n = 15), and ShCT/DN (n = 15). The sham condition (Sh) involved a simulated version of the technique. Measurements were taken at four time points: (i) at rest; (ii) immediately after exercise that led to a state of fatigue; (iii) 5 minutes after therapy (PostTh5min); and (iv) 24 hours after therapy (PostTh24h). Each participant was exposed to one experimental condition and one control condition, thereby undergoing evaluation in two sessions. Significant differences between groups were found in MT during the PostTh5min (p = 0.005), as well as in PU during the PostTh5min (p < 0.001) and PU during the PostTh24h (p < 0.001). All groups showed significant improvements at 5 minutes post-therapy compared to immediately post-muscle fatigue. As conclusions, CT/DN seems to be significantly better for enhancing MT and PU after 5 minutes of muscle fatigue induction. Using either CT, DN, or both combined is recommended to enhance the recovery of muscle functionality and properties, favoring recovery and potentially speeding up performance enhancement.
Collapse
Affiliation(s)
- Adrian Kużdżał
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Poland
| | - Filipe Manue Clemente
- Department of Biomechanics and Sport Engineering, Gdansk University of Physical Education and Sport, Poland
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, Viana do Castelo, Portugal
| | - Adam Kawczyński
- Department of Biomechanics and Sport Engineering, Gdansk University of Physical Education and Sport, Poland
| | - Ireneusz Ryszkiel
- Medical University of Silesia, College of Medical Sciences, Katowice Poland
| | - Robert Trybulski
- Medical Department Wojciech Korfanty, Upper Silesian Academy, Katowice, Poland
- Provita Żory Medical Center, Żory, Poland
| |
Collapse
|
2
|
Nowak J, Kaczmarek MK. Deep Indentation Tests of Soft Materials Using Mobile and Stationary Devices. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4233. [PMID: 39274622 PMCID: PMC11395885 DOI: 10.3390/ma17174233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
Measurements of the properties of soft materials are important from the point of view of medical diagnostics of soft tissues as well as testing the quality of food products and many technical materials. One of the frequently used techniques for testing such materials, attractive due to its non-invasive nature, is the indentation technique, which does not puncture the material. The difficulty of testing soft materials, which affects the objectivity of the results, is related to the problems of stable positioning of the studied material in relation to the indentation apparatus, especially with a device held by the operator. This work concerns the comparison of test results using an indentation apparatus mounted on mobile and stationary handles. The tested materials are cylindrical samples of polyurethane foams with three different stiffnesses and the same samples with a 0.5 or 1 mm thick silicone layer. The study presented uses an apparatus with a flat cylindrical indenter, with a surface area of 1 cm2, pressed to a depth of 10 mm (so-called deep tests). Based on the recorded force changes over time, five descriptors of the indentation test were determined and compared for both types of handles. The tests performed showed that the elastic properties of foam materials alone and with a silicone layer can be effectively characterized by the maximum forces during recessing and retraction and the slopes of the recessing and retraction curves. In the case of two-layer materials, these descriptors reflect both the characteristics of the foams and the silicone layer. The results show that the above property of the deep indentation method distinguishes it from the shallow indentation method. The repeatability of the tests performed in the mobile and stationary holders were determined to be comparable.
Collapse
Affiliation(s)
- Joanna Nowak
- Faculty of Mechatronics, Kazimierz Wielki University, 85-074 Bydgoszcz, Poland
| | - Mariusz K Kaczmarek
- Faculty of Mechatronics, Kazimierz Wielki University, 85-074 Bydgoszcz, Poland
| |
Collapse
|
3
|
Truong DD, Weistuch C, Murgas KA, Admane P, King BL, Lee JC, Lamhamedi-Cherradi SE, Swaminathan J, Daw NC, Gordon N, Gopalakrishnan V, Gorlick RG, Somaiah N, Deasy JO, Mikos AG, Tannenbaum A, Ludwig J. Mapping the Single-Cell Differentiation Landscape of Osteosarcoma. Clin Cancer Res 2024; 30:3259-3272. [PMID: 38775859 PMCID: PMC11293971 DOI: 10.1158/1078-0432.ccr-24-0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE The genetic intratumoral heterogeneity observed in human osteosarcomas poses challenges for drug development and the study of cell fate, plasticity, and differentiation, which are processes linked to tumor grade, cell metastasis, and survival. EXPERIMENTAL DESIGN To pinpoint errors in osteosarcoma differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs mesenchymal stem cells toward adipogenic and osteoblastic fates. Incorporating preexisting chondrocyte data, we applied trajectory analysis and non-negative matrix factorization to generate the first human mesenchymal differentiation atlas. RESULTS This "roadmap" served as a reference to delineate the cellular composition of morphologically complex osteosarcoma tumors and quantify each cell's lineage commitment. Projecting a bulk RNA-sequencing osteosarcoma dataset onto this roadmap unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. CONCLUSIONS Our study quantifies osteosarcoma differentiation and lineage, a prerequisite to better understanding lineage-specific differentiation bottlenecks that might someday be targeted therapeutically.
Collapse
Affiliation(s)
- Danh D. Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin A. Murgas
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY
| | - Prasad Admane
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bridgette L. King
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jes Chauviere Lee
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Salah-Eddine Lamhamedi-Cherradi
- McCombs Institute, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Najat C. Daw
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nancy Gordon
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Richard G. Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Allen Tannenbaum
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
- Department of Computer Science, Stony Brook University, Stony Brook, NY
| | - Joseph Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
4
|
Fougeron N, Oddes Z, Ashkenazi A, Solav D. Identification of constitutive materials of bi-layer soft tissues from multimodal indentations. J Mech Behav Biomed Mater 2024; 155:106572. [PMID: 38754153 DOI: 10.1016/j.jmbbm.2024.106572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The personalisation of finite element models is an important problem in the biomechanical fields where subject-specific analyses are fundamental, particularly in studying soft tissue mechanics. The personalisation includes the choice of the constitutive law of the model's material, as well as the choice of the material parameters. In vivo identification of the material properties of soft tissues is challenging considering the complex behaviour of soft tissues that are, among other things, non-linear hyperelastic and heterogeneous. Hybrid experimental-numerical methods combining in vivo indentations and inverse finite element analyses are common to identify these material parameters. Yet, the uniqueness and the uncertainty of the multi-material hyperelastic model have not been evaluated. This study presents a sensitivity analysis performed on synthetic indentation data to investigate the identification uncertainties of the material parameters in a bi-material thigh phantom. Synthetic numerical data, used to replace experimental measurements, considered several measurement modalities: indenter force and displacement, stereo-camera 3D digital image correlation of the indented surface, and ultrasound B-mode images. A finite element model of the indentation was designed with either Ogden-Moerman or Mooney-Rivlin constitutive laws for both materials. The parameters' identifiability (i.e. the possibility of converging to a unique parameter set within an acceptable margin of error) was assessed with various cost functions formulated using the different synthetic data sets. The results underline the need for multiple experimental modalities to reduce the uncertainty of the identified parameters. Additionally, the experimental error can impede the identification of a unique parameter set, and the cost function depends on the constitutive law. This study highlights the need for sensitivity analyses before the design of the experimental protocol. Such studies can also be used to define the acceptable range of errors in the experimental measurement. Eventually, the impact of the evaluated uncertainty of the identified parameters should be further investigated according to the purpose of the finite element modelling.
Collapse
Affiliation(s)
- Nolwenn Fougeron
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel.
| | - Zohar Oddes
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel
| | - Amit Ashkenazi
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel
| | - Dana Solav
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
de Kergariou C, Day GJ, Perriman AW, Armstrong JPK, Scarpa F. Flax fibre reinforced alginate poloxamer hydrogel: assessment of mechanical and 4D printing potential. SOFT MATTER 2024; 20:4021-4034. [PMID: 38695256 PMCID: PMC11095501 DOI: 10.1039/d4sm00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
The mechanical and printing performance of a new biomaterial, flax fibre-reinforced alginate-poloxamer based hydrogel, for load-bearing and 4D printing biomedical applications is described in this study. The-self suspendable ability of the material was evaluated by optimising the printing parameters and conducting a collapse test. 1% of the flax fibre weight fraction was sufficient to obtain an optimum hydrogel composite from a mechanical perspective. The collapse test showed that the addition of flax fibres allowed a consistent print without support over longer distances (8 and 10 mm) than the unreinforced hydrogel. The addition of 1% of flax fibres increased the viscosity by 39% and 129% at strain rates of 1 rad s-1 and 5 rad s-1, respectively, compared to the unreinforced hydrogel. The distributions of fibre size and orientation inside the material were also evaluated to identify the internal morphology of the material. The difference of coefficients of moisture expansion between the printing direction (1.29 × 10-1) and the transverse direction (6.03 × 10-1) showed potential for hygromorphic actuation in 4D printing. The actuation authority was demonstrated by printing a [0°; 90°] stacking sequence and rosette-like structures, which were then actuated using humidity gradients. Adding fibres to the hydrogel improved the repeatability of the actuation, while lowering the actuation authority from 0.11 mm-1 to 0.08 mm-1. Overall, this study highlighted the structural and actuation-related benefits of adding flax fibres to hydrogels.
Collapse
Affiliation(s)
- Charles de Kergariou
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering (CADE), University of Bristol, University Walk, Bristol BS8 1TR, UK.
| | - Graham J Day
- Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, UK
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, UK
- Research School of Chemistry and John Curtin School of Medical Research, Australian National University, Canberra ACT2601, Australia
| | - James P K Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, BS1 3NY Bristol, UK
| | - Fabrizio Scarpa
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering (CADE), University of Bristol, University Walk, Bristol BS8 1TR, UK.
| |
Collapse
|
6
|
Wang X, Wang Z, Xiao M, Li Z, Zhu Z. Advances in biomedical systems based on microneedles: design, fabrication, and application. Biomater Sci 2024; 12:530-563. [PMID: 37971423 DOI: 10.1039/d3bm01551c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Wearable devices have become prevalent in biomedical studies due to their convenient portability and potential utility in biomarker monitoring for healthcare. Accessing interstitial fluid (ISF) across the skin barrier, microneedle (MN) is a promising minimally invasive wearable technology for transdermal sensing and drug delivery. MN has the potential to overcome the limitations of conventional transdermal drug administration, making it another prospective mode of drug delivery after oral and injectable. Subsequently, combining MN with multiple sensing approaches has led to its extensive application to detect biomarkers in ISF. In this context, employing MN platforms and control schemes to merge diagnostic and therapeutic capabilities into theranostic systems will facilitate on-demand therapy and point-of-care diagnostics, paving the way for future MN technologies. A comprehensive analysis of the growing advances of microneedles in biomedical systems is presented in this review to summarize the latest studies for academics in the field and to offer for reference the issues that need to be addressed in MN application for healthcare. Covering an array of novel studies, we discuss the following main topics: classification of microneedles in the biomedical field, considerations of MN design, current applications of microneedles in diagnosis and therapy, and the regulatory landscape and prospects of microneedles for biomedical applications. This review sheds light on the significance of microneedle-based innovations, presenting an analysis of their potential implications and contributions to the community of wearable healthcare technologies. The review provides a comprehensive understanding of the field's current state and potential, making it a valuable resource for academics and clinicians seeking to harness the full potential of MN applications.
Collapse
Affiliation(s)
- Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
7
|
Kriener K, Whiting H, Storr N, Homes R, Lala R, Gabrielyan R, Kuang J, Rubin B, Frails E, Sandstrom H, Futter C, Midwinter M. Applied use of biomechanical measurements from human tissues for the development of medical skills trainers: a scoping review. JBI Evid Synth 2023; 21:2309-2405. [PMID: 37732940 DOI: 10.11124/jbies-22-00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVE The objective of this review was to identify quantitative biomechanical measurements of human tissues, the methods for obtaining these measurements, and the primary motivations for conducting biomechanical research. INTRODUCTION Medical skills trainers are a safe and useful tool for clinicians to use when learning or practicing medical procedures. The haptic fidelity of these devices is often poor, which may be because the synthetic materials chosen for these devices do not have the same mechanical properties as human tissues. This review investigates a heterogeneous body of literature to identify which biomechanical properties are available for human tissues, the methods for obtaining these values, and the primary motivations behind conducting biomechanical tests. INCLUSION CRITERIA Studies containing quantitative measurements of the biomechanical properties of human tissues were included. Studies that primarily focused on dynamic and fluid mechanical properties were excluded. Additionally, studies only containing animal, in silico , or synthetic materials were excluded from this review. METHODS This scoping review followed the JBI methodology for scoping reviews and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sources of evidence were extracted from CINAHL (EBSCO), IEEE Xplore, MEDLINE (PubMed), Scopus, and engineering conference proceedings. The search was limited to the English language. Two independent reviewers screened titles and abstracts as well as full-text reviews. Any conflicts that arose during screening and full-text review were mediated by a third reviewer. Data extraction was conducted by 2 independent reviewers and discrepancies were mediated through discussion. The results are presented in tabular, figure, and narrative formats. RESULTS Data were extracted from a total of 186 full-text publications. All of the studies, except for 1, were experimental. Included studies came from 33 countries, with the majority coming from the United States. Ex vivo methods were the predominant approach for extracting human tissue samples, and the most commonly studied tissue type was musculoskeletal. In this study, nearly 200 unique biomechanical values were reported, and the most commonly reported value was Young's (elastic) modulus. The most common type of mechanical test performed was tensile testing, and the most common reason for testing human tissues was to characterize biomechanical properties. Although the number of published studies on biomechanical properties of human tissues has increased over the past 20 years, there are many gaps in the literature. Of the 186 included studies, only 7 used human tissues for the design or validation of medical skills training devices. Furthermore, in studies where biomechanical values for human tissues have been obtained, a lack of standardization in engineering assumptions, methodologies, and tissue preparation may implicate the usefulness of these values. CONCLUSIONS This review is the first of its kind to give a broad overview of the biomechanics of human tissues in the published literature. With respect to high-fidelity haptics, there is a large gap in the published literature. Even in instances where biomechanical values are available, comparing or using these values is difficult. This is likely due to the lack of standardization in engineering assumptions, testing methodology, and reporting of the results. It is recommended that journals and experts in engineering fields conduct further research to investigate the feasibility of implementing reporting standards. REVIEW REGISTRATION Open Science Framework https://osf.io/fgb34.
Collapse
Affiliation(s)
- Kyleigh Kriener
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Harrison Whiting
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- School of Clinical Medicine, Royal Brisbane Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas Storr
- Gold Coast University Hospital, Southport, QLD Australia
| | - Ryan Homes
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Raushan Lala
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Robert Gabrielyan
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Jasmine Kuang
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Bryn Rubin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Edward Frails
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Hannah Sandstrom
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Christopher Futter
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Anaesthesia and Intensive Care Program, Herston Biofabrication institute, Brisbane, QLD, Australia
| | - Mark Midwinter
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Lustig M, Epstein Y, Gefen A. An anatomically-realistic computational framework for evaluating the efficacy of protective plates in mitigating non-penetrating ballistic impacts. Comput Biol Med 2023; 166:107490. [PMID: 37738897 DOI: 10.1016/j.compbiomed.2023.107490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND A major threat in combat scenarios is the 'behind armor blunt trauma' (BABT) of a non-penetrating ballistic impact with a ballistic protective plate (BPP). This impact results in pressure waves that propagate through tissues, potentially causing life-threatening damage. To date, there is no standardized procedure for rapid virtual testing of the effectiveness of BPP designs. The objective of this study was to develop a novel, anatomically-accurate, finite element modeling framework, as a decision-making tool to evaluate and rate the biomechanical efficacy of BPPs in protecting the torso from battlefield-acquired non-penetrating impacts. METHODS To simulate a blunt impact with a BPP, two types of BPPs representing generic designs of threat-level III and IV plates, and a generic 5.56 mm bullet were modeled, based on their real dimensions, physical and mechanical characteristics (plate level-III is smaller, thinner, and lighter than plate level-IV). The model was validated by phantom testing. RESULTS Plate level-IV induced greater strains and stresses in the superficial tissues post the ballistic impact, due to the fact that it is larger, thicker and heavier than plate level-III; the shock wave which is transferred to the superficial tissues behind the BPP is greater in the case of a non-penetrating impact. For example - the area under volumetric tissue exposure histograms of strains and stresses for the skin and adipose tissues were 16.6-19.2% and 17.3-20.3% greater in the case of plate level-IV, for strains and stresses, respectively. The validation demonstrates a strong agreement between the physical phantom experiment and the simulation, with only a 6.37% difference between them. CONCLUSIONS Our modelling provides a versatile, powerful testing framework for both industry and clients of BPPs at the prototype design phase, or for quantitative standardized evaluations of candidate products in purchasing decisions and bids.
Collapse
Affiliation(s)
- Maayan Lustig
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Epstein
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Mayrovitz HN, Shams E, Astudillo A, Jain A. Tissue Dielectric Constant and Skin Stiffness Relationships in Lower Extremity Lymphedema. Lymphat Res Biol 2023; 21:439-446. [PMID: 37172282 DOI: 10.1089/lrb.2022.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Background: Lower extremity lymphedema or edema (LELE) may progressively transition from a state of excess tissue fluid to increased fat accumulation and collagen deposition, with tissue fibrosis and hardening. Such changes may lead to altered tissue water holding and thereby impact tissue dielectric constant (TDC). This study seeks to evaluate the relationship between TDC and tissue indentation force (TIF) in patients with LELE and assess the utility of the leg/arm TDC ratio (LAR) as an indicator of LELE. Methods and Results: Thirty females (49-91 years) with previously diagnosed LELE were evaluated during a scheduled session. TDC and TIF were measured 8 cm proximal to the medial malleolus on the medial and lateral aspects of both legs and on one forearm 8 cm distal to the antecubital fossa. The TDC-TIC relationship and the LAR were subsequently determined. Main results showed an absence of a significant correlation between TDC and TIF on medial or lateral leg sites but a positive correlation on the normal forearm site. Further, LAR values exceeded the published proposed threshold of 1.35 for 29/30 patients when using medial-side TDC values and 28/30 patients when using lateral-side TDC values. Conclusions: Findings suggest that for patients with LELE, TDC values are significantly elevated on medial and lateral standardized sites. The LAR determined using either medial or lateral sites that are similar to each other and have values consistent with a lymphedema threshold of 1.35. In edematous legs of the type evaluated herein, there is no apparent relationship between TDC values and indentation force.
Collapse
Affiliation(s)
- Harvey N Mayrovitz
- Division of Physiology, Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida, USA
| | - Elham Shams
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, Florida, USA
| | - Andrea Astudillo
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, Florida, USA
| | - Aakangsha Jain
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, Florida, USA
| |
Collapse
|
10
|
Truong DD, Weistuch C, Murgas KA, Deasy JO, Mikos AG, Tannenbaum A, Ludwig J. Mapping the Single-cell Differentiation Landscape of Osteosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.555156. [PMID: 37745374 PMCID: PMC10515803 DOI: 10.1101/2023.09.13.555156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The genetic and intratumoral heterogeneity observed in human osteosarcomas (OS) poses challenges for drug development and the study of cell fate, plasticity, and differentiation, processes linked to tumor grade, cell metastasis, and survival. To pinpoint errors in OS differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs MSCs toward adipogenic and osteoblastic fates. Incorporating pre-existing chondrocyte data, we applied trajectory analysis and non-negative matrix factorization (NMF) to generate the first human mesenchymal differentiation atlas. This 'roadmap' served as a reference to delineate the cellular composition of morphologically complex OS tumors and quantify each cell's lineage commitment. Projecting these signatures onto a bulk RNA-seq OS dataset unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. Our study takes the critical first step in accurately quantifying OS differentiation and lineage, a prerequisite to better understanding global differentiation bottlenecks that might someday be targeted therapeutically.
Collapse
Affiliation(s)
- Danh D. Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin A. Murgas
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Allen Tannenbaum
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
- Department of Computer Science, Stony Brook University, Stony Brook, NY
| | - Joseph Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
11
|
Elouneg A, Chambert J, Lejeune A, Lucot Q, Jacquet E, Bordas SPA. Anisotropic mechanical characterization of human skin by in vivo multi-axial ring suction test. J Mech Behav Biomed Mater 2023; 141:105779. [PMID: 36940583 DOI: 10.1016/j.jmbbm.2023.105779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Human skin is a soft tissue behaving as an anisotropic material. The anisotropy emerges from the alignment of collagen fibers in the dermis, which causes the skin to exhibit greater stiffness in a certain direction, known as Langer's line. The importance of determining this anisotropy axis lies in assisting surgeons in making incisions that do not produce undesirable scars. In this paper, we introduce an open-source numerical framework, MARSAC (Multi-Axial Ring Suction for Anisotropy Characterization: https://github.com/aflahelouneg/MARSAC), adapted to a commercial device CutiScan CS 100® that applies a suction load on an annular section, causing a multi-axial stretch in the central zone, where in-plane displacements are captured by a camera. The presented framework receives inputs from a video file and converts them into displacement fields through Digital Image Correlation (DIC) technique. From the latter and based on an analytical model, the method assesses the anisotropic material parameters of human skin: Langer's line ϕ, and the elastic moduli E1 and E2 along the principal axes, providing that the Poisson's ratio is fixed. The pipeline was applied to a public data repository, https://search-data.ubfc.fr/femto/FR-18008901306731-2021-08-25_In-vivo-skin-anisotropy-dataset-for-a-young-man.html, containing 30 test series performed on a forearm of a Caucasian subject. As a result, the identified parameter averages, ϕˆ=40.9±8.2∘ and the anisotropy ratio E1ˆ/E2ˆ=3.14±1.60, were in accordance with the literature. The intra-subject analysis showed a reliable assessment of ϕ and E2. As skin anisotropy varies from site to site and from subject to subject, the novelty of the method consists in (i) an optimal utilization of CutiScan CS 100® probe to measure the Langer's line accurately and rapidly on small areas with a minimum diameter of 14mm, (ii) validation of an analytical model based on deformation ellipticity.
Collapse
Affiliation(s)
- A Elouneg
- Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France; Institute of Computational Engineering and Sciences, Department of Engineering, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| | - J Chambert
- Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France
| | - A Lejeune
- Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France
| | - Q Lucot
- Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France
| | - E Jacquet
- Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France
| | - S P A Bordas
- Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France; Institute of Computational Engineering and Sciences, Department of Engineering, Université du Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
12
|
Neumann EE, Doherty S, Bena J, Erdemir A. Role of multi-layer tissue composition of musculoskeletal extremities for prediction of in vivo surface indentation response and layer deformations. PLoS One 2023; 18:e0284721. [PMID: 37083580 PMCID: PMC10121013 DOI: 10.1371/journal.pone.0284721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Emergent mechanics of musculoskeletal extremities (surface indentation stiffness and tissue deformation characteristics) depend on the underlying composition and mechanics of each soft tissue layer (i.e. skin, fat, and muscle). Limited experimental studies have been performed to explore the layer specific relationships that contribute to the surface indentation response. The goal of this study was to examine through statistical modeling how the soft tissue architecture contributed to the aggregate mechanical surface response across 8 different sites of the upper and lower extremities. A publicly available dataset was used to examine the relationship of soft tissue thickness (fat and muscle) to bulk tissue surface compliance. Models required only initial tissue layer thicknesses, making them usable in the future with only a static ultrasound image. Two physics inspired models (series of linear springs), which allowed reduced statistical representations (combined locations and location specific), were explored to determine the best predictability of surface compliance and later individual layer deformations. When considering the predictability of the experimental surface compliance, the physics inspired combined locations model showed an improvement over the location specific model (percent difference of 25.4 +/- 27.9% and 29.7 +/- 31.8% for the combined locations and location specific models, respectively). While the statistical models presented in this study show that tissue compliance relies on the individual layer thicknesses, it is clear that there are other variables that need to be accounted for to improve the model. In addition, the individual layer deformations of fat and muscle tissues can be predicted reasonably well with the physics inspired models, however additional parameters may improve the robustness of the model outcomes, specifically in regard to capturing subject specificity.
Collapse
Affiliation(s)
- Erica E Neumann
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Sean Doherty
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - James Bena
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States of America
| | - Ahmet Erdemir
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| |
Collapse
|
13
|
Dow LP, Gaietta G, Kaufman Y, Swift MF, Lemos M, Lane K, Hopcroft M, Bezault A, Sauvanet C, Volkmann N, Pruitt BL, Hanein D. Morphological control enables nanometer-scale dissection of cell-cell signaling complexes. Nat Commun 2022; 13:7831. [PMID: 36539423 PMCID: PMC9768166 DOI: 10.1038/s41467-022-35409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Protein micropatterning enables robust control of cell positioning on electron-microscopy substrates for cryogenic electron tomography (cryo-ET). However, the combination of regulated cell boundaries and the underlying electron-microscopy substrate (EM-grids) provides a poorly understood microenvironment for cell biology. Because substrate stiffness and morphology affect cellular behavior, we devised protocols to characterize the nanometer-scale details of the protein micropatterns on EM-grids by combining cryo-ET, atomic force microscopy, and scanning electron microscopy. Measuring force displacement characteristics of holey carbon EM-grids, we found that their effective spring constant is similar to physiological values expected from skin tissues. Despite their apparent smoothness at light-microscopy resolution, spatial boundaries of the protein micropatterns are irregular at nanometer scale. Our protein micropatterning workflow provides the means to steer both positioning and morphology of cell doublets to determine nanometer details of punctate adherens junctions. Our workflow serves as the foundation for studying the fundamental structural changes governing cell-cell signaling.
Collapse
Affiliation(s)
- Liam P. Dow
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Guido Gaietta
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA
| | - Yair Kaufman
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Mark F. Swift
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA
| | - Moara Lemos
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Kerry Lane
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Matthew Hopcroft
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Armel Bezault
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Cécile Sauvanet
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Niels Volkmann
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA ,Institut Pasteur, Université de Paris, CNRS UMR3528, Structural Image Analysis Unit, Paris, France
| | - Beth L. Pruitt
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Dorit Hanein
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA ,grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France ,grid.133342.40000 0004 1936 9676Present Address: Department of Chemistry and Biochemistry, and of Biomedical Engineering, University of California, Santa Barbara, CA USA
| |
Collapse
|
14
|
Yang X, Zhao R, Solav D, Yang X, Lee DR, Sparrman B, Fan Y, Herr H. Material, design, and fabrication of custom prosthetic liners for lower-extremity amputees: A review. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
Doherty S, Landis B, Owings TM, Erdemir A. Template models for simulation of surface manipulation of musculoskeletal extremities. PLoS One 2022; 17:e0272051. [PMID: 35969593 PMCID: PMC9377586 DOI: 10.1371/journal.pone.0272051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Capturing the surface mechanics of musculoskeletal extremities would enhance the realism of life-like mechanics imposed on the limbs within surgical simulations haptics. Other fields that rely on surface manipulation, such as garment or prosthetic design, would also benefit from characterization of tissue surface mechanics. Eight homogeneous tissue models were developed for the upper and lower legs and arms of two donors. Ultrasound indentation data was used to drive an inverse finite element analysis for individualized determination of region-specific material coefficients for the lumped tissue. A novel calibration strategy was implemented by using a ratio based adjustment of tissue properties from linear regression of model predicted and experimental responses. This strategy reduced requirement of simulations to an average of under four iterations. These free and open-source specimen-specific models can serve as templates for simulations focused on mechanical manipulations of limb surfaces.
Collapse
Affiliation(s)
- Sean Doherty
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ben Landis
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Tammy M. Owings
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ahmet Erdemir
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Tringides CM, Mooney DJ. Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107207. [PMID: 34716730 DOI: 10.1002/adma.202107207] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Surface electrode arrays are mainly fabricated from rigid or elastic materials, and precisely manipulated ductile metal films, which offer limited stretchability. However, the living tissues to which they are applied are nonlinear viscoelastic materials, which can undergo significant mechanical deformation in dynamic biological environments. Further, the same arrays and compositions are often repurposed for vastly different tissues rather than optimizing the materials and mechanical properties of the implant for the target application. By first characterizing the desired biological environment, and then designing a technology for a particular organ, surface electrode arrays may be more conformable, and offer better interfaces to tissues while causing less damage. Here, the various materials used in each component of a surface electrode array are first reviewed, and then electrically active implants in three specific biological systems, the nervous system, the muscular system, and skin, are described. Finally, the fabrication of next-generation surface arrays that overcome current limitations is discussed.
Collapse
Affiliation(s)
- Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
17
|
Kumat SS, Shiakolas PS. Design, inverted vat photopolymerization 3D printing, and initial characterization of a miniature force sensor for localized in vivo tissue measurements. 3D Print Med 2022; 8:1. [PMID: 34982295 PMCID: PMC8725558 DOI: 10.1186/s41205-021-00128-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Background Tissue healthiness could be assessed by evaluating its viscoelastic properties through localized contact reaction force measurements to obtain quantitative time history information. To evaluate these properties for hard to reach and confined areas of the human body, miniature force sensors with size constraints and appropriate load capabilities are needed. This research article reports on the design, fabrication, integration, characterization, and in vivo experimentation of a uniaxial miniature force sensor on a human forearm. Methods The strain gauge based sensor components were designed to meet dimensional constraints (diameter ≤3.5mm), safety factor (≥3) and performance specifications (maximum applied load, resolution, sensitivity, and accuracy). The sensing element was fabricated using traditional machining. Inverted vat photopolymerization technology was used to prototype complex components on a Form3 printer; micro-component orientation for fabrication challenges were overcome through experimentation. The sensor performance was characterized using dead weights and a LabVIEW based custom developed data acquisition system. The operational performance was evaluated by in vivo measurements on a human forearm; the relaxation data were used to calculate the Voigt model viscoelastic coefficient. Results The three dimensional (3D) printed components exhibited good dimensional accuracy (maximum deviation of 183μm). The assembled sensor exhibited linear behavior (regression coefficient of R2=0.999) and met desired performance specifications of 3.4 safety factor, 1.2N load capacity, 18mN resolution, and 3.13% accuracy. The in vivo experimentally obtained relaxation data were analyzed using the Voigt model yielding a viscoelastic coefficient τ=12.38sec and a curve-fit regression coefficient of R2=0.992. Conclusions This research presented the successful design, use of 3D printing for component fabrication, integration, characterization, and analysis of initial in vivo collected measurements with excellent performance for a miniature force sensor for the assessment of tissue viscoelastic properties. Through this research certain limitations were identified, however the initial sensor performance was promising and encouraging to continue the work to improve the sensor. This micro-force sensor could be used to obtain tissue quantitative data to assess tissue healthiness for medical care over extended time periods.
Collapse
Affiliation(s)
- Shashank S Kumat
- Mechanical and Aerospace Engineering Department, The University of Texas at Arlington, S Nedderman Dr, Arlington, 76019, TX, USA
| | - Panos S Shiakolas
- Mechanical and Aerospace Engineering Department, The University of Texas at Arlington, S Nedderman Dr, Arlington, 76019, TX, USA.
| |
Collapse
|
18
|
Mostafavi Yazdi SJ, Baqersad J. Mechanical modeling and characterization of human skin: A review. J Biomech 2021; 130:110864. [PMID: 34844034 DOI: 10.1016/j.jbiomech.2021.110864] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
This paper reviews the advances made in recent years on modeling approaches and experimental techniques to characterize the mechanical properties of human skin. The skin is the largest organ of the human body that has a complex multi-layered structure with different mechanical behaviors. The mechanical properties of human skin play an important role in distinguishing between healthy and unhealthy skin. Furthermore, knowing these mechanical properties enables computer simulation, skin research, clinical studies, as well as diagnosis and treatment monitoring of skin diseases. This paper reviews the recent efforts on modeling skin using linear, nonlinear, viscoelastic, and anisotropic materials. The work also focuses on aging effects, microstructure analysis, and non-invasive methods for skin testing. A detailed explanation of the skin structure and numerical models, such as finite element models, are discussed in this work. This work also compares different experimental methods that measure the mechanical properties of human skin. The work reviews the experimental results in the literature and shows how the mechanical properties of human skin vary with the skin sites, the layers, and the structure of human skin. The paper also discusses how state-of-the-art technology can advance skin research.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mostafavi Yazdi
- NVH and Experimental Mechanics Laboratory, Department of Mechanical Engineering, Kettering University, 1700 University Ave, Flint, MI 48504, USA.
| | - Javad Baqersad
- NVH and Experimental Mechanics Laboratory, Department of Mechanical Engineering, Kettering University, 1700 University Ave, Flint, MI 48504, USA
| |
Collapse
|
19
|
Hosseini M, Shafiee A. Engineering Bioactive Scaffolds for Skin Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101384. [PMID: 34313003 DOI: 10.1002/smll.202101384] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Indexed: 06/13/2023]
Abstract
Large skin wounds pose a major clinical challenge. Scarcity of donor site and postsurgical scarring contribute to the incomplete or partial loss of function and aesthetic concerns in skin wound patients. Currently, a wide variety of skin grafts are being applied in clinical settings. Scaffolds are used to overcome the issues related to the misaligned architecture of the repaired skin tissues. The current review summarizes the contribution of biomaterials to wound healing and skin regeneration and addresses the existing limitations in skin grafting. Then, the clinically approved biologic and synthetic skin substitutes are extensively reviewed. Next, the techniques for modification of skin grafts aiming for enhanced tissue regeneration are outlined, and a summary of different growth factor delivery systems using biomaterials is presented. Considering the significant progress in biomaterial science and manufacturing technologies, the idea of biomaterial-based skin grafts with the ability for scarless wound healing and reconstructing full skin organ is more achievable than ever.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
20
|
Khuyagbaatar B, Lee SJ, Bayarjargal U, Cheon M, Batbayar T, Kim YH. Contribution of a distal radioulnar joint stabilizer on forearm stability: A modeling study. Proc Inst Mech Eng H 2021; 235:819-826. [PMID: 33878979 DOI: 10.1177/09544119211011334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Instability of the forearm is a complex problem that leads to pain and limited motions. Up to this time, no universal consensus has yet been reached as regards the optimal treatment for forearm instability. In some cases, conservative treatments are recommended for forearm instability injuries. However, quantitative studies on the conservative treatment of forearm instability are lacking. The present study developed a finite element model of the forearm to investigate the contribution of the distal radioulnar joint stabilizer on forearm stability. The stabilizer was designed to provide stability between the radius and ulna. The forearm model with and without the stabilizer was tested using the pure transverse separation and radial pull test for the different ligament sectioned models. The percentage contribution of the stabilizer and ligament structures resisting the load on the forearm was estimated. For the transverse stability of the forearm, the central band resisted approximately 50% of the total transverse load. In the longitudinal instability, the interosseous membrane resisted approximately 70% of the axial load. With the stabilizer, models showed that the stabilizer provided the transverse stability and resisted almost 1/4 of the total transverse load in the ligament sectioned models. The stabilizer provided transverse stability and reduced the loading on the ligaments. We suggested that a stabilizer can be applied in the conservative management of patients who do not have the gross longitudinal instability with the interosseous membrane and the triangular fibrocartilage complex disruption.
Collapse
Affiliation(s)
- Batbayar Khuyagbaatar
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea.,Biomechanical research laboratory, Department of Technical Mechanics, School of Mechanical Engineering and Transportation, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
| | - Sang-Jin Lee
- Department of Orthopaedics, Seoul Bonbridge Hospital, Seoul, Korea
| | - Ulziikhutag Bayarjargal
- Department of Electronic Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Korea
| | - Maro Cheon
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea
| | - Temuujin Batbayar
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea
| | - Yoon Hyuk Kim
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea.,Integrated Education Institute for Frontier Science & Technology (BK21 four), Kyung Hee University Kyung Hee University, Yongin, Korea
| |
Collapse
|
21
|
Iravanimanesh S, Nazari MA, Jafarbeglou F, Mahjoob M, Azadi M. Extracting the elasticity of the human skin in microscale and in-vivo from atomic force microscopy experiments using viscoelastic models. Comput Methods Biomech Biomed Engin 2020; 24:188-202. [PMID: 32969746 DOI: 10.1080/10255842.2020.1821000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Detecting mechanical properties of the intact skin in-vivo leads to a novel quantitative method to diagnose skin diseases and to monitor skin conditions in clinical settings. Current research and clinical methods that detect skin mechanics have major limitations. The in-vitro experiments are done in non-physiological conditions and in-vivo clinical methods measurer unwanted mechanics of underneath fat and muscle tissues but report the measurement as skin mechanics. An ideal skin mechanics should be captured at skin scale (i.e., micron-scale) and in-vivo. However, extreme challenges of capturing the in-vivo skin mechanics in micron-scale including skin motion due to heart beep, breathing and movement of the subject, has hindered measurement of skin mechanics in-vivo.This study for the first time captures micro-scale mechanics (elasticity and viscoelasticity) of top layers of skin (i.e., the stratum corneum (SC) and stratum granulosum (SG)) in-vivo. In this study, the relevant literature is reviewed and Atomic Force Microscopy (AFM) was used to capture force-indentation curves on the fingertip skin of four human subjects at a high indentation speed of 40 μm/s. The skin of the same subject were tested in-vitro at 10 different indentation speeds ranging from 0.125 to 40 μm/s by AFM. This study extracts the in-vivo elasticity of SC and SG by detecting time-dependency of tested tissue using a fractional viscoelastic standard linear model developed for indentation. The in-vivo elasticity of SC and SG were smaller in females and in-vitro elasticity were higher than that of in-vivo results. The results were consistent with previous observations.
Collapse
Affiliation(s)
- Sahba Iravanimanesh
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Ali Nazari
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fereshteh Jafarbeglou
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Mahjoob
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Center for Advanced Orthopedic Studies, BID Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mojtaba Azadi
- School of Engineering, College of Science and Engineering, San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
22
|
Prince M, Kenney LP, Howard D. A pin-array method for capturing tissue deformation under defined pressure distributions and its application to prosthetic socket design. Med Eng Phys 2020; 84:136-143. [PMID: 32977910 DOI: 10.1016/j.medengphy.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 01/02/2023]
Abstract
The Fit4Purpose project aims to develop upper limb prosthetic devices which are suitable for deployment in lower- and middle-income countries (LMIC's). Open-frame trans-radial socket designs are being considered, formed of several, linked components, including pads which interface directly with the skin surface. A mechanical tool has been developed to aid the design of pad shapes, using an array of square brass bars of varying lengths (i.e. a pin-array) to apply a chosen normal pressure distribution to an area of tissue. The shape to which the tissue is displaced can then be captured by clamping the bars together to fix their relative positions. The device is described, then three short studies are used to demonstrate its use on the forearm of a single, anatomically intact subject. The first investigates the effect of array size on the measured surface stiffness, finding an inverse relationship with a similar characteristic to previous published results. The second tests the hypothesis that a pad with a shape which duplicates that captured by the device will generate a similar overall load to the original pins if applied to the same region of tissue. The results support the hypothesis, but also highlight the sensitivity of the interface loading to the underlying muscle activation. Finally, the tool is used to demonstrate that different tissue displacements are observed when the same pressure distribution is applied to different areas of the forearm. Whilst the tool itself is a simple device, and the techniques used are not sophisticated, the studies suggest that the approach could be useful in pad design. Although it is clearly not appropriate for clinical application in its current form, there may be potential to develop the concept into a more practical device. Other applications could include the design of other devices which interface with the skin, the generation of data for validation of finite element models, including the application of known pressure distributions and tissue deformations during Magnetic Resonance Imaging, and the assessment of matrix pressure sensing devices on compliant materials with complex geometries.
Collapse
Affiliation(s)
- Michael Prince
- Centre for Health Sciences Research, University of Salford, PO33 Brian Blatchford Building, Frederick Road Campus, M6 6PU, United Kingdom.
| | - Laurence Pj Kenney
- Centre for Health Sciences Research, University of Salford, PO43 Brian Blatchford Building, Frederick Road Campus, M6 6PU, United Kingdom
| | - Dave Howard
- Centre for Health Sciences Research, University of Salford, Newton Building Room UG3, Frederick Road Campus, M6 6PU, United Kingdom
| |
Collapse
|
23
|
Kaiser NJ, Bellows JA, Kant RJ, Coulombe KLK. Digital Design and Automated Fabrication of Bespoke Collagen Microfiber Scaffolds. Tissue Eng Part C Methods 2019; 25:687-700. [PMID: 31017039 PMCID: PMC6859695 DOI: 10.1089/ten.tec.2018.0379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
A great variety of natural and synthetic polymer materials have been utilized in soft tissue engineering as extracellular matrix (ECM) materials. Natural polymers, such as collagen and fibrin hydrogels, have experienced especially broad adoption due to the high density of cell adhesion sites compared to their synthetic counterparts, ready availability, and ease of use. However, these and other hydrogels lack the structural and mechanical anisotropy that define the ECM in many tissues, such as skeletal and cardiac muscle, tendon, and cartilage. Herein, we present a facile, low-cost, and automated method of preparing collagen microfibers, organizing these fibers into precisely controlled mesh designs, and embedding these meshes in a bulk hydrogel, creating a composite biomaterial suitable for a wide variety of tissue engineering and regenerative medicine applications. With the assistance of custom software tools described herein, mesh patterns are designed by a digital graphical user interface and translated into protocols that are executed by a custom mesh collection and organization device. We demonstrate a high degree of precision and reproducibility in both fiber and mesh fabrication, evaluate single fiber mechanical properties, and provide evidence of collagen self-assembly in the microfibers under standard cell culture conditions. This work offers a powerful, flexible platform for the study of tissue engineering and cell material interactions, as well as the development of therapeutic biomaterials in the form of custom collagen microfiber patterns that will be accessible to all through the methods and techniques described here. Impact Statement Collagen microfiber meshes have immediate and broad applications in tissue engineering research and show high potential for later use in clinical therapeutics due to their compositional similarities to native extracellular matrix and tunable structural and mechanical characteristics. Physical and biological characterizations of these meshes demonstrate physiologically relevant mechanical properties, native-like collagen structure, and cytocompatibility. The methods presented herein not only describe a process through which custom collagen microfiber meshes can be fabricated but also provide the reader with detailed device plans and software tools to produce their own bespoke meshes through a precise, consistent, and automated process.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Jessica A Bellows
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| |
Collapse
|
24
|
Regional variations of in vivo surface stiffness of soft tissue layers of musculoskeletal extremities. J Biomech 2019; 95:109307. [DOI: 10.1016/j.jbiomech.2019.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022]
|
25
|
Lu Y, Yang Z, Wang Y. A critical review on the three-dimensional finite element modelling of the compression therapy for chronic venous insufficiency. Proc Inst Mech Eng H 2019; 233:1089-1099. [PMID: 31319767 DOI: 10.1177/0954411919865385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compression therapy is an adjuvant physical intervention providing the benefits of calibrated compression and controlled stretch and consequently is increasingly applied for the treatment of chronic venous insufficiency. However, the mechanism of the compression therapy for chronic venous insufficiency is still unclear. To elaborate the mechanism of compression therapy, in recent years, the computational modelling technique, especially the finite element modelling method, has been widely used. However, there are still many unclear issues regarding the finite element modelling of compression therapy, for example, the selection of appropriate material models, the validation of the finite element predictions, the post-processing of the results. To shed light on these unclear issues, this study provides a state-of-the-art review on the application of finite element modelling technique in the compression therapy for chronic venous insufficiency. The aims of the present study are as follows: (1) to provide guidance on the application of the finite element technique in healthcare and relevant fields, (2) to enhance the understanding of the mechanism of compression therapy and (3) to foster the collaborations among different disciplines. To achieve these aims, the following parts are reviewed: (1) the background on chronic venous insufficiency and the computational modelling approach, (2) the acquisition of medical images and the procedure for generating the finite element model, (3) the definition of material models in the finite element model, (4) the methods for validating the finite element predictions, (5) the post-processing of the finite element results and (6) future challenges in the finite element modelling of compression therapy.
Collapse
Affiliation(s)
- Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China.,State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China
| | - Zhuoyue Yang
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Yongxuan Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
26
|
Linking microvascular collapse to tissue hypoxia in a multiscale model of pressure ulcer initiation. Biomech Model Mechanobiol 2019; 18:1947-1964. [PMID: 31203488 DOI: 10.1007/s10237-019-01187-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022]
Abstract
Pressure ulcers are devastating injuries that disproportionately affect the older adult population. The initiating factor of pressure ulcers is local ischemia, or lack of perfusion at the microvascular level, following tissue compression against bony prominences. In turn, lack of blood flow leads to a drop in oxygen concentration, i.e, hypoxia, that ultimately leads to cell death, tissue necrosis, and disruption of tissue continuity. Despite our qualitative understanding of the initiating mechanisms of pressure ulcers, we are lacking quantitative knowledge of the relationship between applied pressure, skin mechanical properties as well as structure, and tissue hypoxia. This gap in our understanding is, at least in part, due to the limitations of current imaging technologies that cannot simultaneously image the microvascular architecture, while quantifying tissue deformation. We overcome this limitation in our work by combining realistic microvascular geometries with appropriate mechanical constitutive models into a microscale finite element model of the skin. By solving boundary value problems on a representative volume element via the finite element method, we can predict blood volume fractions in response to physiological skin loading conditions (i.e., shear and compression). We then use blood volume fraction as a homogenized variable to couple tissue-level skin mechanics to an oxygen diffusion model. With our model, we find that moderate levels of pressure applied to the outer skin surface lead to oxygen concentration contours indicative of tissue hypoxia. For instance, we show that applying a pressure of 60 kPa at the skin surface leads to a decrease in oxygen partial pressure from a physiological value of 65 mmHg to a hypoxic level of 31 mmHg. Additionally, we explore the sensitivity of local oxygen concentration to skin thickness and tissue stiffness, two age-related skin parameters. We find that, for a given pressure, oxygen concentration decreases with decreasing skin thickness and skin stiffness. Future work will include rigorous calibration and validation of this model, which may render our work an important tool toward developing better prevention and treatment tools for pressure ulcers specifically targeted toward the older adult patient population.
Collapse
|
27
|
Micropipette force sensors for in vivo force measurements on single cells and multicellular microorganisms. Nat Protoc 2019; 14:594-615. [PMID: 30697007 DOI: 10.1038/s41596-018-0110-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Measuring forces from the piconewton to millinewton range is of great importance for the study of living systems from a biophysical perspective. The use of flexible micropipettes as highly sensitive force probes has become established in the biophysical community, advancing our understanding of cellular processes and microbial behavior. The micropipette force sensor (MFS) technique relies on measurement of the forces acting on a force-calibrated, hollow glass micropipette by optically detecting its deflections. The MFS technique covers a wide micro- and mesoscopic regime of detectable forces (tens of piconewtons to millinewtons) and sample sizes (micrometers to millimeters), does not require gluing of the sample to the cantilever, and allows simultaneous optical imaging of the sample throughout the experiment. Here, we provide a detailed protocol describing how to manufacture and calibrate the micropipettes, as well as how to successfully design, perform, and troubleshoot MFS experiments. We exemplify our approach using the model nematode Caenorhabditis elegans, but by following this protocol, a wide variety of living samples, ranging from single cells to multicellular aggregates and millimeter-sized organisms, can be studied in vivo, with a force resolution as low as 10 pN. A skilled (under)graduate student can master the technique in ~1-2 months. The whole protocol takes ~1-2 d to finish.
Collapse
|
28
|
Chen X, Li J, Li Q, Zhang W, Lei Z, Qin D, Pan Z, Li J, Li X. Spatial-Temporal Changes of Mechanical Microenvironment in Skin Wounds During Negative Pressure Wound Therapy. ACS Biomater Sci Eng 2019; 5:1762-1770. [PMID: 33405552 DOI: 10.1021/acsbiomaterials.8b01554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell migration, proliferation, and differentiation are regulated by mechanical cues during skin wound healing. Negative pressure wound therapy (NPWT) reduces the healing period by optimizing the mechanical microenvironment of the wound bed. Under NPWT, it remains elusive how the mechanical microenvironment (e.g., stiffness, strain gradients) changes both in time and space during wound healing. To illustrate this, the healing time of full-thickness skin wounds under NPWT, with pressure settings ranging from -50 to -150 mm Hg, were evaluated and compared with gauze dressing treatments (control group), and three-dimensional finite element models of full-thickness skin wounds on days 1 and 5 after treatment were developed on the basis of MR 3D imaging data. Shear wave elastography (SWE) was applied to detect the stiffness of wound soft tissue on days 1 and 5, and nonlinear finite element analysis (FEA) was used to represent the spatial-temporal environment of the 3D strain field of the wound under NPWT vs the control group. Compared with the control group, NPWT with -50, -80, and -125 mm Hg promoted wound healing. SWE showed that the elastic modulus of wounded skin increased during healing. Meanwhile, the elastic modulus in wounded skin under NPWT was significantly smaller than in the control group. Strain and its gradient decreased under NPWT during wound healing, while no significant change was observed in the control group. This study, which is based on MR 3D imaging, shear wave elastography, and nonlinear FEA, provides an in-depth understanding of changes of the skin mechanical microenvironment under NPWT in the time-space dimension and the associated wound healing.
Collapse
|
29
|
Karakashian K, Pike C, van Loon R. Computational investigation of the Laplace law in compression therapy. J Biomech 2019; 85:6-17. [DOI: 10.1016/j.jbiomech.2018.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
|
30
|
Campo A, McGarry MD, Panis T, Dirckx J, Konofagou E. Effect of Local Neck Anatomy on Localized One-Dimensional Measurements of Arterial Stiffness: A Finite-Element Model Study. J Biomech Eng 2019; 141:2720656. [PMID: 30702744 DOI: 10.1115/1.4042435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases (CVD) are the most prevalent cause of death in the Western World, and their prevalence is only expected to rise. Several screening modalities aim at detecting CVD at the early stages. A common target for early screening is common carotid artery (CCA) stiffness, as reflected in the pulse wave velocity (PWV). For assessing the CCA stiffness using ultrasound (US), one-dimensional (1D) measurements along the CCA axis are typically used, ignoring possible boundary conditions of neck anatomy and the US probe itself. In this study, the effect of stresses and deformations induced by the US probe, and the effect of anatomy surrounding CCA on a simulated 1D stiffness measurement (PWVus) is compared with the ground truth stiffness (PWVgt) in 60 finite-element models (FEM) derived from anatomical computed tomography (CT) scans of ten healthy male volunteers. Based on prior knowledge from the literature, and from results in this study, we conclude that it is safe to approximate arterial stiffness using 1D measurements of compliance or pulse wave velocity, regardless of boundary conditions emerging from the anatomy or from the measurement procedure.
Collapse
Affiliation(s)
- Adriaan Campo
- Ultrasound Elasticity Imaging Laboratory, Columbia University, Columbia University Medical Campus, 630 West 168th Street, Physicians & Surgeons 19-418, New York, NY 10032.,Laboratory of Biomedical Physics, Antwerp University, Campus Groenenborger, Groenenborgerlaan 171 G.U.339, Antwerp 2020, Belgium e-mail:
| | - Matthew D McGarry
- Thayer School of Engineering Dartmouth, 14 Engineering Drive, Hanover, NH 03755 e-mail:
| | - Thomas Panis
- Radiology Department, University Hospital of Brussels, UZ Brussel, Campus Jette, Laarbeeklaan 101, Brussels B-1090, Belgium e-mail:
| | - Joris Dirckx
- Laboratory of Biomedical Physics, Antwerp University, Campus Groenenborger, Groenenborgerlaan 171 G.U.342, Antwerp 2020, Belgium e-mail:
| | - Elisa Konofagou
- Ultrasound Elasticity Imaging Laboratory, Columbia University, Columbia University Medical Campus, 630 West 168th Street, Physicians & Surgeons 19-418, New York, NY 10032 e-mail:
| |
Collapse
|
31
|
Dong L, Wijesinghe P, Sampson DD, Kennedy BF, Munro PRT, Oberai AA. Volumetric quantitative optical coherence elastography with an iterative inversion method. BIOMEDICAL OPTICS EXPRESS 2019; 10:384-398. [PMID: 30800487 PMCID: PMC6377890 DOI: 10.1364/boe.10.000384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 10/26/2018] [Indexed: 05/03/2023]
Abstract
It is widely accepted that accurate mechanical properties of three-dimensional soft tissues and cellular samples are not available on the microscale. Current methods based on optical coherence elastography can measure displacements at the necessary resolution, and over the volumes required for this task. However, in converting this data to maps of elastic properties, they often impose assumptions regarding homogeneity in stress or elastic properties that are violated in most realistic scenarios. Here, we introduce novel, rigorous, and computationally efficient inverse problem techniques that do not make these assumptions, to realize quantitative volumetric elasticity imaging on the microscale. Specifically, we iteratively solve the three-dimensional elasticity inverse problem using displacement maps obtained from compression optical coherence elastography. This is made computationally feasible with adaptive mesh refinement and domain decomposition methods. By employing a transparent, compliant surface layer with known shear modulus as a reference for the measurement, absolute shear modulus values are produced within a millimeter-scale sample volume. We demonstrate the method on phantoms, on a breast cancer sample ex vivo, and on human skin in vivo. Quantitative elastography on this length scale will find wide application in cell biology, tissue engineering and medicine.
Collapse
Affiliation(s)
- Li Dong
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78705, USA
| | - Philip Wijesinghe
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Western Australia, 6009, Australia
- University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Peter R. T. Munro
- Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Assad A. Oberai
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
32
|
Correlation between stress drop and applied strain as a biomarker for tumor detection. J Mech Behav Biomed Mater 2018; 86:450-462. [PMID: 30054237 DOI: 10.1016/j.jmbbm.2018.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/04/2018] [Accepted: 07/15/2018] [Indexed: 11/23/2022]
Abstract
This is the first study to measure the viscoelastic behavior of tumor tissues using stepwise compression-relaxation testing, and investigate the measured (Δσ-ε) relation between stress drop (Δσ) and applied strain (ε) as a biomarker for tumor detection. Stepwise compression-relaxation testing was implemented via a 2D tactile sensor to measure stress drop at each applied strain of a sample. Pearson correlation analysis was conducted to quantify the measured Δσ-ε relation as slope of stress drop versus applied strain (m=Δσ/ε) and coefficient of determination (R2). The measured results on soft materials revealed no dependency of coefficient of determination on the testing parameters and dependency of slope on them. Three groups of tissues: five mouse breast tumor (BT) tissues ex vivo, two mouse pancreatic tumor (PT) tissues in vivo and six normal tissues, were measured by using different testing parameters. Coefficient of determination was found to show significant difference among the center, edge and outside sites of all the BT tissues, and no difference between the BT outside sites and the normal tissues. Coefficient of determination also revealed significant difference between before and after treatment of the PT tissues, and no difference between the PT tissues after treatment and the normal tissues. Moreover, coefficient of determination of the PT tissues before treatment was found to be significantly different from that of the BT center sites, but slope failed to capture their difference. Dummy tumors made of silicon rubbers were found to behave differently from the native tumors. By removing the need of fitting the time-dependent data with a viscoelastic model, this study offered a time-efficient solution to quantifying the viscosity for tumor detection.
Collapse
|
33
|
Abstract
The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.
Collapse
Affiliation(s)
- Hamed Joodaki
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew B Panzer
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
34
|
Bhattacharjee T, Rehg JM, Kemp CC. Inferring Object Properties with a Tactile-Sensing Array Given Varying Joint Stiffness and Velocity. INT J HUM ROBOT 2018. [DOI: 10.1142/s0219843617500244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole-arm tactile sensing enables a robot to sense contact and infer contact properties across its entire arm. Within this paper, we demonstrate that using data-driven methods, a humanoid robot can infer mechanical properties of objects from contact with its forearm during a simple reaching motion. A key issue is the extent to which the performance of data-driven methods can generalize to robot actions that differ from those used during training. To investigate this, we developed an idealized physics-based lumped element model of a robot with a compliant joint making contact with an object. Using this physics-based model, we performed experiments with varied robot, object and environment parameters. We also collected data from a tactile-sensing forearm on a real robot as it made contact with various objects during a simple reaching motion with varied arm velocities and joint stiffnesses. The robot used 1-nearest-neighbor (1-NN) classifiers, hidden Markov models (HMMs), and long short-term memory (LSTM) networks to infer two object properties (hard versus soft and moved versus unmoved) based on features of time-varying tactile sensor data (maximum force, contact area, and contact motion). We found that, in contrast to 1-NN, the performance of LSTMs (with sufficient data availability) and multivariate HMMs successfully generalized to new robot motions with distinct velocities and joint stiffnesses. Compared to single features, using multiple features gave the best results for both experiments with physics-based models and a real-robot.
Collapse
Affiliation(s)
- Tapomayukh Bhattacharjee
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - James M. Rehg
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - Charles C. Kemp
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta GA 30332, USA
| |
Collapse
|
35
|
Liu Y, Chen X, Guo A, Liu S, Hu G. Quantitative Assessments of Mechanical Responses upon Radial Extracorporeal Shock Wave Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700797. [PMID: 29593978 PMCID: PMC5867036 DOI: 10.1002/advs.201700797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 05/03/2023]
Abstract
Although radial extracorporeal shock wave therapy (rESWT) has been widely used to treat orthopedic disorders with promising clinical results, rESWT largely relies on clinicians' personal experiences and arbitrary judgments, without knowing relationships between administration doses and effective doses at target sites. In fact, practitioners lack a general and reliable way to assess propagation and distribution of pressure waves inside biological tissues quantitatively. This study develops a methodology to combine experimental measurements and computational simulations to obtain pressure fields from rESWT through calibrating and validating computational models with experimental measurements. Wave pressures at the bottom of a petri dish and inside biological tissues are measured, respectively, by attaching and implanting flexible membrane sensors. Detailed wave dynamics are simulated through explicit finite element analyses. The data decipher that waves from rESWT radiate directionally and can be modeled as acoustic waves generated from a vibrating circular piston. Models are thus established to correlate pressure amplitudes at the bottom of petri dishes and in the axial direction of biological tissues. Additionally, a pilot simulation upon rESWT for human lumbar reveals a detailed and realistic pressure field mapping. This study will open a new avenue of personalized treatment planning and mechanism research for rESWT.
Collapse
Affiliation(s)
- Yajun Liu
- Orthopedic Shock Wave Treatment CenterSpine Surgery DepartmentBeijing Jishuitan HospitalBeijing100035China
| | - Xiaodong Chen
- The State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Anyi Guo
- Orthopedic Shock Wave Treatment CenterSpine Surgery DepartmentBeijing Jishuitan HospitalBeijing100035China
| | - Sijin Liu
- The State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Guoqing Hu
- The State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
36
|
Virén T, Iivarinen JT, Sarin JK, Harvima I, Mayrovitz HN. Accuracy and reliability of a hand-held in vivo
skin indentation device to assess skin elasticity. Int J Cosmet Sci 2018; 40:134-140. [DOI: 10.1111/ics.12444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/30/2017] [Indexed: 11/29/2022]
Affiliation(s)
- T. Virén
- Department of Applied Physics; University of Eastern Finland; Kuopio Finland
- Cancer Center; Kuopio University Hospital; Kuopio Finland
| | - J. T. Iivarinen
- Department of Applied Physics; University of Eastern Finland; Kuopio Finland
| | - J. K. Sarin
- Department of Applied Physics; University of Eastern Finland; Kuopio Finland
| | - I. Harvima
- Department of Dermatology; University of Eastern Finland and Kuopio University Hospital; Kuopio Finland
| | - H. N. Mayrovitz
- Department of Physiology; College of Medical Sciences; Nova Southeastern University; Ft. Lauderdale Fl USA
| |
Collapse
|
37
|
Salman HE, Yazicioglu Y. Flow-induced vibration analysis of constricted artery models with surrounding soft tissue. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:1913. [PMID: 29092565 DOI: 10.1121/1.5005622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Arterial stenosis is a vascular pathology which leads to serious cardiovascular diseases. Blood flow through a constriction generates sound and vibration due to fluctuating turbulent pressures. Generated vibro-acoustic waves propagate through surrounding soft tissues and reach the skin surface and may provide valuable insight for noninvasive diagnostic purposes. Motivated by the aforementioned phenomena, vibration of constricted arteries is investigated employing computational models. The flow-induced pressure field in an artery is modeled as broadband harmonic pressure loading based on previous studies in the literature and applied on the inner artery wall. Harmonic analysis is performed for determining radial velocity responses on the outer surface of the models. Results indicate that stenosis severities higher than 70% lead to significant increase in response amplitudes, especially at high frequencies between 250 and 600 Hz. The findings agree well with experimental and theoretical results in the literature considering bending mode frequencies, amplitude scales, and mainly excited frequency ranges. It is seen that artery vibration is sensitive to the phase behavior of pressure loading but its effect becomes less significant with the presence of surrounding tissue. As the surrounding tissue thickness increases, radial velocity response amplitudes decrease but the effect of changes in tissue elastic modulus is more pronounced.
Collapse
Affiliation(s)
- Huseyin Enes Salman
- Department of Mechanical Engineering, Middle East Technical University, Dumlupinar Street Number 1, 06800, Ankara, Turkey
| | - Yigit Yazicioglu
- Department of Mechanical Engineering, Middle East Technical University, Dumlupinar Street Number 1, 06800, Ankara, Turkey
| |
Collapse
|
38
|
Leyva-Mendivil MF, Lengiewicz J, Page A, Bressloff NW, Limbert G. Implications of Multi-asperity Contact for Shear Stress Distribution in the Viable Epidermis – An Image-based Finite Element Study. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.biotri.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Es’haghian S, Kennedy KM, Gong P, Li Q, Chin L, Wijesinghe P, Sampson DD, McLaughlin RA, Kennedy BF. In vivo volumetric quantitative micro-elastography of human skin. BIOMEDICAL OPTICS EXPRESS 2017; 8:2458-2471. [PMID: 28663884 PMCID: PMC5480491 DOI: 10.1364/boe.8.002458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 05/17/2023]
Abstract
In this paper, we demonstrate in vivo volumetric quantitative micro-elastography of human skin. Elasticity is estimated at each point in the captured volume by combining local axial strain measured in the skin with local axial stress estimated at the skin surface. This is achieved by utilizing phase-sensitive detection to measure axial displacements resulting from compressive loading of the skin and an overlying, compliant, transparent layer with known stress/strain behavior. We use an imaging probe head that provides optical coherence tomography imaging and compression from the same direction. We demonstrate our technique on a tissue phantom containing a rigid inclusion, and present in vivo elastograms acquired from locations on the hand, wrist, forearm and leg of human volunteers.
Collapse
Affiliation(s)
- Shaghayegh Es’haghian
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Kelsey M. Kennedy
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Peijun Gong
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Qingyun Li
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Lixin Chin
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
- School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Philip Wijesinghe
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - David D. Sampson
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Robert A. McLaughlin
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
- School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
40
|
Young JL, Holle AW, Spatz JP. Nanoscale and mechanical properties of the physiological cell-ECM microenvironment. Exp Cell Res 2015; 343:3-6. [PMID: 26524509 DOI: 10.1016/j.yexcr.2015.10.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022]
Abstract
Studying biological processes in vitro requires faithful and successful reconstitution of the in vivo extracellular matrix (ECM) microenvironment. However, the physiological basis behind in vitro studies is often forgotten or ignored. A number of diverse cell-ECM interactions have been characterized throughout the body and in disease, reflecting the heterogeneous nature of cell niches. Recently, a greater emphasis has been placed on characterizing both the chemical and physical characteristics of the ECM and subsequently mimicking these properties in the lab. Herein, we describe physiological measurement techniques and reported values for the three main physical aspects of the ECM: tissue stiffness, topography, and ligand presentation.
Collapse
Affiliation(s)
- Jennifer L Young
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany.
| | - Andrew W Holle
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany.
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany; Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69047, Germany.
| |
Collapse
|
41
|
Iivarinen JT, Korhonen RK, Jurvelin JS. Modeling of interstitial fluid movement in soft tissue under negative pressure – relevance to treatment of tissue swelling. Comput Methods Biomech Biomed Engin 2015; 19:1089-98. [DOI: 10.1080/10255842.2015.1101073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Estimation of musculotendon kinematics under controlled tendon indentation. J Biomech 2015; 48:3568-76. [PMID: 26321363 DOI: 10.1016/j.jbiomech.2015.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 06/21/2015] [Accepted: 07/21/2015] [Indexed: 11/24/2022]
Abstract
The effects of tendon indentation on musculotendon unit mechanics have been left largely unexplored. Tendon indentation is however routinely used in the tendon reflex exam to diagnose the state of reflex pathways. Because muscle mechanoreceptors are sensitive to mechanical changes of the musculotendon unit, this gap in knowledge could potentially impact our understanding of these neurological exams. Accordingly, we have used ultrasound (US) imaging to compare the effects of tendon indentation with the effects angular rotation of the elbow in six neurologically intact individuals. We used sagittal ultrasound movies of the biceps brachii to compare length changes induced by each of these perturbations. Length changes were quantified using a pixel-tracking protocol. Our results show that a 20mm indentation of the distal tendon is broadly equivalent to a 15° elbow rotation. We also show that within the imaging window the strain differences between the two stretching protocols are statistically insignificant. Finally, we show that there exists a significant linear relationship between the two stretching techniques and that this relationship spans a large rotational angle to indentation depth. We have used a novel tendon probe to administer controlled tendon indentations as a way to characterize musculotendon kinematics. Using this probe, we confirm that tendon indentation can be physiologically equated with joint rotation, and can thus be used as an input for muscle stretching protocols. Furthermore, this is potentially a simpler and more practical alternative to externally imposed angular joint motion.
Collapse
|
43
|
Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research. Stem Cells Int 2015; 2015:167025. [PMID: 26351461 PMCID: PMC4553184 DOI: 10.1155/2015/167025] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/07/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity), viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D) and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement), and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems.
Collapse
Affiliation(s)
| | - Egor Osidak
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Gamaleya Research Institute of Epidemiology and Microbiology Federal State Budgetary Institution, Ministry of Health of the Russian Federation, Gamalei 18, Moscow 123098, Russia
| | - Sergey Domogatsky
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Russian Cardiology Research and Production Center Federal State Budgetary Institution, Ministry of Health of the Russian Federation, 3 Cherepkovskaya 15, Moscow 21552, Russia
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Anna Domogatskaya
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
44
|
Measurement of the quadriceps muscle displacement and strain fields with ultrasound and Digital Image Correlation (DIC) techniques. Ing Rech Biomed 2015. [DOI: 10.1016/j.irbm.2015.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Frauziols F, Molimard J, Navarro L, Badel P, Viallon M, Testa R, Avril S. Prediction of the Biomechanical Effects of Compression Therapy by Finite Element Modeling and Ultrasound Elastography. IEEE Trans Biomed Eng 2015; 62:1011-9. [DOI: 10.1109/tbme.2014.2378553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Es'haghian S, Kennedy KM, Gong P, Sampson DD, McLaughlin RA, Kennedy BF. Optical palpation in vivo: imaging human skin lesions using mechanical contrast. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:16013. [PMID: 25588164 DOI: 10.1117/1.jbo.20.1.016013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/04/2014] [Indexed: 05/02/2023]
Abstract
We demonstrate the first application of the recently proposed method of optical palpation to in vivo imaging of human skin. Optical palpation is a tactile imaging technique that probes the spatial variation of a sample's mechanical properties by producing an en face map of stress measured at the sample surface. This map is determined from the thickness of a translucent, compliant stress sensor placed between a loading element and the sample and is measured using optical coherence tomography. We assess the performance of optical palpation using a handheld imaging probe on skin-mimicking phantoms, and demonstrate its use on human skin lesions. Our results demonstrate the capacity of optical palpation to delineate the boundaries of lesions and to map the mechanical contrast between lesions and the surrounding normal skin.
Collapse
Affiliation(s)
- Shaghayegh Es'haghian
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Kelsey M Kennedy
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Peijun Gong
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - David D Sampson
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, 35 Stirling Highway, Crawley, Western Australia 6009, AustraliabThe University of Western Australia, Centre for Micr
| | - Robert A McLaughlin
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Brendan F Kennedy
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
47
|
Demarre L, Verhaeghe S, Van Hecke A, Clays E, Grypdonck M, Beeckman D. Factors predicting the development of pressure ulcers in an at-risk population who receive standardized preventive care: secondary analyses of a multicentre randomised controlled trial. J Adv Nurs 2014; 71:391-403. [PMID: 25134858 DOI: 10.1111/jan.12497] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2014] [Indexed: 11/28/2022]
Abstract
AIMS To identify predictive factors associated with the development of pressure ulcers in patients at risk who receive standardized preventive care. BACKGROUND Numerous studies have examined factors that predict risk for pressure ulcer development. Only a few studies identified risk factors associated with pressure ulcer development in hospitalized patients receiving standardized preventive care. DESIGN Secondary analyses of data collected in a multicentre randomized controlled trial. METHODS The sample consisted of 610 consecutive patients at risk for pressure ulcer development (Braden Score <17) receiving standardized preventive care measures. Patient demographic information, data on skin and risk assessment, medical history and diagnosis were collected during 26 months (December 2007-January 2010). Predictive factors were identified using multivariate statistics. RESULTS Pressure ulcers in category II-IV were significantly associated with non-blanchable erythema, urogenital disorders and higher body temperature. Predictive factors significantly associated with superficial pressure ulcers were admission to an internal medicine ward, incontinence-associated dermatitis, non-blanchable erythema and a lower Braden score. Superficial sacral pressure ulcers were significantly associated with incontinence-associated dermatitis. CONCLUSIONS Despite the standardized preventive measures they received, hospitalized patients with non-blanchable erythema, urogenital disorders and a higher body temperature were at increased risk for developing pressure ulcers. RELEVANCE TO CLINICAL PRACTICE Improved identification of at-risk patients can be achieved by taking into account specific predictive factors. Even if preventive measures are in place, continuous assessment and tailoring of interventions is necessary in all patients at risk. Daily skin observation can be used to continuously monitor the effectiveness of the intervention.
Collapse
Affiliation(s)
- Liesbet Demarre
- University Centre for Nursing and Midwifery, Ghent University, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Kim WS, Han J, Hwang SJ, Sung JH. An update on niche composition, signaling and functional regulation of the adipose-derived stem cells. Expert Opin Biol Ther 2014; 14:1091-102. [DOI: 10.1517/14712598.2014.907785] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Tang K, Sharpe W, Schulz A, Tam E, Grosse I, Tis J, Cullinane D. Determining bruise etiology in muscle tissue using finite element analysis. J Forensic Sci 2013; 59:371-4. [PMID: 24313678 DOI: 10.1111/1556-4029.12349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/07/2013] [Accepted: 02/03/2013] [Indexed: 11/29/2022]
Abstract
Bruising, the result of capillary failure, is a common physical exam finding due to blunt trauma and, depending on location and severity, a potential indicator of abuse. Despite its clinical relevance, few studies have investigated the etiology of capillary failure. The goal of this study was to determine whether capillaries primarily fail under shear stress or hydraulic-induced tensile stress. An arteriole bifurcating into four capillaries was modeled using ANSYS 14.0 (®) . The capillaries were embedded in muscle tissue and a pressure of 20.4 kPa was applied. Any tensile stress exceeding 8.4 × 10(4) Pa was considered failure. Results showed that failure occurred directly under the impact zone and where capillaries bifurcated, rather than along the line of greatest shear stress, indicating that internal tensile stress is likely the primary mode of capillary failure in bruising. These results are supported by the concept that bruising can occur via blunt trauma in which no shearing lacerations occur.
Collapse
Affiliation(s)
- Kevin Tang
- Biomechanics Laboratory, Deerfield Academy, 7 Boyden Lane Deerfield, Deerfield, MA 01342
| | | | | | | | | | | | | |
Collapse
|
50
|
Iivarinen JT, Korhonen RK, Jurvelin JS. Experimental and numerical analysis of soft tissue stiffness measurement using manual indentation device--significance of indentation geometry and soft tissue thickness. Skin Res Technol 2013; 20:347-54. [PMID: 24267492 DOI: 10.1111/srt.12125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Indentation techniques haves been applied to measure stiffness of human soft tissues. Tissue properties and geometry of the indentation instrument control the measured response. METHODS Mechanical roles of different soft tissues were characterized to understand the performance of the indentation instrument. An optimal instrument design was investigated. Experimental indentations in forearm of human subjects (N = 11) were conducted. Based on peripheral quantitative computed tomography imaging, a finite element (FE) model for indentation was created. The model response was matched with the experimental data. RESULTS Optimized values for the elastic modulus of skin and adipose tissue were 130.2 and 2.5 kPa, respectively. The simulated indentation response was 3.9 ± 1.2 (mean ± SD) and 4.9 ± 2.0 times more sensitive to changes in the elastic modulus of the skin than to changes in the elastic modulus of adipose tissue and muscle, respectively. Skin thickness affected sensitivity of the instrument to detect changes in stiffness of the underlying tissues. CONCLUSION Finite element modeling provides a feasible method to quantitatively evaluate the geometrical aspects and the sensitivity of an indentation measurement device. Systematically, the skin predominantly controlled the indentation response regardless of the indenter geometry or variations in the volume of different soft tissues.
Collapse
Affiliation(s)
- J T Iivarinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Department of Physical and Rehabilitation Medicine, Kuopio University Hospital, Kuopio, Finland
| | | | | |
Collapse
|