1
|
Mir M, Chen J, Patel A, Pinezich MR, Guenthart BA, Vunjak-Novakovic G, Kim J. A Minimally Invasive Robotic Tissue Palpation Device. IEEE Trans Biomed Eng 2024; 71:1958-1968. [PMID: 38261510 PMCID: PMC11178256 DOI: 10.1109/tbme.2024.3357293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
OBJECTIVE Robot-assisted minimally invasive surgery remains limited by the absence of haptic feedback, which surgeons routinely rely on to assess tissue stiffness. This limitation hinders surgeons' ability to identify and treat abnormal tissues, such as tumors, during robotic surgery. METHODS To address this challenge, we developed a robotic tissue palpation device capable of rapidly and non-invasively quantifying the stiffness of soft tissues, allowing surgeons to make objective and data-driven decisions during minimally invasive procedures. We evaluated the effectiveness of our device by measuring the stiffness of phantoms as well as lung, heart, liver, and skin tissues obtained from both rats and swine. RESULTS Results demonstrated that our device can accurately determine tissue stiffness and identify tumor mimics. Specifically, in swine lung, we determined elastic modulus (E) values of 9.1 ± 2.3, 16.8 ± 1.8, and 26.0 ± 3.6 kPa under different internal pressure of the lungs (PIP) of 2, 25, and 45 cmH2O, respectively. Using our device, we successfully located a 2-cm tumor mimic embedded at a depth of 5 mm in the lung subpleural region. Additionally, we measured E values of 33.0 ± 5.4, 19.2 ± 2.2, 33.5 ± 8.2, and 22.6 ± 6.0 kPa for swine heart, liver, abdominal skin, and muscle, respectively, which closely matched existing literature data. CONCLUSION/SIGNIFICANCE Results suggest that our robotic palpation device can be utilized during surgery, either as a stand-alone or additional tool integrated into existing robotic surgical systems, to enhance treatment outcomes by enabling accurate intraoperative identification of abnormal tissue.
Collapse
|
2
|
Zhu J, Su Y, Liu Z, Liu B, Sun Y, Gao W, Fu Y. Real‐time biomechanical modelling of the liver using LightGBM model. Int J Med Robot 2022; 18:e2433. [DOI: 10.1002/rcs.2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Jiahua Zhu
- State Key Laboratory of Robotics and System School of Life Science and Technology Harbin Institute of Technology Harbin China
| | - Yixian Su
- State Key Laboratory of Robotics and System School of Life Science and Technology Harbin Institute of Technology Harbin China
| | - Ziteng Liu
- State Key Laboratory of Robotics and System School of Life Science and Technology Harbin Institute of Technology Harbin China
| | - Bainan Liu
- State Key Laboratory of Robotics and System School of Life Science and Technology Harbin Institute of Technology Harbin China
| | - Yu Sun
- State Key Laboratory of Robotics and System School of Life Science and Technology Harbin Institute of Technology Harbin China
| | - Wenpeng Gao
- State Key Laboratory of Robotics and System School of Life Science and Technology Harbin Institute of Technology Harbin China
| | - Yili Fu
- State Key Laboratory of Robotics and System School of Life Science and Technology Harbin Institute of Technology Harbin China
| |
Collapse
|
3
|
Kumat SS, Shiakolas PS. Design, inverted vat photopolymerization 3D printing, and initial characterization of a miniature force sensor for localized in vivo tissue measurements. 3D Print Med 2022; 8:1. [PMID: 34982295 PMCID: PMC8725558 DOI: 10.1186/s41205-021-00128-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Background Tissue healthiness could be assessed by evaluating its viscoelastic properties through localized contact reaction force measurements to obtain quantitative time history information. To evaluate these properties for hard to reach and confined areas of the human body, miniature force sensors with size constraints and appropriate load capabilities are needed. This research article reports on the design, fabrication, integration, characterization, and in vivo experimentation of a uniaxial miniature force sensor on a human forearm. Methods The strain gauge based sensor components were designed to meet dimensional constraints (diameter ≤3.5mm), safety factor (≥3) and performance specifications (maximum applied load, resolution, sensitivity, and accuracy). The sensing element was fabricated using traditional machining. Inverted vat photopolymerization technology was used to prototype complex components on a Form3 printer; micro-component orientation for fabrication challenges were overcome through experimentation. The sensor performance was characterized using dead weights and a LabVIEW based custom developed data acquisition system. The operational performance was evaluated by in vivo measurements on a human forearm; the relaxation data were used to calculate the Voigt model viscoelastic coefficient. Results The three dimensional (3D) printed components exhibited good dimensional accuracy (maximum deviation of 183μm). The assembled sensor exhibited linear behavior (regression coefficient of R2=0.999) and met desired performance specifications of 3.4 safety factor, 1.2N load capacity, 18mN resolution, and 3.13% accuracy. The in vivo experimentally obtained relaxation data were analyzed using the Voigt model yielding a viscoelastic coefficient τ=12.38sec and a curve-fit regression coefficient of R2=0.992. Conclusions This research presented the successful design, use of 3D printing for component fabrication, integration, characterization, and analysis of initial in vivo collected measurements with excellent performance for a miniature force sensor for the assessment of tissue viscoelastic properties. Through this research certain limitations were identified, however the initial sensor performance was promising and encouraging to continue the work to improve the sensor. This micro-force sensor could be used to obtain tissue quantitative data to assess tissue healthiness for medical care over extended time periods.
Collapse
Affiliation(s)
- Shashank S Kumat
- Mechanical and Aerospace Engineering Department, The University of Texas at Arlington, S Nedderman Dr, Arlington, 76019, TX, USA
| | - Panos S Shiakolas
- Mechanical and Aerospace Engineering Department, The University of Texas at Arlington, S Nedderman Dr, Arlington, 76019, TX, USA.
| |
Collapse
|
4
|
Guo Y, Cai C, Li W. Friction behaviour between a laparoscopic grasper and the large intestine during minimally invasive surgery. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yan Guo
- Key Laboratory for Advanced Technology of Materials of Ministry of Education Tribology Research Institute Southwest Jiaotong University Chengdu China
| | - Chengmo Cai
- Key Laboratory for Advanced Technology of Materials of Ministry of Education Tribology Research Institute Southwest Jiaotong University Chengdu China
| | - Wei Li
- Key Laboratory for Advanced Technology of Materials of Ministry of Education Tribology Research Institute Southwest Jiaotong University Chengdu China
| |
Collapse
|
5
|
Mo Y, Qaiser Z, Ou H, Johnson S. A Reconfigurable and Adjustable Compliance System for the Measurement of Interface Orthotic Properties. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1886-1894. [PMID: 34478374 DOI: 10.1109/tnsre.2021.3109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Custom foot orthoses (CFOs) have shown treatment effectiveness by providing improved pressure/load redistribution, skeletal support and comfort level. However, the current design methodologies of CFOs have some problems: (1) the plantar surface is captured without considering the soft tissue impedance, (2) the stiffness of the CFOs is limited to rigid, semi-rigid and soft, which ignores the potential effect of local variation of stiffness on the interface pressure/load distribution and subjective evaluations, and (3) the lack of a human-in-the-loop may lead to multiple design-to-deliver iterations. A new prescription methodology of CFOs is required to satisfy the pressure/load distribution, improve comfort level and decrease iterations. METHOD A measurement system which provides INterface with Tunable Ergonomic properties using a Reconfigurable Framework with Adjustable Compliant Elements (INTERFACE system) is developed to implement the Rapid Evaluate and Adjust Device (READ) methodology. The geometry and stiffness of the Medial Longitudinal Arch (MLA) support provided by the INTERFACE system can be adjusted via linear actuators and tunable stiffness mechanisms, based on objective interface pressure/load distribution and subjective feedback evaluations. Validation tests were conducted on 13 subjects to measure the plantar pressure/load distribution and record the subjective feedback in different combinations of geometry and stiffness. RESULTS The interface pressure/load distribution and subjective feedback of the support level indicate the efficacy of the adjustable geometry and stiffness. As the stiffness and geometrical height increased, the plantar loadings increased in the MLA region and decreased in the rear foot. Geometrical fitting can be achieved with the reconfigurable MLA support. The integration of locally adjustable stiffness makes it possible to fine tune the plantar pressure/load and provides the subjects with options of orthotic stiffness. CONCLUSION The proposed INTERFACE system can be applied to conduct the measurement of the desired orthotic properties which satisfy the interface pressure/load requirement and the subject's comfort.
Collapse
|
6
|
Application of micro-computer tomography and inverse finite element analysis for characterizing the visco-hyperelastic response of bulk liver tissue using indentation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04577-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
In-vitro mechanical indentation experimentation is performed on bulk liver tissue of lamb to characterize its nonlinear material behaviour. The material response is characterized by a visco-hyperelastic material model by the use of 2-dimensional inverse finite element (FE) analysis. The time-dependent behaviour is characterized by the viscoelastic model represented by a 4-parameter Prony series, whereas the large deformations are modelled using the hyperelastic Neo-Hookean model. The shear response described by the initial and final shear moduli and the corresponding Prony series parameters are optimized using ANSYS with the Root Mean Square (RMS) error being the objective function. Optimized material properties are validated using experimental results obtained under different loading histories. To study the efficacy of a 2D model, a three dimensional (3D) model of the specimen is developed using Micro-CT of the specimen. The initial elastic modulus of the lamb liver obtained was found to 13.5 kPa for 5% indentation depth at a loading rate of 1 mm/sec for 1-cycle. These properties are able to predict the response at 8.33% depth and a loading rate of 5 mm/sec at multiple cycles with reasonable accuracy.
Article highlights
The visco-hyperelastic model accurately models the large displacement as well as the time-dependent behaviour of the bulk liver tissue.
Mapped meshing of the 3D FE model saves computational time and captures localized displacement in an accurate manner.
The 2D axisymmetric model while predicting the force response of the bulk tissue, cannot predict the localized deformations.
Collapse
|
7
|
Study on the Similarity of Biomechanical Behavior between Gelatin and Porcine Liver. BIOMED RESEARCH INTERNATIONAL 2021; 2020:7021636. [PMID: 32908907 PMCID: PMC7463373 DOI: 10.1155/2020/7021636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022]
Abstract
As a natural polymer, gelatin is increasingly being used as a substitute for animals or humans for the simulation and testing of surgical procedures. In the current study, the similarity verification was neglected and a 10 wt.% or 20 wt.% gelatin sample was used directly. To compare the mechanical similarities between gelatin and biological tissues, different concentrations of gelatin samples were subjected to tensile, compression, and indentation tests and compared with porcine liver tissue. The loading rate in the three tests fully considered the surgical application conditions; notably, a loading speed up to 12 mm/s was applied in the indentation testing, the tensile test was performed at a speed of 1 mm/s until fracture, and the compression tests were compressed at a rate of 0.16 mm/s and 1 mm/s. A comparison of the results shows that the mechanical behaviors of low-concentration gelatin samples involved in the study are similar to the mechanical behavior of porcine liver tissue. The results of the gelatin material were mathematically expressed by the Mooney-Rivlin model and the Prony series. The results show that the material properties of gelatin can mimic the range of mechanical characteristics of porcine liver, and gelatin can be used as a matrix to further improve the similarity between substitute materials and biological tissues.
Collapse
|
8
|
|
9
|
Fujimoto K, Shiinoki T, Yuasa Y, Tanaka H. Estimation of liver elasticity using the finite element method and four-dimensional computed tomography images as a biomarker of liver fibrosis. Med Phys 2021; 48:1286-1298. [PMID: 33449406 DOI: 10.1002/mp.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Current radiotherapy planning procedures are generally designed based on anatomical information only and use computed tomography (CT) images that do not incorporate organ-functional information. In this study, we developed a method for estimating liver elasticity using the finite element method (FEM) and four-dimensional CT (4DCT) images acquired during radiotherapy planning, and we subsequently evaluated its feasibility as a biomarker for liver fibrosis. MATERIALS AND METHODS Twenty patients who underwent 4DCT and ultrasound-based transient elastography (UTE) were enrolled. All patients had chronic liver disease or cirrhosis. Liver elasticity measurements of the UTE were performed on the right lobe of the patient's liver in 20 patients. The serum biomarkers of the aspartate aminotransferase (AST)-to-platelet ratio index (APRI) and fibrosis-4 index (FIB-4) were available in 18 of the 20 total patients, which were measured within 1 week after undergoing 4DCT. The displacement between the 4DCT images obtained at the endpoints of exhalation and inspiration was determined using the actual (via deformable image registration) and simulated (via FEM) respiration-induced displacement. The elasticity of each element of the liver model was optimized by minimizing the error between the actual and simulated respiration-induced displacement. Then, each patient's estimated liver elasticity was defined as the mean Young's modulus of the liver's right lobe and that of the whole liver using the estimated elasticity map. The estimated liver elasticity was evaluated for correlations with the elasticity obtained via UTE and with two serum biomarkers (APRI and FIB-4). RESULTS The mean ± standard deviation (SD) of the errors between the actual and simulated respiration-induced displacement in the liver model was 0.54 ± 0.33 mm. The estimated liver's right lobe elasticity was statistically significantly correlated with the UTE (r = 0.87, P < 0.001). Furthermore, the estimated whole liver elasticity was statistically significantly correlated with the UTE (r = 0.84, P < 0.001), APRI score (r = 0.62, P = 0.005), and FIB-4 score (r = 0.54, P = 0.021). CONCLUSION In this study, liver elasticity was estimated through FEM-based simulation and actual respiratory-induced liver displacement obtained from 4DCT images. Furthermore, we assessed that the estimated elasticity of the liver's right lobe was strongly correlated with the UTE. Therefore, the estimated elasticity has the potential to be a feasible imaging biomarker for assessing liver fibrosis using only 4DCT images without additional inspection or equipment costs. Because our results were derived from a limited sample of 20 patients, it is necessary to evaluate the accuracy of elasticity estimation for each liver segment on larger groups of biopsied patients to utilize liver elasticity information for radiotherapy planning.
Collapse
Affiliation(s)
- Koya Fujimoto
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Yuki Yuasa
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Hidekazu Tanaka
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| |
Collapse
|
10
|
Kenja K, Madireddy S, Vemaganti K. Calibration of hyperelastic constitutive models: the role of boundary conditions, search algorithms, and experimental variability. Biomech Model Mechanobiol 2020; 19:1935-1952. [PMID: 32140961 DOI: 10.1007/s10237-020-01318-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 02/20/2020] [Indexed: 11/26/2022]
Abstract
The calibration of hyperelastic constitutive models of soft tissue and tissue surrogates is often treated as an exercise in curve-fitting to the average experimental response, and many of the complicating factors such as experimental boundary conditions and data variability are ignored. In this work, we focus on three questions that arise in this area: the ramifications of ignoring the experimental boundary conditions, the use of local optimizers, and the role of data variability. Using data from a uniaxial extension experiment on a tissue surrogate, we study how these three factors affect the calibration of isotropic hyperelastic constitutive models. Our results show that even with the simplest of constitutive models, it is necessary to look beyond a "good fit" to the average.
Collapse
Affiliation(s)
- Krishna Kenja
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, 45221-0072, USA
| | - Sandeep Madireddy
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Kumar Vemaganti
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, 45221-0072, USA.
| |
Collapse
|
11
|
Mackiewicz AG, Klekiel T, Kurowiak J, Piasecki T, Bedzinski R. Determination of Stent Load Conditions in New Zealand White Rabbit Urethra. J Funct Biomater 2020; 11:jfb11040070. [PMID: 32992694 PMCID: PMC7712058 DOI: 10.3390/jfb11040070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Frequency of urethral stenosis makes it necessary to develop new innovative methods of treating this disease. This pathology most often occurs in men and manifests itself in painful urination, reduced urine flow, or total urinary retention. This is a condition that requires immediate medical intervention. Methods: Experimental tests were carried out on a rabbit in order to determine the changes of pressure in the urethra system and to estimate the velocity of urine flow. For this purpose, a measuring system was proposed to measure the pressure of a fluid-filled urethra. A fluoroscope was used to observe the deformability of the bladder and urethra canal. Results: Based on these tests, the range of changes in the urethra tube diameter, the pressures inside the system, and the flow velocity during micturition were determined. Conclusions: The presented studies allowed determining the behavior of the urethra under the conditions of urinary filling. The fluid-filled bladder and urethra increased their dimensions significantly. Such large changes require that the stents used for the treatment of urethral stenosis should not have a fixed diameter but should adapt to changing urethral dimensions.
Collapse
Affiliation(s)
- Agnieszka G. Mackiewicz
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
- Correspondence:
| | - Tomasz Klekiel
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
| | - Jagoda Kurowiak
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
| | - Tomasz Piasecki
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25 Street, 50-375 Wroclaw, Poland;
| | - Romuald Bedzinski
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
| |
Collapse
|
12
|
Mo F, Zheng Z, Zhang H, Li G, Yang Z, Sun D. In vitro compressive properties of skeletal muscles and inverse finite element analysis: Comparison of human versus animals. J Biomech 2020; 109:109916. [PMID: 32807316 DOI: 10.1016/j.jbiomech.2020.109916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/25/2022]
Abstract
Virtual finite element human body models have been widely used in biomedical engineering, traffic safety injury analysis, etc. Soft tissue modeling like skeletal muscle accounts for a large portion of a human body model establishment, and its modeling method is not enough explored. The present study aims to investigate the compressive properties of skeletal muscles due to different species, loading rates and fiber orientations, in order to obtain available parameters of specific material laws as references for building or improving the human body model concerning both modeling accuracy and computational cost. A series of compressive experiments of skeletal muscles were implemented for human gastrocnemius muscle, bovine and porcine hind leg muscle. To avoid long-time preservation effects, all experimental tests were carried out in 24 h after that the samples were harvested. Considering computational cost and generally used in the previous human body models, one-order hyperelastic Ogden model and three-term simplified viscoelastic quasi-linear viscoelastic (QLV) were selected for numerical analysis. Inverse finite element analysis was employed to obtain corresponding material parameters. With good fitting records, the simulation results presented available material parameters for human body model establishment, and also indicated significant differences of muscle compressive properties due to species, loading rates and fiber orientations. When considering one-order Ogden law, it is worthy of noting that the inversed material parameters of the porcine muscles are similar to those of the human gastrocnemius regardless of fiber orientations. In conclusion, the obtained material parameters in the present study can be references for global human body and body segment modeling.
Collapse
Affiliation(s)
- Fuhao Mo
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha, Hunan 410082, China; Aix-Marseille University, IFSTTAR, LBA UMRT24, Marseille, France.
| | - Zhefen Zheng
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| | - Haotian Zhang
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| | - Guibing Li
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zurong Yang
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
| | - Deyi Sun
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410082, China.
| |
Collapse
|
13
|
Candito A, Palacio-Torralba J, Jiménez-Aguilar E, Good DW, McNeill A, Reuben RL, Chen Y. Identification of tumor nodule in soft tissue: An inverse finite-element framework based on mechanical characterization. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3369. [PMID: 32452138 DOI: 10.1002/cnm.3369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/01/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Identification and characterization of nodules in soft tissue, including their size, shape, and location, provide a basis for tumor identification. This study proposes an inverse finite-element (FE) based computational framework, for characterizing the size of examined tissue sample and detecting the presence of embedded tumor nodules using instrumented palpation, without a priori anatomical knowledge. The inverse analysis was applied to a model system, the human prostate, and was based on the reaction forces which can be obtained by trans-rectal mechanical probing and those from an equivalent FE model, which was optimized iteratively, by minimizing an error function between the two cases, toward the target solution. The tumor nodule can be identified through its influence on the stress state of the prostate. The effectiveness of the proposed method was further verified using a realistic prostate model reconstructed from magnetic resonance (MR) images. The results show the proposed framework to be capable of characterizing the key geometrical indices of the prostate and identifying the presence of cancerous nodules. Therefore, it has potential, when combined with instrumented palpation, for primary diagnosis of prostate cancer, and, potentially, solid tumors in other types of soft tissue.
Collapse
Affiliation(s)
- Antonio Candito
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Javier Palacio-Torralba
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | | | - Daniel W Good
- Edinburgh Urological Cancer Group, Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, UK
- Department of Urology, NHS Lothian, Western General Hospital, Edinburgh, UK
| | - Alan McNeill
- Edinburgh Urological Cancer Group, Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, UK
- Department of Urology, NHS Lothian, Western General Hospital, Edinburgh, UK
| | - Robert L Reuben
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Yuhang Chen
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
14
|
Amirkhani G, Farahmand F, Yazdian SM, Mirbagheri A. An extended algorithm for autonomous grasping of soft tissues during robotic surgery. Int J Med Robot 2020; 16:1-15. [PMID: 32390288 DOI: 10.1002/rcs.2122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND Autonomous grasping of soft tissues can facilitate the robotic surgery procedures. The previous attempts for implementing auto-grasping have been based on a simplistic representation of the actual surgery maneuvers. METHOD A generalized three-zone grasp model was introduced to consider the effect of the pull force angulation on the grasp mode, that is, damage, slip, or safe grasp. Also, an extended auto-grasping algorithm was proposed in which the trigger force is automatically controlled against the pull force magnitude and direction, to achieve a safe and secure grasp. RESULTS The autonomous grasping experiments against a varying pull force in a phantom study indicated a good agreement between the desired and actual pinch and trigger forces (root mean square errors lower than 0.168 N and 0.280 N, respectively) and no sign of tissue tear or slippage. CONCLUSIONS The proposed auto-grasping algorithm can help manipulating the soft tissues safely and effectively during robotic surgery procedures.
Collapse
Affiliation(s)
- Golchehr Amirkhani
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran.,Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Farzam Farahmand
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran.,Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Seied Muhammad Yazdian
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirbagheri
- Medical Physics & Biomedical Engineering Department, School of Medicine and Research Center for Biomedical Technologies and Robotics (RCBTR), Advanced Medical Technologies and Equipment Institute (AMTEI) , Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
BHAT SUBRAYAKRISHNA, SAKATA NORIYUKI, YAMADA HIROSHI. IDENTIFICATION OF UNIAXIAL DEFORMATION BEHAVIOR AND ITS INITIAL TANGENT MODULUS FOR ATHEROMATOUS INTIMA IN THE HUMAN CAROTID ARTERY AND THORACIC AORTA USING THREE-PARAMETER ISOTROPIC HYPERELASTIC MODELS. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519420500141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Uniaxial stretching tests are used for mechanical identification of small fibrous regions of atheromatous arteries. Material constants in isotropic hyperelastic models are determined to minimize the fitting error for the stress–strain curve. We developed a novel method to better characterize the material constants in typical forms of Yeoh, Ogden, Chuong–Fung (CF) and Gasser–Ogden–Holzapfel (GOH) isotropic hyperelastic models for fibrous caps and normal intimal layers from human carotid artery and thoracic aorta by incorporating Young’s modulus, i.e., the initial tangent modulus of uniaxial stress–strain relationships, as one of three material constants. We derived a unified, isotropic form for the anisotropic exponential-type strain energy density functions of CF and GOH models. The uniaxial stress–strain relationship equations were expanded to Maclaurin series to identify Young’s modulus as a coefficient of the linear term of the strain and to examine the roles of the material constants in the nonlinear function. The remaining two material constants were determined by curvefitting. The incorporation of Young’s modulus into the CF and GOH models gave reasonable curvefitting, with errors [Formula: see text], whereas large errors ([Formula: see text]) were observed in one case for the Yeoh model and in two cases for the Ogden model.
Collapse
Affiliation(s)
- SUBRAYA KRISHNA BHAT
- Department of Biological Functions Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - NORIYUKI SAKATA
- Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - HIROSHI YAMADA
- Department of Biological Functions Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| |
Collapse
|
16
|
Non-minimum phase viscoelastic properties of soft biological tissues. J Mech Behav Biomed Mater 2020; 110:103795. [PMID: 32957173 DOI: 10.1016/j.jmbbm.2020.103795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/16/2020] [Accepted: 04/12/2020] [Indexed: 01/05/2023]
Abstract
Understanding the viscoelastic properties of biological tissues is important because they can reveal tissue structure. This study analyzes the viscoelastic properties of soft biological tissues using a fractional dynamics model. We conducted a dynamic viscoelastic test on several porcine samples, i.e., liver, breast, and skeletal muscle tissues, using a plate-plate rheometer. We found that some soft biological tissues have non-minimum phase properties, i.e., the relationship between compliance and phase delay is not uniquely related to the non-integer derivative order in the fractional dynamics model. The experimental results show that the actual phase delay is larger than that estimated from compliance. We propose an empirical model to represent these non-minimum phase properties; a fractional Maxwell model with the fractional Hilbert transform term is proposed. The model and experimental results were highly correlated in terms of compliance and phase diagrams, and complex mechanical impedance. We also show that the amount of additional phase delay, defined as the increase in actual phase delay compared to that estimated from compliance, differs with tissue type.
Collapse
|
17
|
MacManus DB, Maillet M, O'Gorman S, Pierrat B, Murphy JG, Gilchrist MD. Sex- and age-specific mechanical properties of liver tissue under dynamic loading conditions. J Mech Behav Biomed Mater 2019; 99:240-246. [PMID: 31415992 DOI: 10.1016/j.jmbbm.2019.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022]
Abstract
The liver is the most commonly injured abdominal organ following either blunt or penetrating impact. Current mechanical properties available in the literature are typically only measured at low strain rates, low strains, or use linear viscoelastic models. There is also a dearth of high-rate, large strain, viscoelastic data available for liver tissue which are required to model the deformation of the liver during high-rate impacts. Furthermore, the issue of whether mouse liver's mechanical properties are sex-dependent has not been addressed previously. Here, we present the first in vitro sex- and age-controlled mechanical characterisation of mixed-strain (C57BL and wild-type) mouse liver tissue at a localised length scale using large-deformation and high strain rate micro-indentation. We also investigated the effects of age on the mechanical properties of liver tissue. Force-relaxation experiments were performed on both male and female mouse livers up to 35% strain at 10/s and allowed to relax for 1s. The neo-Hookean based quasi-linear viscoelastic model was fitted to the experimental data to determine the large-strain behaviour of the tissue. A comprehensive statistical analysis was performed to determine whether any significant differences existed for (i) the short-term shear moduli and (ii) long-term shear moduli between 10 weeks-old male and female mouse livers, and (iii) the short-term and (iv) long-term shear moduli for 6, 10, and 56 weeks-old mouse livers. No significant differences were found between the mechanical properties in the sex groups. The 56 weeks-old liver tissue was found to be significantly stiffer than the 6 weeks-old liver tissue, but not the 10 weeks-old.
Collapse
Affiliation(s)
- David B MacManus
- School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin, Ireland.
| | - Maxence Maillet
- School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin, Ireland; Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - Shane O'Gorman
- School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Baptiste Pierrat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - Jeremiah G Murphy
- School of Mechanical & Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland
| | - Michael D Gilchrist
- School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
18
|
Girard E, Chagnon G, Gremen E, Calvez M, Masri C, Boutonnat J, Trilling B, Nottelet B. Biomechanical behaviour of human bile duct wall and impact of cadaveric preservation processes. J Mech Behav Biomed Mater 2019; 98:291-300. [PMID: 31288211 DOI: 10.1016/j.jmbbm.2019.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/05/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022]
Abstract
Biliary diseases are the third most common cause of surgical digestive disease. There is a close relationship between the mechanical performance of the bile duct and its physiological function. Data of biomechanical properties of human main bile duct are scarce in literature. Furthermore, mechanical properties of soft tissues are affected by these preservation procedures. The aim of the present work was, on the one hand, to observe the microstructure of the human bile duct by means of histological analysis, on the other hand, to characterize the mechanical behavior and describe the impact of different preservation processes. A mechanical study in a controlled environment consisting of cyclic tests was made. The results of the mechanical tests are discussed and explained using the micro-structural observations. The results show an influence of the loading direction, which is representative of an anisotropic behavior. A strong hysteresis due to the viscoelastic properties of soft tissues was also observed. Embalming and freezing preservation methods had an impact on the biomechanical properties of human main bile duct, with fiber network deterioration. That may further provide a useful quantitative baseline for anatomical and surgical training using embalming and freezing.
Collapse
Affiliation(s)
- E Girard
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000, Grenoble, France; Département de Chirurgie Digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, 38000, Grenoble, France; Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de Médecine de Grenoble, France.
| | - G Chagnon
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - E Gremen
- Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de Médecine de Grenoble, France
| | - M Calvez
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - C Masri
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - J Boutonnat
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000, Grenoble, France; Département d'anatomopathologie et Cytologie, Centre Hospitalier Grenoble-Alpes, 38000, Grenoble, France
| | - B Trilling
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000, Grenoble, France; Département de Chirurgie Digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, 38000, Grenoble, France; Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de Médecine de Grenoble, France
| | - B Nottelet
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
19
|
Sadeghnejad S, Farahmand F, Vossoughi G, Moradi H, Mousa Sadr Hosseini S. Phenomenological tissue fracture modeling for an Endoscopic Sinus and Skull Base Surgery training system based on experimental data. Med Eng Phys 2019; 68:85-93. [PMID: 31005567 DOI: 10.1016/j.medengphy.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/16/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
The ideal simulator for Endoscopic Sinus and Skull Base Surgery (ESSS) training must be supported by a physical model and provide repetitive behavior in a controlled environment. Development of realistic tissue models is a key part of ESSS virtual reality (VR)-based surgical simulation. Considerable research has been conducted to address haptic or force feedback and propose a phenomenological tissue fracture model for sino-nasal tissue during surgical tool indentation. Mechanical properties of specific sino-nasal regions of the sheep head have been studied in various indentation and relaxation experiments. Tool insertion at different indentation rates into coronal orbital floor (COF) tissue is modeled as a sequence of three events: deformation, fracture, and cutting. The behavior in the deformation phase can be characterized using a non-linear, rate-dependent modified Kelvin-Voigt model. A non-linear model for tissue behavior prior to the fracture point is presented. The overall model shows a non-positive dependency of maximum force on tool indentation rate, which indicates faster tool insertion velocity decreases the maximum final fracture force. The tissue cutting phase has been modeled to characterize the force necessary to slice through the COF. The proposed model in this study can help develop VR-based ESSS base simulators in otolaryngology and ophthalmology surgeries. Such simulators are useful in preoperative planning, accurate surgical simulation, intelligent robotic assistance, and treatment applications.
Collapse
Affiliation(s)
- Soroush Sadeghnejad
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Farzam Farahmand
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Gholamreza Vossoughi
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran.
| | - Hamed Moradi
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
20
|
Application of a Nonlinear Hammerstein-Wiener Estimator in the Development and Control of a Magnetorheological Fluid Haptic Device for Robotic Bone Biopsy. ACTUATORS 2018. [DOI: 10.3390/act7040083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A force generator module (FGM) based on magnetorheological fluid (MRF) was developed to provide force-feedback information for applications in tele-robotic bone biopsy procedures. The FGM is capable of rapidly re-producing a wide range of forces that are common in bone biopsy applications. As a result of the nonlinear nature of MRF, developing robust controllers for these mechanisms can be challenging. In this paper, we present a case study motivated by robotic bone biopsy. We use a non-linear Hammerstein-Wiener (H-W) estimator to address this challenge. The case is presented through three studies. First, an experiment to develop design constraints is presented and describes biopsy force measurements for various animal tissues. Required output forces were found to range between <1 N and <50 N. A second study outlines the design of the FGM and presents the experimental characterization of the hysteretic behavior of the MRF. This data is then used as estimators and validators to develop the nonlinear Hammerstein-Wiener (H-W) model of the MRF. Validation experiments found that the H-W model is capable of predicting the behavior of the MRF device with 95% accuracy and can eliminate hysteresis in a closed-loop control system. The third study demonstrates the FGM used in a 1-DOF haptic controller in a simulated robotic bone-biopsy. The H-W control tracked the input signal while compensating for magnetic hysteresis to achieve optimal performance. In conclusion, the MRF-based device can be used in surgical robotic operations that require a high range of force measurements.
Collapse
|
21
|
Characterization of perfused and sectioned liver tissue in a full indentation cycle using a visco-hyperelastic model. J Mech Behav Biomed Mater 2018; 90:591-603. [PMID: 30500697 DOI: 10.1016/j.jmbbm.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/09/2018] [Accepted: 11/04/2018] [Indexed: 12/22/2022]
Abstract
Realistic modeling of biologic material is required for optimizing fidelity in computer-aided surgical training and assistance systems. The modeling of liver tissue has remained challenging due to its nonlinear viscoelastic properties and high hysteresis of the stress-strain relation. While prior studies have described the behavior of liver tissue during the loading status (in elongation, compression, or indentation tests) or unloading status (in stress relaxation or creep tests), a hysteresis curve with both loading and unloading processes was incompletely defined. We seek to use a single material model to characterize the mechanical properties of liver tissue in a full indentation cycle ex vivo perfused and then sectioned. Based on measurements taken from ex-vivo perfused porcine livers, we converted force-displacement curves to stress-strain curves and developed a visco-hyperelastic constitutive model to characterize the liver's mechanical behavior at different locations under various rates of indentation (1, 2, 5, 10, and 20 mm/s). The proposed model is a mixed visco-hyperelastic model with up to 6 coefficients. The normalized root mean square standard deviations of fitted curves are less than 5% and 10% in low (<0.05) and high strain (>0.3) conditions respectively.
Collapse
|
22
|
Artificial palpation in robotic surgery using haptic feedback. Surg Endosc 2018; 33:1252-1259. [PMID: 30187198 DOI: 10.1007/s00464-018-6405-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 08/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The loss of tactile feedback in minimally invasive robotic surgery remains a major challenge to the expanding field. With visual cue compensation alone, tissue characterization via palpation proves to be immensely difficult. This work evaluates a bimodal vibrotactile system as a means of conveying applied forces to simulate haptic feedback in two sets of studies simulating an artificial palpation task using the da Vinci surgical robot. METHODS Subjects in the first study were tasked with localizing an embedded vessel in a soft tissue phantom using a single-sensor unit. In the second study, subjects localized tumor-like structures using a three-sensor array. In both sets of studies, subjects completed the task under three trial conditions: no feedback, normal force tactile feedback, and hybrid vibrotactile feedback. Recordings of correct localization, incorrect localization, and time-to-completion were used to evaluate performance outcomes. RESULTS With the addition of vibrotactile and pneumatic feedback, significant improvements in the percentage of correct localization attempts were detected (p = 0.0001 and p = 0.0459, respectively) during the first experiment with phantom vessels. Similarly, significant improvements in correct localization were found with the addition of vibrotactile (p = 2.57E-5) and pneumatic significance (p = 8.54E-5) were observed in the second experiment involving tumor phantoms. CONCLUSIONS This work demonstrates not only the superior benefits of a multi-modal feedback over traditional single-modality feedback, but also the effectiveness of vibration in providing haptic feedback to artificial palpation systems.
Collapse
|
23
|
ELAHI SEYEDALI, CONNESSON NATHANAEL, PAYAN YOHAN. DISPOSABLE SYSTEM FOR IN-VIVO MECHANICAL CHARACTERIZATION OF SOFT TISSUES BASED ON VOLUME MEASUREMENT. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418500379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In-vivo characterization of soft tissues is a key step toward biomechanical simulation and planning of intra-operative assisted surgery. To achieve this, aspiration method is a standard technique: tissue is aspirated through a hole while measuring the pressure and associated apex height. An inverse problem is then solved to identify the material mechanical properties. In the literature, the apex height is usually measured using a camera, which induces design difficulties, in particular in regards on the required sterilization process for in-vivo measurements. In this paper, the idea is to replace the apex height optical measurement by the measurement of the aspirated tissue volume. The proposed method enables to reduce the system head to a simple tube: sterilizations becomes easy and the system is disposable after use. The proposed system is thus the simplest, lightest and cheapest one could achieve. It is also to the authors knowledge the first time ever in aspiration method that the aspired volume is the extracted data. As the data signal-to-noise ratio is the main factor impacting any applied inverse method when extracting the mechanical properties, the aim of this work is to assess and compare the experimental signal-to-noise ratio in the raw volume measurements obtained either optically or with the method proposed. Explicit results of inverse methods using volumes as input data are not presented in this paper for concision purpose. The effects on accuracy of various experimental parameters has been investigated and quantified: the volume measurement has proved to present a same order or even better signal-to-noise ratio compared to optical measurements.
Collapse
Affiliation(s)
- SEYED ALI ELAHI
- TIMC-IMAG Laboratory, UMR CNRS 5525, Grenoble Alpes University, Pavillon Taillefer, Faculty of Medicine, Domaine de la Merci, La Tronche Cedex, 38706, France
| | - NATHANAEL CONNESSON
- TIMC-IMAG Laboratory, UMR CNRS 5525, Grenoble Alpes University, Pavillon Taillefer, Faculty of Medicine, Domaine de la Merci, La Tronche Cedex, 38706, France
| | - YOHAN PAYAN
- TIMC-IMAG Laboratory, UMR CNRS 5525, Grenoble Alpes University, Pavillon Taillefer, Faculty of Medicine, Domaine de la Merci, La Tronche Cedex, 38706, France
| |
Collapse
|
24
|
Yarahmadian M, Zhong Y, Gu C, Shin J. Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method. Technol Health Care 2018; 26:317-325. [PMID: 29710758 PMCID: PMC6004955 DOI: 10.3233/thc-174640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND: Soft tissue modeling plays an important role in the development of surgical training simulators as well as in robot-assisted minimally invasive surgeries. It has been known that while the traditional Finite Element Method (FEM) promises the accurate modeling of soft tissue deformation, it still suffers from a slow computational process. OBJECTIVE: This paper presents a Kalman filter finite element method to model soft tissue deformation in real time without sacrificing the traditional FEM accuracy. METHODS: The proposed method employs the FEM equilibrium equation and formulates it as a filtering process to estimate soft tissue behavior using real-time measurement data. The model is temporally discretized using the Newmark method and further formulated as the system state equation. RESULTS: Simulation results demonstrate that the computational time of KF-FEM is approximately 10 times shorter than the traditional FEM and it is still as accurate as the traditional FEM. The normalized root-mean-square error of the proposed KF-FEM in reference to the traditional FEM is computed as 0.0116. CONCLUSIONS: It is concluded that the proposed method significantly improves the computational performance of the traditional FEM without sacrificing FEM accuracy. The proposed method also filters noises involved in system state and measurement data.
Collapse
Affiliation(s)
- Mehran Yarahmadian
- Corresponding author: Mehran Yarahmadian, School of Engineering, RMIT University, Bundoora, VIC 3083, Australia. Tel.: +61 03 9925 6018; Fax: +61 03 9925 6108; E-mail: .
| | | | | | | |
Collapse
|
25
|
Yang C, Xie Y, Liu S, Sun D. Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature. SENSORS 2018; 18:s18020561. [PMID: 29439539 PMCID: PMC5855056 DOI: 10.3390/s18020561] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/30/2018] [Accepted: 02/08/2018] [Indexed: 11/16/2022]
Abstract
Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.
Collapse
Affiliation(s)
- Chongjun Yang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yu Xie
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| | - Shuang Liu
- School of Mechanical and Power Engineer, East China University of Science and Technology, Shanghai 200237, China.
| | - Dong Sun
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
26
|
Indentation of heterogeneous soft tissue: Local constitutive parameter mapping using an inverse method and an automated rig. J Mech Behav Biomed Mater 2018; 78:515-528. [DOI: 10.1016/j.jmbbm.2017.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 01/21/2023]
|
27
|
Experimental characterization and constitutive modeling of the biomechanical behavior of male human urethral tissues validated by histological observations. Biomech Model Mechanobiol 2018; 17:939-950. [PMID: 29380159 DOI: 10.1007/s10237-018-1003-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
This work aims at observing the mechanical behavior of the membranous and spongy portions of urethrae sampled on male cadavers in compliance with French regulations on postmortem testing, in accordance with the Scientific Council of body donation center of Grenoble. In this perspective, a thermostatic water tank was designed to conduct ex vivo planar tension tests in a physiological environment, i.e., in a saline solution at a temperature of [Formula: see text] [Formula: see text]. In order to observe the anisotropy of the tissues, the samples were tested in two directions. Tests consisting of a series of load-unload cycles of increasing amplitudes were performed to highlight their viscous behavior. The results were then discussed according to the microstructure of tissue, which was investigated using different staining methods and histological analysis. The observed behaviors were then fitted using an anisotropic hyperelastic or a visco-hyperelastic matrix-fiber model.
Collapse
|
28
|
Zhang J, Zhong Y, Gu C. Deformable Models for Surgical Simulation: A Survey. IEEE Rev Biomed Eng 2018; 11:143-164. [DOI: 10.1109/rbme.2017.2773521] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Zhou J, Luo Z, Li C, Deng M. Real-time deformation of human soft tissues: A radial basis meshless 3D model based on Marquardt's algorithm. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 153:237-252. [PMID: 29157456 DOI: 10.1016/j.cmpb.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/18/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND When the meshless method is used to establish the mathematical-mechanical model of human soft tissues, it is necessary to define the space occupied by human tissues as the problem domain and the boundary of the domain as the surface of those tissues. Nodes should be distributed in both the problem domain and on the boundaries. Under external force, the displacement of the node is computed by the meshless method to represent the deformation of biological soft tissues. However, computation by the meshless method consumes too much time, which will affect the simulation of real-time deformation of human tissues in virtual surgery. METHODS In this article, the Marquardt's Algorithm is proposed to fit the nodal displacement at the problem domain's boundary and obtain the relationship between surface deformation and force. When different external forces are applied, the deformation of soft tissues can be quickly obtained based on this relationship. RESULTS AND CONCLUSIONS The analysis and discussion show that the improved model equations with Marquardt's Algorithm not only can simulate the deformation in real-time but also preserve the authenticity of the deformation model's physical properties.
Collapse
Affiliation(s)
- Jianyong Zhou
- School of Mechatronic Engineering, Nanchang University, Jiangxi, China.
| | - Zu Luo
- School of Information Engineering, Nanchang University, Jiangxi, China.
| | - Chunquan Li
- School of Information Engineering, Nanchang University, Jiangxi, China.
| | - Mi Deng
- Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
30
|
Influence of clamping stress and duration on the trauma of liver tissue during surgery operation. Clin Biomech (Bristol, Avon) 2017; 43:58-66. [PMID: 28213166 DOI: 10.1016/j.clinbiomech.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tissue grasping damage often occurs in minimally invasive surgery, which would increase the postoperative recovery time and the risk of surgical complications. The purpose of this study was to evaluate the relationship between liver tissue trauma and compression stress magnitude and duration during tissue clamping operation. METHODS The clamping experiments of liver tissues in vivo were conducted by using a universal soft tissue mechanical testing machine under different clamping stress magnitudes and durations. The rabbit liver was used to simulate human liver. A minimally invasive surgery grasper was used in these tests to simulate the real tissue-surgical operation condition. A pathological grading system was created to quantitatively assess the trauma within the liver tissue. The hyperbolic regression models were utilized to predict the trauma degree of liver tissue. FINDINGS Obvious hyperemia, hemorrhage, hepatic capsule rupture and inflammatory cell infiltration appeared in the clamping sites of the liver. Assessment results indicated that the trauma degree increased nonlinearly with the increasing clamping stress and duration time. There exist safe thresholds, in which the severe trauma of the studied tissue can be avoided during grasping operation. INTERPRETATION The results could provide the safety margins and the trauma prediction models for surgeons during grasping and palpation tasks in minimally invasive surgery.
Collapse
|
31
|
Kobayashi Y, Tsukune M, Miyashita T, Fujie MG. Simple empirical model for identifying rheological properties of soft biological tissues. Phys Rev E 2017; 95:022418. [PMID: 28297883 DOI: 10.1103/physreve.95.022418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 11/07/2022]
Abstract
Understanding the rheological properties of soft biological tissue is a key issue for mechanical systems used in the health care field. We propose a simple empirical model using fractional dynamics and exponential nonlinearity (FDEN) to identify the rheological properties of soft biological tissue. The model is derived from detailed material measurements using samples isolated from porcine liver. We conducted dynamic viscoelastic and creep tests on liver samples using a plate-plate rheometer. The experimental results indicated that biological tissue has specific properties: (i) power law increase in the storage elastic modulus and the loss elastic modulus of the same slope; (ii) power law compliance (gain) decrease and constant phase delay in the frequency domain; (iii) power law dependence between time and strain relationships in the time domain; and (iv) linear dependence in the low strain range and exponential law dependence in the high strain range between stress-strain relationships. Our simple FDEN model uses only three dependent parameters and represents the specific properties of soft biological tissue.
Collapse
Affiliation(s)
- Yo Kobayashi
- Future Robotics Organization, Waseda University, Tokyo 169-8555, Japan; JST-PRESTO, Saitama 332-0012, Japan; and Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Mariko Tsukune
- Faculty of Science and Engineering/Research Institute of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Tomoyuki Miyashita
- Faculty of Science and Engineering/Research Institute of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Masakatsu G Fujie
- Faculty of Science and Engineering/Research Institute of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
32
|
Afshari E, Rostami M, Farahmand F. Review on different experimental techniques developed for recording force-deformation behaviour of soft tissues; with a view to surgery simulation applications. J Med Eng Technol 2017; 41:257-274. [DOI: 10.1080/03091902.2016.1264492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Elnaz Afshari
- Biomechanics Department, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mostafa Rostami
- Biomechanics Department, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Farzam Farahmand
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
33
|
Arndt S, Russell A, Tomas J, Müller P, Shekhar S, Brandstädter K, Bruns C, Wex C. Rupture probability of porcine liver under planar and point loading. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/5/055018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Bircher K, Ehret AE, Mazza E. Mechanical Characteristics of Bovine Glisson's Capsule as a Model Tissue for Soft Collagenous Membranes. J Biomech Eng 2016; 138:2530163. [DOI: 10.1115/1.4033917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/19/2023]
Abstract
An extensive multiaxial experimental campaign on the monotonic, time- and history-dependent mechanical response of bovine Glisson's capsule (GC) is presented. Reproducible characteristics were observed such as J-shaped curves in uniaxial and biaxial configurations, large lateral contraction, cyclic tension softening, large tension relaxation, and moderate creep strain accumulation. The substantial influence of the reference state selection on the kinematic response and the tension versus stretch curves is demonstrated and discussed. The parameters of a large-strain viscoelastic constitutive model were determined based on the data of uniaxial tension relaxation experiments. The model is shown to well predict the uniaxial and biaxial viscoelastic responses in all other configurations. GC, the corresponding model, and the experimental protocols are proposed as a useful basis for future studies on the relation between microstructure and tissue functionality and on the factors influencing the mechanical response of soft collagenous membranes.
Collapse
Affiliation(s)
- Kevin Bircher
- Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland e-mail:
| | - Alexander E. Ehret
- Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland e-mail:
| | - Edoardo Mazza
- Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland e-mail:
| |
Collapse
|
35
|
Petron A, Duval JF, Herr H. Multi-Indenter Device for in Vivo Biomechanical Tissue Measurement. IEEE Trans Neural Syst Rehabil Eng 2016; 25:426-435. [PMID: 27244744 DOI: 10.1109/tnsre.2016.2572168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biomechanical tissue properties have been hypothesized to play a critical role in the quantification of prosthetic socket production for individuals with limb amputation. In this investigation, a novel indenter platform is presented and its performance evaluated for the purposes of residual-limb tissue characterization. The indenter comprised 14 position- and force-controllable actuators that circumferentially surround a biological residuum to form an actuator ring. Each indenter actuator was individually controllable in position ( [Formula: see text] accuracy) and force (330 mN accuracy) at a PC controller feedback rate of 500 Hz, allowing for a range of measurement across a residual stump. Data were collected from 162 sensors over an EtherCAT fieldbus to characterize the mechanical hyperviscoelastic tissue response of two transtibial residual-limbs from a study participant with bilateral amputations. At five distinct anatomical locations across the residual-limb, force versus deflection data-including hyperviscoelastic tissue properties-are presented, demonstrating the accuracy and versatility of the multi-indenter platform for residual-limb tissue characterization.
Collapse
|
36
|
Liang D, Jiang S, Yang Z, Wang X. Simulation and experiment of soft-tissue deformation in prostate brachytherapy. Proc Inst Mech Eng H 2016; 230:532-44. [DOI: 10.1177/0954411916644475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/09/2016] [Indexed: 11/17/2022]
Abstract
Soft-tissue deformation is one of the major reasons for the inaccurate positioning of percutaneous needle insertion process. In this article, simulations and experiments of the needle insertion soft-tissue process are both applied to study soft-tissue deformation. A needle deflection model based on the mechanics is used to calculate the needle deflection during the interaction process. The obtained needle deflection data are applied into finite element analysis process as the system input. The uniaxial tensile strength tests, compression tests, and static indentation experiments are used to obtain the soft-tissue parameters and choose the best strain-energy function to model in the simulation. Magnetic resonance imaging is used to reconstruct the prostate, establishing both prostate three-dimensional finite element model and artificial prostate model. The needle–soft tissue interaction simulation results are compared with those of the needle insertion experiment. The displacement data of the mark point in the experiment are comparable to the simulation results. It is concluded that, using this simulation method, the surgeon can predict the deformation of the tissue and the displacement of the target in advance.
Collapse
Affiliation(s)
- Dong Liang
- Center for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Shan Jiang
- Center for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Zhiyong Yang
- Center for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Xingji Wang
- Center for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
37
|
WANG XINGJI, JIANG SHAN. STUDY OF THE TARGETING ERROR FOR PERCUTANEOUS NEEDLE INSERTION INTO SOFT PHANTOM MATERIAL. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416500056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Percutaneous needle insertion is widely used in minimally invasive procedures, in which the flexible needle is steered to reach a specific target inside the human body. The targeting error is due to a combination of flexible needle deflection and target displacement in soft tissue and only a very limited number of studies have focused on both two factors. This paper presents a targeting error calculation method which incorporates an energy-based needle deflection model into a soft tissue finite-element (FE) model. The needle insertion process is discretized into several increments on the basis of the quasi-static method. Needle deflection in each step is obtained by the needle-soft tissue interaction model which is applied into the FE model as the displacement input. A 2D-planar FE model is used to model the target displacement by imposing needle distribution forces and needle deflection at different steps on the appointed reference nodes. The soft tissue is modeled as a non-linear hyperelastic material with geometrical non-linearity. Uniaxial tensile strength tests are utilized to determine the soft tissue parameters. Needle targeting experiments are conducted to validate the simulation results. Results show that the proposed method can predict the needle targeting errors while the averaged prediction error stays below 0.4[Formula: see text]mm. At last, we conduct different experiments to compensate the obtained targeting error and thus, reaching preferable effects.
Collapse
Affiliation(s)
- XINGJI WANG
- Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, China, 300072, China
| | - SHAN JIANG
- Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, China, 300072, China
| |
Collapse
|
38
|
Bayesian calibration of hyperelastic constitutive models of soft tissue. J Mech Behav Biomed Mater 2015; 59:108-127. [PMID: 26751706 DOI: 10.1016/j.jmbbm.2015.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022]
Abstract
There is inherent variability in the experimental response used to characterize the hyperelastic mechanical response of soft tissues. This has to be accounted for while estimating the parameters in the constitutive models to obtain reliable estimates of the quantities of interest. The traditional least squares method of parameter estimation does not give due importance to this variability. We use a Bayesian calibration framework based on nested Monte Carlo sampling to account for the variability in the experimental data and its effect on the estimated parameters through a systematic probability-based treatment. We consider three different constitutive models to represent the hyperelastic nature of soft tissue: Mooney-Rivlin model, exponential model, and Ogden model. Three stress-strain data sets corresponding to the deformation of agarose gel, bovine liver tissue, and porcine brain tissue are considered. Bayesian fits and parameter estimates are compared with the corresponding least squares values. Finally, we propagate the uncertainty in the parameters to a quantity of interest (QoI), namely the force-indentation response, to study the effect of model form on the values of the QoI. Our results show that the quality of the fit alone is insufficient to determine the adequacy of the model, and due importance has to be given to the maximum likelihood value, the landscape of the likelihood distribution, and model complexity.
Collapse
|
39
|
Dogan F, Celebi MS. Quasi-non-linear deformation modeling of a human liver based on artificial and experimental data. Int J Med Robot 2015; 12:410-20. [PMID: 26459224 DOI: 10.1002/rcs.1704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 07/01/2015] [Accepted: 08/21/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Researchers working on error-prevention theories have shown that the use of replica models within simulation systems has improved operating skills, resulting in better patient outcomes. METHODS This study aims to provide material test data specifically for a human liver to validate the accuracy of viscoelastic soft tissue models. This allows the validation of virtual surgery simulators by comparison with physical test data obtained from material tests on a viscoelastic silicone gel pad. RESULTS The results proved that stress behavior and relaxation curves of Aquaflex® experiment and FEM simulation are close if average liver response and respective material parameters and model are used. CONCLUSIONS The precise representation of manipulated tissues used in virtual surgery trainers involves the accurate characterization of mechanical properties of the tissue. Consequently, successful implementations of these mechanical properties in a mathematical model of the deforming organ are of major importance. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Firat Dogan
- Dogus University, Faculty of Engineering, Computer Eng. Dept., Acibadem, Istanbul, 34722, Turkey
| | - M Serdar Celebi
- Istanbul Technical University, Informatics Institute, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
40
|
Ayyildiz M, Cinoglu S, Basdogan C. Effect of normal compression on the shear modulus of soft tissue in rheological measurements. J Mech Behav Biomed Mater 2015; 49:235-43. [DOI: 10.1016/j.jmbbm.2015.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/02/2015] [Accepted: 05/13/2015] [Indexed: 11/24/2022]
|
41
|
Yang S, Lin M. Simultaneous Estimation of Elasticity for Multiple Deformable Bodies. COMPUTER ANIMATION AND VIRTUAL WORLDS 2015; 26:197-206. [PMID: 26023303 PMCID: PMC4442604 DOI: 10.1002/cav.1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Material property has great importance in deformable body simulation and medical robotics. The elasticity parameters, such as Young's modulus of the deformable bodies, are important to make realistic animations. Further in medical applications the (recovered) elasticity parameters can assist surgeons to perform better pre-op surgical planning and enable medical robots to carry out personalized surgical procedures. Previous elasticity parameters estimation methods are limited to recover one elasticity parameter of one deformable body at a time. In this paper, we propose a novel elasticity parameter estimation algorithm that can recover the elasticity parameters of multiple deformable bodies or multiple regions of one deformable body simultaneously from (at least two sets of) images. We validate our algorithm with both synthetic test cases and real patient CT images.
Collapse
Affiliation(s)
- Shan Yang
- University of North Carolina at Chapel Hill
| | - Ming Lin
- University of North Carolina at Chapel Hill
| |
Collapse
|
42
|
Ravikumar N, Noble C, Cramphorn E, Taylor ZA. A constitutive model for ballistic gelatin at surgical strain rates. J Mech Behav Biomed Mater 2015; 47:87-94. [PMID: 25863009 DOI: 10.1016/j.jmbbm.2015.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 11/19/2022]
Abstract
This paper describes a constitutive model for ballistic gelatin at the low strain rates experienced, for example, by soft tissues during surgery. While this material is most commonly associated with high speed projectile penetration and impact investigations, it has also been used extensively as a soft tissue simulant in validation studies for surgical technologies (e.g. surgical simulation and guidance systems), for which loading speeds and the corresponding mechanical response of the material are quite different. We conducted mechanical compression experiments on gelatin specimens at strain rates spanning two orders of magnitude (~0.001-0.1s(-1)) and observed a nonlinear load-displacement history and strong strain rate-dependence. A compact and efficient visco-hyperelastic constitutive model was then formulated and found to fit the experimental data well. An Ogden type strain energy density function was employed for the elastic component. A single Prony exponential term was found to be adequate to capture the observed rate-dependence of the response over multiple strain rates. The model lends itself to immediate use within many commercial finite element packages.
Collapse
Affiliation(s)
- Nishant Ravikumar
- CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine, INSIGNEO Institute for in silico Medicine, Department of Mechanical Engineering, The University of Sheffield, Western Bank, Sheffield, S10 2TN, South Yorkshire, United Kingdom.
| | - Christopher Noble
- CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine, INSIGNEO Institute for in silico Medicine, Department of Mechanical Engineering, The University of Sheffield, Western Bank, Sheffield, S10 2TN, South Yorkshire, United Kingdom.
| | - Edward Cramphorn
- CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine, INSIGNEO Institute for in silico Medicine, Department of Mechanical Engineering, The University of Sheffield, Western Bank, Sheffield, S10 2TN, South Yorkshire, United Kingdom.
| | - Zeike A Taylor
- CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine, INSIGNEO Institute for in silico Medicine, Department of Mechanical Engineering, The University of Sheffield, Western Bank, Sheffield, S10 2TN, South Yorkshire, United Kingdom.
| |
Collapse
|
43
|
Full-surface deformation measurement of anisotropic tissues under indentation. Med Eng Phys 2015; 37:484-93. [PMID: 25857545 DOI: 10.1016/j.medengphy.2015.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 11/20/2022]
Abstract
Inverse finite element-based analysis of soft biological tissues is an important tool to investigate their complex mechanical behavior and to develop physical models for medical simulations. Although there have recently been advances in dealing with the computational complexities of modeling biological materials, the collection of a sufficiently dense set of experimental data to properly capture their typically regionally varying properties still remains a critical issue. The aim of this work was to develop and test an optical system that combines 2D-Digital Image Correlation (DIC) and a novel Fringe Projection method with radial sensitivity (RFP) to test soft biological tissues under in vitro indentation. This system has the distinctive capability of using a single camera to retrieve the shape and 3D deformation of the whole upper surface of the indented sample without any blind measurement areas (with exception of the area under the indenter), with nominal depth and in-plane resolution of 0.05 mm and 0.004 mm, respectively. To test and illustrate the capabilities of the developed DIC/RFP system, the in vitro response to indentation of a homogeneous and isotropic latex foam is presented against the response of a slab of porcine ventricular myocardium, a highly in-homogeneous and anisotropic tissue. Our results illustrate the enhanced capabilities of the developed method to capture asymmetry in deformation with respect to standard indentation tests. This feature, together with the possibility of miniaturizing the system into a hand-held probe, makes this method potentially extendable to in vivo settings, alone or in combination with ultrasound measurements.
Collapse
|
44
|
Wex C, Arndt S, Stoll A, Bruns C, Kupriyanova Y. Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review. ACTA ACUST UNITED AC 2015; 60:577-92. [DOI: 10.1515/bmt-2014-0146] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/07/2015] [Indexed: 11/15/2022]
Abstract
AbstractModelling the mechanical behaviour of biological tissues is of vital importance for clinical applications. It is necessary for surgery simulation, tissue engineering, finite element modelling of soft tissues, etc. The theory of linear elasticity is frequently used to characterise biological tissues; however, the theory of nonlinear elasticity using hyperelastic models, describes accurately the nonlinear tissue response under large strains. The aim of this study is to provide a review of constitutive equations based on the continuum mechanics approach for modelling the rate-independent mechanical behaviour of homogeneous, isotropic and incompressible biological materials. The hyperelastic approach postulates an existence of the strain energy function – a scalar function per unit reference volume, which relates the displacement of the tissue to their corresponding stress values. The most popular form of the strain energy functions as Neo-Hookean, Mooney-Rivlin, Ogden, Yeoh, Fung-Demiray, Veronda-Westmann, Arruda-Boyce, Gent and their modifications are described and discussed considering their ability to analytically characterise the mechanical behaviour of biological tissues. The review provides a complete and detailed analysis of the strain energy functions used for modelling the rate-independent mechanical behaviour of soft biological tissues such as liver, kidney, spleen, brain, breast, etc.
Collapse
|
45
|
Tang W, Wan TR. Constraint-Based Soft Tissue Simulation for Virtual Surgical Training. IEEE Trans Biomed Eng 2014; 61:2698-706. [DOI: 10.1109/tbme.2014.2326009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Beccani M, Di Natali C, Sliker LJ, Schoen JA, Rentschler ME, Valdastri P. Wireless tissue palpation for intraoperative detection of lumps in the soft tissue. IEEE Trans Biomed Eng 2014; 61:353-61. [PMID: 23974523 DOI: 10.1109/tbme.2013.2279337] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In an open surgery, identification of precise margins for curative tissue resection is performed by manual palpation. This is not the case for minimally invasive and robotic procedures, where tactile feedback is either distorted or not available. In this paper, we introduce the concept of intraoperative wireless tissue palpation. The wireless palpation probe (WPP) is a cylindrical device (15 mm in diameter, 60 mm in length) that can be deployed through a trocar incision and directly controlled by the surgeon to create a volumetric stiffness distribution map of the region of interest. This map can then be used to guide the tissue resection to minimize healthy tissue loss. The wireless operation prevents the need for a dedicated port and reduces the chance of instrument clashing in the operating field. The WPP is able to measure in real time the indentation pressure with a sensitivity of 34 Pa, the indentation depth with an accuracy of 0.68 mm, and the probe position with a maximum error of 11.3 mm in a tridimensional workspace. The WPP was assessed on the benchtop in detecting the local stiffness of two different silicone tissue simulators (elastic modulus ranging from 45 to 220 kPa), showing a maximum relative error below 5%. Then, in vivo trials were aimed to identify an agar-gel lump injected into a porcine liver and to assess the device usability within the frame of a laparoscopic procedure. The stiffness map created intraoperatively by the WPP was compared with a map generated ex vivo by a standard uniaxial material tester, showing less than 8% local stiffness error at the site of the lump.
Collapse
|
47
|
Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress–strain data. J Biomech 2014; 47:2430-5. [DOI: 10.1016/j.jbiomech.2014.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 11/24/2022]
|
48
|
Yarpuzlu B, Ayyildiz M, Tok OE, Aktas RG, Basdogan C. Correlation between the mechanical and histological properties of liver tissue. J Mech Behav Biomed Mater 2014; 29:403-16. [DOI: 10.1016/j.jmbbm.2013.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 12/24/2022]
|
49
|
Bao Y, Wu D, Yan Z, Du Z. A New Hybrid Viscoelastic Soft Tissue Model based on Meshless Method for Haptic Surgical Simulation. Open Biomed Eng J 2013; 7:116-24. [PMID: 24339837 PMCID: PMC3856390 DOI: 10.2174/1874120701307010116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/03/2013] [Accepted: 08/06/2013] [Indexed: 12/03/2022] Open
Abstract
This paper proposes a hybrid soft tissue model that consists of a multilayer structure and many spheres for surgical simulation system based on meshless. To improve accuracy of the model, tension is added to the three-parameter viscoelastic structure that connects the two spheres. By using haptic device, the three-parameter viscoelastic model (TPM) produces accurate deformationand also has better stress-strain, stress relaxation and creep properties. Stress relaxation and creep formulas have been obtained by mathematical formula derivation. Comparing with the experimental results of the real pig liver which were reported by Evren et al. and Amy et al., the curve lines of stress-strain, stress relaxation and creep of TPM are close to the experimental data of the real liver. Simulated results show that TPM has better real-time, stability and accuracy.
Collapse
Affiliation(s)
- Yidong Bao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, P.R. China ; School of Software, Pingdingshan University, Pingdingshan 467000, P.R. China
| | | | | | | |
Collapse
|
50
|
Hollenstein M, Bugnard G, Joos R, Kropf S, Villiger P, Mazza E. Towards laparoscopic tissue aspiration. Med Image Anal 2013; 17:1037-45. [DOI: 10.1016/j.media.2013.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/28/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
|