1
|
Wang S, Sun Z, Martinez-Tejada LA, Yoshimura N. Comparison of autism spectrum disorder subtypes based on functional and structural factors. Front Neurosci 2024; 18:1440222. [PMID: 39429701 PMCID: PMC11486766 DOI: 10.3389/fnins.2024.1440222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Autism spectrum disorder (ASD) is a series of neurodevelopmental disorders that may affect a patient's social, behavioral, and communication abilities. As a typical mental illness, ASD is not a single disorder. ASD is often divided into subtypes, such as autism, Asperger's, and pervasive developmental disorder-not otherwise specified (PDD-NOS). Studying the differences among brain networks of the subtypes has great significance for the diagnosis and treatment of ASD. To date, many studies have analyzed the brain activity of ASD as a single mental disorder, whereas few have focused on its subtypes. To address this problem, we explored whether indices derived from functional and structural magnetic resonance imaging (MRI) data exhibited significant dissimilarities between subtypes. Utilizing a brain pattern feature extraction method from fMRI based on tensor decomposition, amplitude of low-frequency fluctuation and its fractional values of fMRI, and gray matter volume derived from MRI, impairments of function in the subcortical network and default mode network of autism were found to lead to major differences from the other two subtypes. Our results provide a systematic comparison of the three common ASD subtypes, which may provide evidence for the discrimination between ASD subtypes.
Collapse
Affiliation(s)
- Shan Wang
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Zhe Sun
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Tokyo, Japan
| | | | - Natsue Yoshimura
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
2
|
Kose MR, Ahirwal MK, Atulkar M. Weighted ordinal connection based functional network classification for schizophrenia disease detection using EEG signal. Phys Eng Sci Med 2023; 46:1055-1070. [PMID: 37222953 DOI: 10.1007/s13246-023-01273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
A brain connectivity network (BCN) is an advanced approach to examining brain functionality in various conditions. However, the predictability of the BCN is affected by the connectivity measure used for the network construction. Various connectivity measures available in the literature differ according to the domain of their working data. The application of random connectivity measures might result in an inefficient BCN that ultimately hampers its predictability. Therefore, selecting an appropriate functional connectivity metric is crucial in clinical as well as cognitive neuroscience. In parallel to this, an effective network identifier plays a vital role in distinguishing different brain states. Hence, the objective of this paper is two-fold, which includes identifying suitable connectivity measures and proposing an efficient network identifier. For this, the weighted BCN (WBCN) is constructed using multiple connectivity measures like correlation coefficient (r), coherence (COH), phase-locking value (PLV), and mutual information (MI) from electroencephalogram (EEG) signals. The most recent technique for feature extraction, i.e., weighted ordinal connections, has been applied to EEG-based BCN. EEG signals data has been taken from the schizophrenia disease database. Further, several classification algorithms such as k-nearest neighbours (KNN), support vector machine (SVM) with linear, radial basis function and polynomial kernels, random forest (RF), and 1D convolutional neural network (CNN1D) are used to classify the brain states based on extracted features. In classification, 90% accuracy is achieved by the CNN1D classifier with WBCN based on the coherence connectivity measure. The study also provides a structural analysis of the BCN.
Collapse
Affiliation(s)
- Mangesh R Kose
- Department of Computer Application, NIT, Raipur, 492010, CG, India.
| | - Mitul K Ahirwal
- Department of Computer Science and Engineering, MANIT, Bhopal, 462003, MP, India
| | | |
Collapse
|
3
|
Gonçalves AM, Monteiro P. Autism Spectrum Disorder and auditory sensory alterations: a systematic review on the integrity of cognitive and neuronal functions related to auditory processing. J Neural Transm (Vienna) 2023; 130:325-408. [PMID: 36914900 PMCID: PMC10033482 DOI: 10.1007/s00702-023-02595-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/17/2023] [Indexed: 03/15/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition with a wide spectrum of symptoms, mainly characterized by social, communication, and cognitive impairments. Latest diagnostic criteria according to DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, 2013) now include sensory issues among the four restricted/repetitive behavior features defined as "hyper- or hypo-reactivity to sensory input or unusual interest in sensory aspects of environment". Here, we review auditory sensory alterations in patients with ASD. Considering the updated diagnostic criteria for ASD, we examined research evidence (2015-2022) of the integrity of the cognitive function in auditory-related tasks, the integrity of the peripheral auditory system, and the integrity of the central nervous system in patients diagnosed with ASD. Taking into account the different approaches and experimental study designs, we reappraise the knowledge on auditory sensory alterations and reflect on how these might be linked with behavior symptomatology in ASD.
Collapse
Affiliation(s)
- Ana Margarida Gonçalves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Patricia Monteiro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
4
|
Huang J, Wang M, Ju H, Shi Z, Ding W, Zhang D. SD-CNN: A static-dynamic convolutional neural network for functional brain networks. Med Image Anal 2023; 83:102679. [PMID: 36423466 DOI: 10.1016/j.media.2022.102679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
Static functional connections (sFCs) and dynamic functional connections (dFCs) have been widely used in the resting-state functional MRI (rs-fMRI) analysis. sFCs, calculated based on entire rs-fMRI scans, can accurately describe the static topology of the brain network. dFCs, estimated by dividing rs-fMRI scans into a series of short sliding windows, are used to reveal time-varying changes in FC patterns. Currently, how to jointly use sFCs and dFCs to identify brain diseases under the framework of deep learning is still a hot issue. To this end, we propose a static-dynamic convolutional neural network for functional brain networks, which involves a static pathway and a dynamic pathway for taking full advantages of sFCs and dFCs. Specifically, the static pathway, using high-resolution convolution filters (i.e., convolution filters with a high number of channels) at a single adjacency matrix of sFCs, is performed to capture static FC patterns. The dynamic pathway, using low-resolution convolution filters at each adjacency matrix of dFCs, is performed to capture time-varying FC patterns. Two types of diffusion connections are used in this model for encouraging the transfer of information between the static pathway and the dynamic pathway, which can make the learned features more discriminative. Furthermore, a static and dynamic combination classifier is introduced to combine features from two pathways for identifying brain diseases. Experiments on two real datasets demonstrate the effectiveness and advantages of our proposed method.
Collapse
Affiliation(s)
- Jiashuang Huang
- School of Information Science and Technology, Nantong University, Nantong, 226019, China; MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China; MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Hengrong Ju
- School of Information Science and Technology, Nantong University, Nantong, 226019, China
| | - Zhenquan Shi
- School of Information Science and Technology, Nantong University, Nantong, 226019, China
| | - Weiping Ding
- School of Information Science and Technology, Nantong University, Nantong, 226019, China.
| | - Daoqiang Zhang
- Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
5
|
SegPC-2021: A challenge & dataset on segmentation of Multiple Myeloma plasma cells from microscopic images. Med Image Anal 2023; 83:102677. [PMID: 36403309 DOI: 10.1016/j.media.2022.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/25/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Multiple Myeloma (MM) is an emerging ailment of global concern. Its diagnosis at the early stages is critical for recovery. Therefore, efforts are underway to produce digital pathology tools with human-level intelligence that are efficient, scalable, accessible, and cost-effective. Following the trend, a medical imaging challenge on "Segmentation of Multiple Myeloma Plasma Cells in Microscopic Images (SegPC-2021)" was organized at the IEEE International Symposium on Biomedical Imaging (ISBI), 2021, France. The challenge addressed the problem of cell segmentation in microscopic images captured from the slides prepared from the bone marrow aspirate of patients diagnosed with Multiple Myeloma. The challenge released a total of 775 images with 690 and 85 images of sizes 2040×1536 and 1920×2560 pixels, respectively, captured from two different (microscope and camera) setups. The participants had to segment the plasma cells with a separate label on each cell's nucleus and cytoplasm. This problem comprises many challenges, including a reduced color contrast between the cytoplasm and the background, and the clustering of cells with a feeble boundary separation of individual cells. To our knowledge, the SegPC-2021 challenge dataset is the largest publicly available annotated data on plasma cell segmentation in MM so far. The challenge targets a semi-automated tool to ensure the supervision of medical experts. It was conducted for a span of five months, from November 2020 to April 2021. Initially, the data was shared with 696 people from 52 teams, of which 41 teams submitted the results of their models on the evaluation portal in the validation phase. Similarly, 20 teams qualified for the last round, of which 16 teams submitted the results in the final test phase. All the top-5 teams employed DL-based approaches, and the best mIoU obtained on the final test set of 277 microscopic images was 0.9389. All these five models have been analyzed and discussed in detail. This challenge task is a step towards the target of creating an automated MM diagnostic tool.
Collapse
|
6
|
Talesh Jafadideh A, Mohammadzadeh Asl B. Topological analysis of brain dynamics in autism based on graph and persistent homology. Comput Biol Med 2022; 150:106202. [PMID: 37859293 DOI: 10.1016/j.compbiomed.2022.106202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder with a rapidly growing prevalence. In recent years, the dynamic functional connectivity (DFC) technique has been used to reveal the transient connectivity behavior of ASDs' brains by clustering connectivity matrices in different states. However, the states of DFC have not been yet studied from a topological point of view. In this paper, this study was performed using global metrics of the graph and persistent homology (PH) and resting-state functional magnetic resonance imaging (fMRI) data. The PH has been recently developed in topological data analysis and deals with persistent structures of data. The structural connectivity (SC) and static FC (SFC) were also studied to know which one of the SC, SFC, and DFC could provide more discriminative topological features when comparing ASDs with typical controls (TCs). Significant discriminative features were only found in states of DFC. Moreover, the best classification performance was offered by persistent homology-based metrics and in two out of four states. In these two states, some networks of ASDs compared to TCs were more segregated and isolated (showing the disruption of network integration in ASDs). The results of this study demonstrated that topological analysis of DFC states could offer discriminative features which were not discriminative in SFC and SC. Also, PH metrics can provide a promising perspective for studying ASD and finding candidate biomarkers.
Collapse
|
7
|
Talesh Jafadideh A, Mohammadzadeh Asl B. Rest-fMRI based comparison study between autism spectrum disorder and typically control using graph frequency bands. Comput Biol Med 2022; 146:105643. [DOI: 10.1016/j.compbiomed.2022.105643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 05/14/2022] [Indexed: 01/01/2023]
|
8
|
Mittal A, Aggarwal P, Pessoa L, Gupta A. Robust Brain State Decoding using Bidirectional Long Short Term Memory Networks in functional MRI. PROCEEDINGS. INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS & IMAGE PROCESSING 2021; 2021:12. [PMID: 36350798 PMCID: PMC9639335 DOI: 10.1145/3490035.3490269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Decoding brain states of the underlying cognitive processes via learning discriminative feature representations has recently gained a lot of interest in brain imaging studies. Particularly, there has been an impetus to encode the dynamics of brain functioning by analyzing temporal information available in the fMRI data. Long-short term memory (LSTM), a class of machine learning model possessing a "memory" component, to retain previously seen temporal information, is increasingly being observed to perform well in various applications with dynamic temporal behavior, including brain state decoding. Because of the dynamics and inherent latency in fMRI BOLD responses, future temporal context is crucial. However, it is neither encoded nor captured by the conventional LSTM model. This paper performs robust brain state decoding via information encapsulation from both the past and future instances of fMRI data via bi-directional LSTM. This allows for explicitly modeling the dynamics of BOLD response without any delay adjustment. To this end, we utilize a bidirectional LSTM, wherein, the input sequence is fed in normal time-order for one LSTM network, and in the reverse time-order, for another. The two hidden activations of forward and reverse directions in bi-LSTM are collated to build the "memory" of the model and are used to robustly predict the brain states at every time instance. Working memory data from the Human Connectome Project (HCP) is utilized for validation and was observed to perform 18% better than it's unidirectional counterpart in terms of accuracy in predicting the brain states.
Collapse
Affiliation(s)
| | | | - Luiz Pessoa
- Laboratory of Cognition and Emotion, University of Maryland, USA
| | | |
Collapse
|
9
|
Ingalhalikar M, Shinde S, Karmarkar A, Rajan A, Rangaprakash D, Deshpande G. Functional Connectivity-Based Prediction of Autism on Site Harmonized ABIDE Dataset. IEEE Trans Biomed Eng 2021; 68:3628-3637. [PMID: 33989150 PMCID: PMC8696194 DOI: 10.1109/tbme.2021.3080259] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The larger sample sizes available from multi-site publicly available neuroimaging data repositories makes machine-learning based diagnostic classification of mental disorders more feasible by alleviating the curse of dimensionality. However, since multi-site data are aggregated post-hoc, i.e. they were acquired from different scanners with different acquisition parameters, non-neural inter-site variability may mask inter-group differences that are at least in part neural in origin. Hence, the advantages gained by the larger sample size in the context of machine-learning based diagnostic classification may not be realized. METHODS We address this issue using harmonization of multi-site neuroimaging data using the ComBat technique, which is based on an empirical Bayes formulation to remove inter-site differences in data distributions, to improve diagnostic classification accuracy. Specifically, we demonstrate this using ABIDE (Autism Brain Imaging Data Exchange) multi-site data for classifying individuals with Autism from healthy controls using resting state fMRI-based functional connectivity data. RESULTS Our results show that higher classification accuracies across multiple classification models can be obtained (especially for models based on artificial neural networks) from multi-site data post harmonization with the ComBat technique as compared to without harmonization, outperforming earlier results from existing studies using ABIDE. Furthermore, our network ablation analysis facilitated important insights into autism spectrum disorder pathology and the connectivity in networks shown to be important for classification covaried with verbal communication impairments in Autism. CONCLUSION Multi-site data harmonization using ComBat improves neuroimaging-based diagnostic classification of mental disorders. SIGNIFICANCE ComBat has the potential to make AI-based clinical decision-support systems more feasible in psychiatry.
Collapse
|
10
|
Li J, Wang F, Pan J, Wen Z. Identification of Autism Spectrum Disorder With Functional Graph Discriminative Network. Front Neurosci 2021; 15:729937. [PMID: 34744607 PMCID: PMC8566666 DOI: 10.3389/fnins.2021.729937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a specific brain disease that causes communication impairments and restricted interests. Functional connectivity analysis methodology is widely used in neuroscience research and shows much potential in discriminating ASD patients from healthy controls. However, due to heterogeneity of ASD patients, the performance of conventional functional connectivity classification methods is relatively poor. Graph neural network is an effective graph representation method to model structured data like functional connectivity. In this paper, we proposed a functional graph discriminative network (FGDN) for ASD classification. On the basis of pre-built graph templates, the proposed FGDN is able to effectively distinguish ASD patient from health controls. Moreover, we studied the size of training set for effective training, inter-site predictions, and discriminative brain regions. Discriminative brain regions were determined by the proposed model to investigate its applicability and biomarkers for ASD identification. For functional connectivity classification and analysis, FGDN is not only an effective tool for ASD identification but also a potential technique in neuroscience research.
Collapse
Affiliation(s)
- Jingcong Li
- School of Software, South China Normal University, Guangzhou, China.,Pazhou Lab, Guangzhou, China
| | - Fei Wang
- School of Software, South China Normal University, Guangzhou, China.,Pazhou Lab, Guangzhou, China
| | - Jiahui Pan
- School of Software, South China Normal University, Guangzhou, China.,Pazhou Lab, Guangzhou, China
| | - Zhenfu Wen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
11
|
Xu Y, Zhang X, Xiang Z, Wang Q, Huang X, Liu T, Yang Z, Chen Y, Xue J, Chen J, Yang J. Abnormal Functional Connectivity Between the Left Medial Superior Frontal Gyrus and Amygdala Underlying Abnormal Emotion and Premature Ejaculation: A Resting State fMRI Study. Front Neurosci 2021; 15:704920. [PMID: 34421524 PMCID: PMC8375680 DOI: 10.3389/fnins.2021.704920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Premature ejaculation (PE) is a common sexual dysfunction and is found to be associated with abnormal emotion. The amygdala plays an important role in the processing of emotion. The process of ejaculation is found to be mediated by the frontal-limbic neural circuits. However, the correlations between PE and emotion are still unclear. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired in 27 PE patients with stable emotion (SPE), 27 PE patients with abnormal emotion (NPE), and 30 healthy controls (HC). We used rs-fMRI to explore the underlying neural mechanisms in SPE, NPE, and HC by measuring the functional connectivity (FC). Differences of FC values among the three groups were compared when choosing bilateral amygdala as the regions of interest (ROIs). We also explored the correlations between the brain regions showing altered FC values and scores of the premature ejaculation diagnostic tool (PEDT)/Eysenck Personality Inventory about neuroticism (EPQ-N) in the PE group. Results When the left amygdala was chosen as the ROI, the SPE group exhibited an increased FC between the left medial superior frontal gyrus (SFGmed) and amygdala compared with the NPE or HC group. When the right amygdala was chosen as the ROI, the NPE group exhibited a decreased FC between the left SFGmed and right amygdala compared with the HC group. In addition, FC values of the left SFGmed had positive correlations with PEDT and negative correlations with EPQ-N scores in the PE group. Moreover, FC values of the left superior temporal gyrus had positive correlations with EPQ-N scores in the PE group. Conclusion The increased FC values between the left SFGmed and amygdala could reflect a compensatory cortical control mechanism with the effect of stabilized emotion in the limbic regions of PE patients. Abnormal FC between these brain regions could play a critical role in the physiopathology of PE and could help us in dividing PE into more subtypes.
Collapse
Affiliation(s)
- Yan Xu
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Zhang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Andrology, Yangzhou Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziliang Xiang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qing Wang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinfei Huang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Liu
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaoxu Yang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianguo Xue
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Yang
- Department of Urology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, People's Hospital of Xinjiang Kizilsu Kirgiz Autonomous Prefecture, Ürümqi, China
| |
Collapse
|
12
|
Ji J, Chen Z, Yang C. Convolutional Neural Network with Sparse Strategies to Classify Dynamic Functional Connectivity. IEEE J Biomed Health Inform 2021; 26:1219-1228. [PMID: 34314368 DOI: 10.1109/jbhi.2021.3100559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Classification of dynamic functional connectivity (DFC) is becoming a promising approach for diagnosing various neurodegenerative diseases. However, the existing methods generally face the problem of overfitting. To solve it, this paper proposes a convolutional neural network with three sparse strategies named SCNN to classify DFC. Firstly, an element-wise filter is designed to impose sparse constraints on the DFC matrix by replacing the redundant elements with zeroes, where the DFC matrix is specially constructed to quantify the spatial and temporal variation of DFC. Secondly, a 11 convolutional filter is adopted to reduce the dimensionality of the sparse DFC matrix, and remove meaningless features resulted from zero elements in the subsequent convolution process. Finally, an extra sparse optimization classifier is employed to optimize the parameters of the above two filters, which can effectively improve the ability of SCNN to extract discriminative features. Experimental results on multiple resting-state fMRI datasets demonstrate that the proposed model provides a better classification performance of DFC compared with several state-of-the-art methods, and can identify the abnormal brain functional connectivity.
Collapse
|
13
|
Graña M, Silva M. Impact of Machine Learning Pipeline Choices in Autism Prediction From Functional Connectivity Data. Int J Neural Syst 2021; 31:2150009. [PMID: 33472548 DOI: 10.1142/s012906572150009x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction, and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this paper, we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines. Specifically, we consider six brain parcellation definitions, five methods for functional connectivity matrix construction, six feature extraction/selection approaches, and nine classifier building algorithms. We report the prediction performance sensitivity to each of these choices, as well as the best results that are comparable with the state of the art.
Collapse
Affiliation(s)
- Manuel Graña
- Computational Intelligence Group, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Moises Silva
- Universidad Mayor de San Andres, La Paz, Bolivia
| |
Collapse
|