1
|
Ouattara A, Niangaly A, Adams M, Coulibaly D, Kone AK, Traore K, Laurens MB, Tolo Y, Kouriba B, Diallo DA, Doumbo OK, Plowe CV, Djimdé A, Thera MA, Laufer MK, Takala-Harrison S, Silva JC. Epitope-based sieve analysis of Plasmodium falciparum sequences from a FMP2.1/AS02 A vaccine trial is consistent with differential vaccine efficacy against immunologically relevant AMA1 variants. Vaccine 2020; 38:5700-5706. [PMID: 32571720 DOI: 10.1016/j.vaccine.2020.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 01/23/2023]
Abstract
To prevent premature dismissal of promising vaccine programs, it is critical to determine if lack of efficacy in the field is due to allele specific-efficacy, rather than to the lack of immunogenicity of the candidate antigen. Here we use samples collected during a field trial of the AMA1-based FMP2.1/AS02A malaria vaccine, which incorporates the AMA1 variant encoded by the reference Plasmodium falciparum 3D7 strain, to assess the usefulness of epitope-based sieve analysis for the detection of vaccine-induced allele-specific immune responses. The samples used are from volunteers who received the malaria vaccine FMP2.1/AS02A or a control (rabies vaccine), during a vaccine efficacy field trial, and who later developed malaria. In a previous study, P. falciparum DNA was extracted from all samples, and the ama1 locus amplified and sequenced. Here, a sieve analysis was used to measure T and B-cell escape, and difference in 3D7-like epitopes in the two treatment arms. Overall, no difference was observed in mean amino acid distance to the 3D7 AMA1 variant between sequences from vaccinees and controls in B-cell epitopes. However, we found a significantly greater proportion of 3D7-like T-cell epitopes that map to the AMA1 cluster one loop (c1L) region in the control vs. the vaccinee group (p = 0.02), consistent with allele-specific vaccine efficacy. Interestingly, AMA1 epitopes in infections from vaccinees had higher mean IC50, and consequently lower binding affinity, than epitopes generated from the control group (p = 0.01), suggesting that vaccine-induced selection impacted the immunological profile of the strains that pass through the sieve imposed by the vaccine-induced protection. These findings are consistent with a vaccine-derived sieve effect on the c1L region of AMA1 and suggest that sieve analyses of malaria vaccine trial samples targeted to epitopes identified in silico can help identify protective malaria antigens that may be efficacious if combined in a multivalent vaccine.
Collapse
Affiliation(s)
- Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Heath, University of Maryland School of Medicine, 685 West Baltimore Street HSF1-480 Baltimore, MD 21201, USA; Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Heath, University of Maryland School of Medicine, 685 West Baltimore Street HSF1-480 Baltimore, MD 21201, USA.
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Abdoulaye K Kone
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Karim Traore
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Heath, University of Maryland School of Medicine, 685 West Baltimore Street HSF1-480 Baltimore, MD 21201, USA.
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Dapa A Diallo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | | | - Abdoulaye Djimdé
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Miriam K Laufer
- Malaria Research Program, Center for Vaccine Development and Global Heath, University of Maryland School of Medicine, 685 West Baltimore Street HSF1-480 Baltimore, MD 21201, USA.
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Heath, University of Maryland School of Medicine, 685 West Baltimore Street HSF1-480 Baltimore, MD 21201, USA.
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 West Baltimore St, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore St, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Ouattara A, Tran TM, Doumbo S, Adams M, Agrawal S, Niangaly A, Nelson-Owens S, Doumtabé D, Tolo Y, Ongoiba A, Takala-Harrison S, Traoré B, Silva JC, Crompton PD, Doumbo OK, Plowe CV. Extent and Dynamics of Polymorphism in the Malaria Vaccine Candidate Plasmodium falciparum Reticulocyte-Binding Protein Homologue-5 in Kalifabougou, Mali. Am J Trop Med Hyg 2018; 99:43-50. [PMID: 29848401 PMCID: PMC6085788 DOI: 10.4269/ajtmh.17-0737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reticulocyte-binding homologues (RH) are a ligand family that mediates merozoite invasion of erythrocytes in Plasmodium falciparum. Among the five members of this family identified so far, only P. falciparum reticulocyte–binding homologue-5 (PfRH5) has been found to be essential for parasite survival across strains that differ in virulence and route of host-cell invasion. Based on its essential role in invasion and early evidence of sequence conservation, PfRH5 has been prioritized for development as a vaccine candidate. However, little is known about the extent of genetic variability of RH5 in the field and the potential impact of such diversity on clinical outcomes or on vaccine evasion. Samples collected during a prospective cohort study of malaria incidence conducted in Kalifabougou, in southwestern Mali, were used to estimate genetic diversity, measure haplotype prevalence, and assess the within-host dynamics of PfRH5 variants over time and in relation to clinical malaria. A total of 10 nonsynonymous polymorphic sites were identified in the Pfrh5 gene, resulting in 13 haplotypes encoding unique protein variants. Four of these variants have not been previously observed. Plasmodium falciparum reticulocyte–binding homologue-5 had low amino acid haplotype (h = 0.58) and nucleotide (π = 0.00061) diversity. By contrast to other leading blood-stage malaria vaccine candidate antigens, amino acid differences were not associated with changes in the risk of febrile malaria in consecutive infections. Conserved B- and T-cell epitopes were identified. These results support the prioritization of PfRH5 for possible inclusion in a broadly cross-protective vaccine.
Collapse
Affiliation(s)
- Amed Ouattara
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali.,Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tuan M Tran
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland.,Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Safiatou Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Matthew Adams
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sonia Agrawal
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | | | - Didier Doumtabé
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Aissata Ongoiba
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Shannon Takala-Harrison
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Boubacar Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, Maryland
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | | |
Collapse
|
3
|
Rittipornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jittapalapong S, Chung YT, Sthitmatee N. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. INFECTION GENETICS AND EVOLUTION 2017; 54:447-454. [PMID: 28807856 DOI: 10.1016/j.meegid.2017.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Babesia bovis, a parasite infecting cattle and buffalo, continues to spread throughout the developing world. The babesial vaccine was developed to be a sustainable alternative treatment to control the parasite. However, genetic diversity is a major obstacle for designing and developing a safe and effective vaccine. The apical membrane antigen 1 (AMA-1) is considered to be a potential vaccine candidate antigen among immunogenic genes of B. bovis. To gain a more comprehensive understanding of B. bovis AMA-1 (BbAMA-1), three B. bovis DNA samples were randomly selected to characterize in order to explore genetic diversity and natural selection and to predict the antigen epitopes. The sequence analysis revealed that BbAMA-1 has a low level of polymorphism and is highly conserved (95.46-99.94%) among Thai and global isolates. The majority of the polymorphic sites were observed in domains I and III. Conversely, domain II contained no polymorphic sites. We report the first evidence of strong negative or purifying selection across the full length of the gene, especially in domain I, by demonstrating a significant excess of the average number of synonymous (dS) over the non-synonymous (dN) substitutions. Finally, we also predict the linear and conformational B-cell epitope. The predicted B-cell epitopes appeared to be involved with the amino acid changes. Collectively, the results suggest that the conserved BbAMA-1 may be used to detect regional differences in the B. bovis parasite. Importantly, the limitation of BbAMA-1 diversity under strong negative selection indicates strong functional constraints on this gene. Thus, the gene could be a valuable target vaccine candidate antigen.
Collapse
Affiliation(s)
| | | | - Pacharathon Simking
- Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| | | | | | | | - Yang-Tsung Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Nattawooti Sthitmatee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Excellent Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
4
|
Patel P, Bharti PK, Bansal D, Raman RK, Mohapatra PK, Sehgal R, Mahanta J, Sultan AA, Singh N. Genetic diversity and antibody responses against Plasmodium falciparum vaccine candidate genes from Chhattisgarh, Central India: Implication for vaccine development. PLoS One 2017; 12:e0182674. [PMID: 28787005 PMCID: PMC5546615 DOI: 10.1371/journal.pone.0182674] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022] Open
Abstract
The genetic diversity in Plasmodium falciparum antigens is a major hurdle in developing an effective malaria vaccine. Protective efficacy of the vaccine is dependent on the polymorphic alleles of the vaccine candidate antigens. Therefore, we investigated the genetic diversity of the potential vaccine candidate antigens i.e. msp-1, msp-2, glurp, csp and pfs25 from field isolates of P.falciparum and determined the natural immune response against the synthetic peptide of these antigens. Genotyping was performed using Sanger method and size of alleles, multiplicity of infection, heterogeneity and recombination rate were analyzed. Asexual stage antigens were highly polymorphic with 55 and 50 unique alleles in msp-1 and msp-2 genes, respectively. The MOI for msp-1 and msp-2 were 1.67 and 1.28 respectively. A total 59 genotype was found in glurp gene with 8 types of amino acid repeats in the conserved part of RII repeat region. The number of NANP repeats from 40 to 44 was found among 55% samples in csp gene while pfs25 was found almost conserved with only two amino acid substitution site. The level of genetic diversity in the present study population was very similar to that from Asian countries. A higher IgG response was found in the B-cell epitopes of msp-1 and csp antigens and higher level of antibodies against csp B-cell epitope and glurp antigen were recorded with increasing age groups. Significantly, higher positive responses were observed in the csp antigen among the samples with ≥42 NANP repeats. The present finding showed extensive diversity in the asexual stage antigens.
Collapse
Affiliation(s)
- Priyanka Patel
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Garha, Jabalpur, Madhya Pradesh, India
| | - Praveen K. Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Garha, Jabalpur, Madhya Pradesh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Rajive K. Raman
- Community Health Centre Janakpur, District Baikunthpur, Chhattisgarh, India
| | - Pradyumna K. Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, Assam, India
| | - Rakesh Sehgal
- Department of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, Assam, India
| | - Ali A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Neeru Singh
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Garha, Jabalpur, Madhya Pradesh, India
- * E-mail:
| |
Collapse
|
5
|
Das SC, Morales RA, Seow J, Krishnarjuna B, Dissanayake R, Anders RF, MacRaild CA, Norton RS. Lipid interactions modulate the structural and antigenic properties of the C-terminal domain of the malaria antigen merozoite surface protein 2. FEBS J 2017; 284:2649-2662. [DOI: 10.1111/febs.14135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/18/2017] [Accepted: 06/12/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Sreedam C. Das
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| | - Rodrigo A.V. Morales
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| | - Jeffrey Seow
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| | - Ravindu Dissanayake
- Department of Biochemistry and Genetics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne Australia
| | - Robin F. Anders
- Department of Biochemistry and Genetics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne Australia
| | - Christopher A. MacRaild
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| | - Raymond S. Norton
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Melbourne Australia
| |
Collapse
|
6
|
Genetic diversity and multiplicity of infection of Plasmodium falciparum isolates from Kolkata, West Bengal, India. INFECTION GENETICS AND EVOLUTION 2016; 43:239-44. [PMID: 27259367 DOI: 10.1016/j.meegid.2016.05.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 01/26/2023]
Abstract
The study of genetic diversity of Plasmodium falciparum is necessary to understand the distribution and dynamics of parasite populations. The genetic diversity of P. falciparum merozoite surface protein-1 and 2 has been extensively studied from different parts of world. However, limited data are available from India. This study was aimed to determine the genetic diversity and multiplicity of infection (MOI) of P. falciparum population in Kolkata, West Bengal, India. A total of 80day-zero blood samples from Kolkata were collected during a therapeutic efficacy study in 2008-2009. DNA was extracted; allelic frequency and diversity were investigated by PCR-genotyping method for msp1 and msp2 gene and fragment sizing was done by Bio-Rad Gel-Doc system using Image Lab (version 4.1) software. P. falciparum msp1 and msp2 markers were highly polymorphic with low allele frequencies. In Kolkata, 27 msp1 different genotypes (including 11of K1, 6 of MAD20 and 10 of Ro33 allelic families) and 30 different msp2 genotypes (of which 17 and 13 belonged to the FC27 and 3D7 allelic families, respectively) were recorded. The majority of these genotypes occurred at a frequency below 10%. The mean MOI for msp1 and msp2 gene were 2.05 and 3.72, respectively. The P. falciparum population of Kolkata was genetically diverse. As the frequencies of most of the msp1 and msp2 alleles were low, the probability of new infection with genotype identical to that in pretreatment infection was very rare. This information will serve as baseline data for evaluation of malaria control interventions as well as for monitoring the parasite population structure.
Collapse
|
7
|
Martín S, Molina J, Hernández Y, Ferrer O, Muñoz MC, López A, Ortega L, Ruiz A. Influence of immunoprotection on genetic variability of cysteine proteinases from Haemonchus contortus adult worms. Int J Parasitol 2015; 45:831-40. [DOI: 10.1016/j.ijpara.2015.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
8
|
Structural basis for epitope masking and strain specificity of a conserved epitope in an intrinsically disordered malaria vaccine candidate. Sci Rep 2015; 5:10103. [PMID: 25965408 PMCID: PMC4428071 DOI: 10.1038/srep10103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/30/2015] [Indexed: 12/15/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) is an intrinsically disordered, membrane-anchored antigen of the malaria parasite Plasmodium falciparum. MSP2 can elicit a protective, albeit strain-specific, antibody response in humans. Antibodies are generated to the conserved N- and C-terminal regions but many of these react poorly with the native antigen on the parasite surface. Here we demonstrate that recognition of a conserved N-terminal epitope by mAb 6D8 is incompatible with the membrane-bound conformation of that region, suggesting a mechanism by which native MSP2 escapes antibody recognition. Furthermore, crystal structures and NMR spectroscopy identify transient, strain-specific interactions between the 6D8 antibody and regions of MSP2 beyond the conserved epitope. These interactions account for the differential affinity of 6D8 for the two allelic families of MSP2, even though 6D8 binds to a fully conserved epitope. These results highlight unappreciated mechanisms that may modulate the specificity and efficacy of immune responses towards disordered antigens.
Collapse
|
9
|
MacRaild CA, Zachrdla M, Andrew D, Krishnarjuna B, Nováček J, Žídek L, Sklenář V, Richards JS, Beeson JG, Anders RF, Norton RS. Conformational dynamics and antigenicity in the disordered malaria antigen merozoite surface protein 2. PLoS One 2015; 10:e0119899. [PMID: 25742002 PMCID: PMC4351039 DOI: 10.1371/journal.pone.0119899] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/16/2015] [Indexed: 12/14/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27) using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design.
Collapse
Affiliation(s)
- Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
- * E-mail:
| | - Milan Zachrdla
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Dean Andrew
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
| | - Jiří Nováček
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lukáš Žídek
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Vladimír Sklenář
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - James G. Beeson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - Robin F. Anders
- Department of Biochemistry, La Trobe University, Victoria, 3086, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
| |
Collapse
|
10
|
Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol 2014; 5:359. [PMID: 25120545 PMCID: PMC4112938 DOI: 10.3389/fimmu.2014.00359] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/13/2014] [Indexed: 01/28/2023] Open
Abstract
After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates.
Collapse
Affiliation(s)
- Alyssa E Barry
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| | - Alicia Arnott
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
11
|
Perraut R, Joos C, Sokhna C, Polson HEJ, Trape JF, Tall A, Marrama L, Mercereau-Puijalon O, Richard V, Longacre S. Association of antibody responses to the conserved Plasmodium falciparum merozoite surface protein 5 with protection against clinical malaria. PLoS One 2014; 9:e101737. [PMID: 25047634 PMCID: PMC4105459 DOI: 10.1371/journal.pone.0101737] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/11/2014] [Indexed: 12/14/2022] Open
Abstract
Background Plasmodium falciparum merozoite surface protein 5 (PfMSP5) is an attractive blood stage vaccine candidate because it is both exposed to the immune system and well conserved. To evaluate its interest, we investigated the association of anti-PfMSP5 IgG levels, in the context of responses to two other conserved Ags PfMSP1p19 and R23, with protection from clinical episodes of malaria in cross-sectional prospective studies in two different transmission settings. Methods Ndiop (mesoendemic) and Dielmo (holoendemic) are two Senegalese villages participating in an on-going long-term observational study of natural immunity to malaria. Blood samples were taken before the transmission season (Ndiop) or before peak transmission (Dielmo) and active clinical surveillance was carried out during the ensuing 5.5-month follow-up. IgG responses to recombinant PfMSP5, PfMSP1p19 and R23 were quantified by ELISA in samples from surveys carried out in Dielmo (186 subjects) and Ndiop (221 subjects) in 2002, and Ndiop in 2000 (204 subjects). In addition, 236 sera from the Dielmo and Ndiop-2002 surveys were analyzed for relationships between the magnitude of anti-PfMSP5 response and neutrophil antibody dependent respiratory burst (ADRB) activity. Results Anti-PfMSP5 antibodies predominantly IgG1 were detected in 60–74% of villagers, with generally higher levels in older age groups. PfMSP5 IgG responses were relatively stable for Ndiop subjects sampled both in 2000 and 2002. ADRB activity correlated with age and anti-PfMSP5 IgG levels. Importantly, PfMSP5 antibody levels were significantly associated with reduced incidence of clinical malaria in all three cohorts. Inclusion of IgG to PfMSP1p19 in the poisson regression model did not substantially modify results. Conclusion These results indicate that MSP5 is recognized by naturally acquired Ab. The large seroprevalence and association with protection against clinical malaria in two settings with differing transmission conditions and stability over time demonstrated in Ndiop argue for further evaluation of baculovirus PfMSP5 as a vaccine candidate.
Collapse
Affiliation(s)
- Ronald Perraut
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Sénégal
- * E-mail:
| | - Charlotte Joos
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Sénégal
- Laboratoire de Vaccinologie-Parasitaire, Institut Pasteur, Paris, France
| | - Cheikh Sokhna
- Laboratoire de Paludologie/ Zoologie Médicale, IRD, Dakar, Sénégal
| | | | | | - Adama Tall
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Laurence Marrama
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | - Vincent Richard
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Shirley Longacre
- Laboratoire de Vaccinologie-Parasitaire, Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Oyedeji SI, Awobode HO, Anumudu C, Kun J. Genetic diversity of Plasmodium falciparum isolates from naturally infected children in north-central Nigeria using the merozoite surface protein-2 as molecular marker. ASIAN PAC J TROP MED 2014; 6:589-94. [PMID: 23790328 DOI: 10.1016/s1995-7645(13)60102-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/15/2012] [Accepted: 12/15/2012] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To characterize the genetic diversity of Plasmodium falciparum (P. falciparum) field isolates in children from Lafia, North-central Nigeria, using the highly polymorphic P. falciparum merozoite surface protein 2 (MSP-2) gene as molecular marker. METHODS Three hundred and twenty children were enrolled into the study between 2005 and 2006. These included 140 children who presented with uncomplicated malaria at the Dalhatu Araf Specialist Hospital, Lafia and another 180 children from the study area with asymptomatic infection. DNA was extracted from blood spot on filter paper and MSP-2 genes were genotyped using allele-specific nested PCR in order to analyze the genetic diversity of parasite isolates. RESULTS A total of 31 and 34 distinct MSP-2 alleles were identified in the asymptomatic and uncomplicated malaria groups respectively. No difference was found between the multiplicity of infection in the asymptomatic group and that of the uncomplicated malaria group (P>0.05). However, isolates of the FC27 allele type were dominant in the asymptomatic group whereas isolates of the 3D7 allele type were dominant in the uncomplicated malaria group. CONCLUSIONS This study showed a high genetic diversity of P. falciparum isolates in North-central Nigeria and is comparable to reports from similar areas with high malaria transmission intensity.
Collapse
|
13
|
Khaireh BA, Assefa A, Guessod HH, Basco LK, Khaireh MA, Pascual A, Briolant S, Bouh SM, Farah IH, Ali HM, Abdi AIA, Aden MO, Abdillahi Z, Ayeh SN, Darar HY, Koeck JL, Rogier C, Pradines B, Bogreau H. Population genetics analysis during the elimination process of Plasmodium falciparum in Djibouti. Malar J 2013; 12:201. [PMID: 23758989 PMCID: PMC3685531 DOI: 10.1186/1475-2875-12-201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 05/28/2013] [Indexed: 11/26/2022] Open
Abstract
Background Case management of imported malaria within the context of malaria pre-elimination is increasingly considered to be relevant because of the risk of resurgence. The assessment of malaria importation would provide key data i) to select countries with propitious conditions for pre-elimination phase and ii) to predict its feasibility. Recently, a sero-prevalence study in Djibouti indicated low malaria prevalence, which is propitious for the implementation of pre-elimination, but data on the extent of malaria importation remain unknown. Methods Djiboutian plasmodial populations were analysed over an eleven-year period (1998, 1999, 2002 and 2009). The risk of malaria importation was indirectly assessed by using plasmodial population parameters. Based on 5 microsatellite markers, expected heterozygosity (H.e.), multiplicity of infection, pairwise Fst index, multiple correspondence analysis and individual genetic relationship were determined. The prevalence of single nucleotide polymorphisms associated with pyrimethamine resistance was also determined. Results Data indicated a significant decline in genetic diversity (0.51, 0.59, 0.51 and 0 in 1998, 1999, 2002 and 2009, respectively) over the study period, which is inconsistent with the level of malaria importation described in a previous study. This suggested that Djiboutian malaria situation may have benefited from the decline of malaria prevalence that occurred in neighbouring countries, in particular in Ethiopia. The high Fst indices derived from plasmodial populations from one study period to another (0.12 between 1999 and 2002, and 0.43 between 2002 and 2009) suggested a random sampling of parasites, probably imported from neighbouring countries, leading to oligo-clonal expansion of few different strains during each transmission season. Nevertheless, similar genotypes observed during the study period suggested recurrent migrations and imported malaria. Conclusion In the present study, the extent of genetic diversity was used to assess the risk of malaria importation in the low malaria transmission setting of Djibouti. The molecular approach highlights i) the evolution of Djiboutian plasmodial population profiles that are consistent and compatible with Djiboutian pre-elimination goals and ii) the necessity to implement the monitoring of plasmodial populations and interventions at the regional scale in the Horn of Africa to ensure higher efficiency of malaria control and elimination.
Collapse
Affiliation(s)
- Bouh Abdi Khaireh
- Unité de Parasitologie, Département d'Infectiologie de Terrain, Institut de Recherche Biomédicale des Armées, Allée du Médecin Colonel E, Jamot, Parc du Pharo, BP 60109, 13262 Marseille Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Phylogenetic relationships of Mongolian Babesia bovis isolates based on the merozoite surface antigen (MSA)-1, MSA-2b, and MSA-2c genes. Vet Parasitol 2012; 184:309-16. [DOI: 10.1016/j.vetpar.2011.09.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/06/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022]
|
15
|
Robinson T, Campino SG, Auburn S, Assefa SA, Polley SD, Manske M, MacInnis B, Rockett KA, Maslen GL, Sanders M, Quail MA, Chiodini PL, Kwiatkowski DP, Clark TG, Sutherland CJ. Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients. PLoS One 2011; 6:e23204. [PMID: 21853089 PMCID: PMC3154926 DOI: 10.1371/journal.pone.0023204] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity.
Collapse
Affiliation(s)
- Timothy Robinson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Sarah Auburn
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Spencer D. Polley
- Department of Clinical Parasitology, Hospital for Tropical Diseases, London, United Kingdom
| | - Magnus Manske
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Bronwyn MacInnis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Mandy Sanders
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Peter L. Chiodini
- Department of Clinical Parasitology, Hospital for Tropical Diseases, London, United Kingdom
- Faculties of Infectious and Tropical Diseases and Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Taane G. Clark
- Faculties of Infectious and Tropical Diseases and Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Colin J. Sutherland
- Department of Clinical Parasitology, Hospital for Tropical Diseases, London, United Kingdom
- Faculties of Infectious and Tropical Diseases and Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Tetteh KKA, Conway DJ. A polyvalent hybrid protein elicits antibodies against the diverse allelic types of block 2 in Plasmodium falciparum merozoite surface protein 1. Vaccine 2011; 29:7811-7. [PMID: 21820475 PMCID: PMC3195258 DOI: 10.1016/j.vaccine.2011.07.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 07/18/2011] [Accepted: 07/23/2011] [Indexed: 01/20/2023]
Abstract
Merozoite surface protein 1 (MSP1) of Plasmodium falciparum has been implicated as an important target of acquired immunity, and candidate components for a vaccine include polymorphic epitopes in the N-terminal polymorphic block 2 region. We designed a polyvalent hybrid recombinant protein incorporating sequences of the three major allelic types of block 2 together with a composite repeat sequence of one of the types and N-terminal flanking T cell epitopes, and compared this with a series of recombinant proteins containing modular sub-components and similarly expressed in Escherichia coli. Immunogenicity of the full polyvalent hybrid protein was tested in both mice and rabbits, and comparative immunogenicity studies of the sub-component modules were performed in mice. The full hybrid protein induced high titre antibodies against each of the major block 2 allelic types expressed as separate recombinant proteins and against a wide range of allelic types naturally expressed by a panel of diverse P. falciparum isolates, while the sub-component modules had partial antigenic coverage as expected. This encourages further development and evaluation of the full MSP1 block 2 polyvalent hybrid protein as a candidate blood-stage component of a malaria vaccine.
Collapse
Affiliation(s)
- Kevin K A Tetteh
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
17
|
Biswas S, Dicks MDJ, Long CA, Remarque EJ, Siani L, Colloca S, Cottingham MG, Holder AA, Gilbert SC, Hill AVS, Draper SJ. Transgene optimization, immunogenicity and in vitro efficacy of viral vectored vaccines expressing two alleles of Plasmodium falciparum AMA1. PLoS One 2011; 6:e20977. [PMID: 21698193 PMCID: PMC3116848 DOI: 10.1371/journal.pone.0020977] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 05/17/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Apical membrane antigen 1 (AMA1) is a leading candidate vaccine antigen against blood-stage malaria, although to date numerous clinical trials using mainly protein-in-adjuvant vaccines have shown limited success. Here we describe the pre-clinical development and optimization of recombinant human and simian adenoviral (AdHu5 and ChAd63) and orthopoxviral (MVA) vectors encoding transgene inserts for Plasmodium falciparum AMA1 (PfAMA1). METHODOLOGY/PRINCIPAL FINDINGS AdHu5-MVA prime-boost vaccination in mice and rabbits using these vectors encoding the 3D7 allele of PfAMA1 induced cellular immune responses as well as high-titer antibodies that showed growth inhibitory activity (GIA) against the homologous but not heterologous parasite strains. In an effort to overcome the issues of PfAMA1 antigenic polymorphism and pre-existing immunity to AdHu5, a simian adenoviral (ChAd63) vector and MVA encoding two alleles of PfAMA1 were developed. This antigen, composed of the 3D7 and FVO alleles of PfAMA1 fused in tandem and with expression driven by a single promoter, was optimized for antigen secretion and transmembrane expression. These bi-allelic PfAMA1 vaccines, when administered to mice and rabbits, demonstrated comparable immunogenicity to the mono-allelic vaccines and purified serum IgG now showed GIA against the two divergent strains of P. falciparum encoded in the vaccine. CD8(+) and CD4(+) T cell responses against epitopes that were both common and unique to the two alleles of PfAMA1 were also measured in mice. CONCLUSIONS/SIGNIFICANCE Optimized transgene inserts encoding two divergent alleles of the same antigen can be successfully inserted into adeno- and pox-viral vaccine vectors. Adenovirus-MVA immunization leads to the induction of T cell responses common to both alleles, as well as functional antibody responses that are effective against both of the encoded strains of P. falciparum in vitro. These data support the further clinical development of these vaccine candidates in Phase I/IIa clinical trials.
Collapse
Affiliation(s)
- Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, Oxfordshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Toward the rational design of a malaria vaccine construct using the MSP3 family as an example: contribution of antigenicity studies in humans. Infect Immun 2009; 78:486-94. [PMID: 19884337 DOI: 10.1128/iai.01359-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum merozoite surface protein (MSP3) is a main target of protective immunity against malaria that is currently undergoing vaccine development. It was shown recently to belong, together with MSP6, to a new multigene family whose C-terminal regions have a similar organization, contain both homologous and divergent regions, and are highly conserved across isolates. In an attempt to rationally design novel vaccine constructs, we extended the analysis of antigenicity and function of region-specific antibodies, previously performed with MSP3 and MSP6, to the remaining four proteins of the MSP3 family using four recombinant proteins and 24 synthetic peptides. Antibodies to each MSP3 family antigen were found to be highly prevalent among malaria-exposed individuals from the village of Dielmo (Senegal). Each of the 24 peptides was antigenic, defining at least one epitope mimicking that of the native proteins, with a distinct IgG isotype pattern for each, although with an overall predominance of the IgG3 subclass. Human antibodies affinity purified upon each of the 24 peptides exerted an antiparasite antibody-dependent cellular inhibition effect, which in most cases was as strong as that of IgG from protected African adults. The two regions with high homology were found to generate a broad network of cross-reactive antibodies with various avidities. A first multigenic construct was designed using these findings and those from related immunogenicity studies in mice and demonstrated valuable immunological properties. These results indicate that numerous regions from the MSP3 family play a role in protection and provide a rationale for the tailoring of new MSP3-derived malaria vaccines.
Collapse
|
19
|
|
20
|
Beck HP, Blake D, Dardé ML, Felger I, Pedraza-Díaz S, Regidor-Cerrillo J, Gómez-Bautista M, Ortega-Mora LM, Putignani L, Shiels B, Tait A, Weir W. Molecular approaches to diversity of populations of apicomplexan parasites. Int J Parasitol 2009; 39:175-89. [PMID: 18983997 DOI: 10.1016/j.ijpara.2008.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 11/30/2022]
Affiliation(s)
- Hans-Peter Beck
- Swiss Tropical Institute, Socinstrasse 57, CH 4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Barclay VC, Chan BHK, Anders RF, Read AF. Mixed allele malaria vaccines: host protection and within-host selection. Vaccine 2008; 26:6099-107. [PMID: 18804509 PMCID: PMC2674600 DOI: 10.1016/j.vaccine.2008.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/01/2008] [Accepted: 09/01/2008] [Indexed: 11/19/2022]
Abstract
Malaria parasites are frequently polymorphic at the antigenic targets of many candidate vaccines, presumably as a consequence of selection pressure from protective immune responses. Conventional wisdom is therefore that vaccines directed against a single variant could select for non-target variants, rendering the vaccine useless. Many people have argued that a solution is to develop vaccines containing the products of more than one variant of the target. However, we are unaware of any evidence that multi-allele vaccines better protect hosts against parasites or morbidity. Moreover, selection of antigen-variants is not the only evolution that could occur in response to vaccination. Increased virulence could also be favored if more aggressive strains are less well controlled by vaccine-induced immunity. Virulence and antigenic identity have been confounded in all studies so far, and so we do not know formally from any animal or human studies whether vaccine failure has been due to evasion of protective responses by variants at target epitopes, or whether vaccines are just less good at protecting against more aggressive strains. Using the rodent malaria model Plasmodium chabaudi and recombinant apical membrane antigen-1 (AMA-1), we tested whether a bi-allelic vaccine afforded greater protection from parasite infection and morbidity than did vaccination with the component alleles alone. We also tested the effect of mono- and bi-allelic vaccination on within-host selection of mixed P. chabaudi infections, and whether parasite virulence mediates pathogen titres in immunized hosts. We found that vaccination with the bi-allelic AMA-1 formulation did not afford the host greater protection from parasite infection or morbidity than did mono-allelic AMA-1 immunization. Mono-allelic immunization increased the frequency of heterologous clones in mixed clone infections. There was no evidence that any type of immunization regime favored virulence. A single AMA-1 variant is a component of candidate malaria vaccines current in human trials; our results suggest that adding extra AMA-1 alleles to these vaccines would not confer clinical benefits, but that that mono-allelic vaccines could alter AMA-1 allele frequencies in natural populations.
Collapse
|
22
|
Abstract
The development and implementation of a malaria vaccine would constitute a major breakthrough for global health. Recently, numerous new candidates have entered clinical testing, following strategies that are as diverse as the malaria cycle is complex. While promising results have been obtained, some candidate vaccines have not fulfilled expectations. The challenges are not merely scientific; further progresses will require the development of competent investigator networks, partnerships between academics, industry and funding agencies, and continuous political commitment. In this review, we present the developmental status of all malaria vaccine candidates that are currently in human clinical testing against Plasmodium falciparum, as well as selected malaria vaccine candidates at preclinical development stage, and discuss the main challenges facing the field of malaria vaccine development.
Collapse
Affiliation(s)
- Johan Vekemans
- GlaxoSmithKline Biologicals, Emerging Diseases, Global Clinical Research and Development Vaccines, Rixensart, Belgium.
| | | |
Collapse
|
23
|
Daubenberger CA, Pluschke G, Zurbriggen R, Westerfeld N. Development of influenza virosome-based synthetic malaria vaccines. Expert Opin Drug Discov 2008; 3:415-23. [DOI: 10.1517/17460441.3.4.415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Weiss WR, Kumar A, Jiang G, Williams J, Bostick A, Conteh S, Fryauff D, Aguiar J, Singh M, O'Hagan DT, Ulmer JB, Richie TL. Protection of rhesus monkeys by a DNA prime/poxvirus boost malaria vaccine depends on optimal DNA priming and inclusion of blood stage antigens. PLoS One 2007; 2:e1063. [PMID: 17957247 PMCID: PMC2031826 DOI: 10.1371/journal.pone.0001063] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/11/2007] [Indexed: 11/21/2022] Open
Abstract
Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher interferon-γ ELIspot responses to the PkCSP antigen correlated with earlier appearance of parasites in the blood, despite the fact that PkCSP vaccines had a protective effect.
Collapse
Affiliation(s)
- Walter R Weiss
- Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Low A, Chandrashekaran IR, Adda CG, Yao S, Sabo JK, Zhang X, Soetopo A, Anders RF, Norton RS. Merozoite surface protein 2 of Plasmodium falciparum: expression, structure, dynamics, and fibril formation of the conserved N-terminal domain. Biopolymers 2007; 87:12-22. [PMID: 17516503 DOI: 10.1002/bip.20764] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Merozoite surface protein 2 (MSP2) is a GPI-anchored protein on the surface of the merozoite stage of the malaria parasite Plasmodium falciparum. It is largely disordered in solution, but has a propensity to form amyloid-like fibrils under physiological conditions. The N-terminal conserved region (MSP2(1-25)) is part of the protease-resistant core of these fibrils. To investigate the structure and dynamics of this region, its ability to form fibrils, and the role of individual residues in these properties, we have developed a bacterial expression system that yields > or =10 mg of unlabeled or (15)N-labeled peptide per litre of culture. Two recombinant versions of MSP2(1-25), wild-type and a Y7A/Y16A mutant, have been produced. Detailed conformational analysis of the wild-type peptide and backbone (15)N relaxation data indicated that it contains beta-turn and nascent helical structures in the central and C-terminal regions. Residues 6-21 represent the most ordered region of the structure, although there is some flexibility around residues 8 and 9. The 10-residue sequence (MSP2(7-16)) (with two Tyr residues) was predicted to have a higher propensity for beta-aggregation than the 8-mer sequence (MSP2(8-15)), but there was no significant difference in conformation between MSP2(1-25) and [Y7A,Y16A]MSP2(1-25) and the rate of fibril formation was only slightly slower in the mutant. The peptide expression system described here will facilitate further mutational analyses to define the roles of individual residues in transient structural elements and fibril formation, and thus contribute to the further development of MSP2 as a malaria vaccine candidate.
Collapse
Affiliation(s)
- Andrew Low
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|