1
|
Changbunjong T, Weluwanarak T, Chaiphongpachara T. First insights into using outline-based geometric morphometrics of wing cell contours to distinguish three morphologically similar species of Tabanus (Diptera: Tabanidae). CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100218. [PMID: 39434889 PMCID: PMC11492090 DOI: 10.1016/j.crpvbd.2024.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Accurate species identification of horse flies (Diptera: Tabanidae) is crucial due to their role as vectors for various pathogens, which is essential for understanding their biology, devising strategies to control their populations, and enhancing disease surveillance. This study assessed the efficacy of outline-based geometric morphometrics (GM) by analyzing the wing cell contours of discal, first submarginal, and second submarginal cells to distinguish three morphologically similar Tabanus species commonly found in Thailand, T. megalops, T. rubidus, and T. striatus. Statistical analysis demonstrated significant size differences between T. rubidus and the two other species (P < 0.05), with T. rubidus exhibiting larger wing cells. Tabanus megalops and T. striatus had similar sizes; their size differences were not statistically significant. The accuracy of size analysis based on validated classification tests was relatively low, ranging from 64.67% to 68.67%. Nonetheless, all wing cell contours showed significant shape differences between the three species, as confirmed by Mahalanobis distance comparisons using 1000 permutation tests (P < 0.05). The shape of the first submarginal cell contour showed the highest classification accuracy (86.67%). Outline-based GM offers a significant advantage for analyzing fly specimens with incomplete wings that have intact cells. For damaged specimens, analyzing the contour of the first submarginal cell through this technique can be a viable alternative.
Collapse
Affiliation(s)
- Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thekhawet Weluwanarak
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand
| |
Collapse
|
2
|
Muyobela J, Pirk CWW, Yusuf AA, Sole CL. Phenotypic divergence of Glossina morsitans (Diptera: Glossinidae) populations in Zambia: Application of landmark-based wing geometric morphometrics to discriminate population-level variation. Ecol Evol 2024; 14:e70348. [PMID: 39355111 PMCID: PMC11442019 DOI: 10.1002/ece3.70348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
An important consequence of the discontinuous distribution of insect populations within their geographic range is phenotypic divergence. Detection of this divergence can be challenging when it occurs through subtle shifts in morphological traits with complex geometries, such as insect wing venation. Here, we used landmark-based wing geometric morphometrics to investigate the population-level phenotypic variation of the two subspecies of Glossina morsitans, G. m. centralis Machado and G. m. morsitans Westwood that occur in Zambia. Twelve homologous landmarks digitised on the right wings of 720 specimens collected from four and five sites (80 per site with 1:1 sex ratio) within the G. m. centralis and G. m. morsitans range respectively, were subjected to generalised Procrustes analysis to obtain wing centroid size (CS) and wing shape variables. Linear permutation models and redundancy analysis were then used to compare CS and wing shape between male and female G. morsitans, the two subspecies G. m. centralis and G. m. morsitans, the sexes of each subspecies and between sample locations within each subspecies range, respectively. Significant differences in CS and wing shape were observed between G. morsitans sexes, subspecies and sample locations within each subspecies range. A neighbour-joining cladogram derived from the analysis of Procrustes distances showed that tsetse within each subspecies range were highly divergent. We conclude that G. morsitans populations in Zambia exhibit significant population-level variation in fly size and wing shape which suggests high levels of population structuring. The main drivers of this structuring could be random genetic drift in G. m. centralis demes and local adaptation to environmental conditions in G. m. morsitans populations. We therefore recommend molecular studies to estimate the levels of gene flow between these populations and identify possible barriers to genetic flow.
Collapse
Affiliation(s)
- Jackson Muyobela
- Department of Zoology and Entomology University of Pretoria Hatfield Pretoria South Africa
- Department of Veterinary Services, Tsetse and Trypanosomiasis Control Unit Ministry of Fisheries and Livestock Lusaka Zambia
| | - Christian W W Pirk
- Department of Zoology and Entomology University of Pretoria Hatfield Pretoria South Africa
| | - Abdullahi A Yusuf
- Department of Zoology and Entomology University of Pretoria Hatfield Pretoria South Africa
| | - Catherine L Sole
- Department of Zoology and Entomology University of Pretoria Hatfield Pretoria South Africa
| |
Collapse
|
3
|
Silva CMDA, Dos Santos FN, Mota TF, Brodskyn CI, Fraga DBM, Magalhães-Junior JT. Identification of Lutzomyia longipalpis' using MALDI-TOF peptide/protein profiles. Acta Trop 2024; 257:107303. [PMID: 38950763 DOI: 10.1016/j.actatropica.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Sand flies are vectors of great public health importance, since they constitute a group of hematophagous insects responsible for etiological agents transmission of zoonotic diseases such a visceral leishmaniasis. In face of the expansion of these diseases, efficient control strategies are needed which depend on comprehending the sand fly eco-epidemiology. In this regard, MALDI-TOF mass spectrometry has been used for bacteria, fungi and yeast detection studies through peptide/protein profiles. However, little is known about interference of biological factors associated with vector ecology, such as blood meal preferences and even sand fly age on the peptide/protein profiles. Thus, the present study aimed to evaluate the differences in peptide/protein profiles of the sand fly Lutzomyia longipalpis, by means of MALDI-TOF, due to the sand fly's age, sex, blood meal source and Leishmania infantum infection. Sample preparation was made removing both head and last abdomen segments keeping the thorax, its appendices and the rest of the abdomen. Five specimens per pool were used to obtain peptide/protein extract of which 1 μL solution was deposited over 1 μL MALDI matrix dried. Characteristic spectra were analyzed using principal coordinate analysis as well as indicator species analysis to discriminate differences in sand flies's peptide/protein profile by sex, age, blood meal source and L. infantum infection. The results show that the evaluated variables produced distinct peptide/protein profiles, demonstrated by the identification of specific diagnostic ions. It was found that the interference of biological factors should be taken into account when using the MALDI-TOF analysis of sand fly species identification and eco-epidemiological applications in field studies. Based on our results, we believe that it is possible to identify infected specimens and the source of blood meal in a collection of wild sand flies, serving to measure infectivity and understand the dynamics of the vector's transmission chain. Our results may be useful for epidemiological studies that look at the ecology of sand flies and leishmaniasis, as well as for raising awareness of biological characteristics' impact on peptide/protein profiles in sand fly species identification.
Collapse
Affiliation(s)
- Caliene Melo de Andrade Silva
- Universidade Federal do Oeste da Bahia (UFOB), Centro Multidisciplinar da Barra, Barra, Bahia, Brazil, 47100-000; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710.
| | - Fábio Neves Dos Santos
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil, 13083-970; Instituto de Química, Universidade Federal da Bahia (UFBA), Campus Universitário de Ondina, Salvador, Bahia, Brazil, 40170-290
| | - Tiago Feitosa Mota
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710
| | - Claudia Ida Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710
| | - Deborah Bittencourt Mothé Fraga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710; Universidade Federal da Bahia (UFBA), Escola de Medicina Veterinária e Zootecnia, Salvador, Bahia, Brazil, 40170-110
| | | |
Collapse
|
4
|
Chaiphongpachara T, Laojun S, Changbunjong T, Wichit S, Villarroel PMS. Demographic inference from the mt-DNA COI gene and wing geometry of Culex gelidus (Diptera: Culicidae), an important vector of Japanese encephalitis in Thailand. Acta Trop 2024; 256:107276. [PMID: 38821146 DOI: 10.1016/j.actatropica.2024.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Culex gelidus (Diptera: Culicidae), an important vector of the Japanese encephalitis virus (JEV), contributes to human viral encephalitis in many Asian countries, including Thailand. This study represents the first investigation of the demographic patterns of Cx. gelidus populations in Thailand using cytochrome c oxidase subunit I (COI) gene analysis and wing geometric morphometrics (GM). Mosquitoes were collected from 10 provinces across six regions of Thailand in 2022. Analysis of the COI sequences (n = 182) indicated high haplotype diversity (0.882) and low nucleotide diversity (0.006), with 72 haplotypes identified. The haplotype network demonstrated no profound splits among the geographic populations. Neutral tests, including Tajima's D and Fu's Fs, displayed negative values, with a significant result observed for Fu's Fs (-33.048, p < 0.05). The mismatch distribution analysis indicated that the population does not statistically deviate from a model of sudden population expansion (SSD = 0.010, p > 0.05; Rg = 0.022, p > 0.05). The estimations suggest that the Cx. gelidus population in Thailand began its expansion approximately between 459,243 and 707,011 years ago. The Mantel test showed no significant relationship between genetic and geographic distances (r = 0.048, p > 0.05). Significant phenotypic differences (based on wing shape) were observed among most populations. Additionally, in this study, we found no significant relationships between phenotypic and genetic distances (r = 0.250, p > 0.05). Understanding the genetic and morphological dynamics of Cx. gelidus is vital for developing targeted surveillance and vector control measures. This knowledge will also help to predict how future environmental changes might affect these populations, thereby informing long-term vector management strategies.
Collapse
Affiliation(s)
- Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand.
| | - Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; Viral Vector Joint Unit and Joint Laboratory, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Paola Mariela Saba Villarroel
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; Viral Vector Joint Unit and Joint Laboratory, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
5
|
Wulandhari SA, Charoennitiwat V, Samung Y, Sonthayanon P, Kumlert R, Morand S, Chaisiri K, Chaiphongpachara T, Dujardin JP, Sumruayphol S. Intraspecific sensilla dimorphism in Ascoschoengastia indica (Prostigmata, Trombiculidae). Heliyon 2024; 10:e33908. [PMID: 39100469 PMCID: PMC11295564 DOI: 10.1016/j.heliyon.2024.e33908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Ascoschoengastia indica is one of the dominant chigger species in Southeast Asia and a potential carrier of scrub typhus, due in part to its cosmopolitan nature. This study explored the possible biological significance of the observed dimorphism in the shape of its scutum sensilla. Sensilla are specialized structures that are generally adapted to perform specific functions related to sensory capabilities, so their shape and sizes are expected to vary between taxa. We describe morphological variation of the sensilla of A. indica in Thailand. The sensilla had either a round or an ovoid, club-shaped form, which was not dependent on the particularly locality or host. Ignoring the precise function of the sensilla and their morphological variation, our study attempted to answer the following single question: Do the distinct forms of the sensilla indicate possible heterogeneity of the A. indica species? The two forms, named S1 and S2, were compared by genetic and morphometric techniques. The genetic analysis was based on the COI sequences, while the morphometric comparison used the scutum, an organ shown to be of taxonomic value for chigger mites. Neither morphometric nor genetic data revealed any evidence of a speciation process underlying the morphological variation in sensillum types.
Collapse
Affiliation(s)
- Shobiechah Aldillah Wulandhari
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Malaria Consortium Asia, Mahidol University, Bangkok, Thailand
| | | | - Yudthana Samung
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Piengchan Sonthayanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rawadee Kumlert
- Division of Vector-Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Serge Morand
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- CNRS-CIRAD, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand
| | | | - Suchada Sumruayphol
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Weluwanarak T, Chaiphongpachara T, Changbunjong T. Evaluation of the wing cell contour to distinguish between Stomoxys bengalensis and Stomoxys sitiens (Diptera: Muscidae) using outline-based morphometrics. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100204. [PMID: 39185326 PMCID: PMC11342272 DOI: 10.1016/j.crpvbd.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024]
Abstract
The blood-sucking flies of the genus Stomoxys Geoffroy, 1762 (Diptera: Muscidae) are significant ectoparasites that can cause irritation and transmit pathogens to both animals and humans. Within the genus Stomoxys, two species, Stomoxys bengalensis and Stomoxys sitiens, have similar morphology and coexist in the same habitat. Accurate species identification of these flies is crucial for understanding disease vectors and implementing effective control measures. In this study, we assessed the effectiveness of outline-based geometric morphometrics (GM) by analyzing the wing cell contour of the first posterior cell (R5) to distinguish between species and sexes of S. bengalensis and S. sitiens. Our results demonstrate that the outline-based GM method is highly effective in distinguishing between species and sexes of these flies based on contour shape, with accuracy scores ranging from 90.0% to 97.5%. Therefore, outline-based GM emerges as a promising alternative to landmark-based GM or as a supplementary tool in conjunction with traditional morphology-based methods for species identification.
Collapse
Affiliation(s)
- Thekhawet Weluwanarak
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand
| | - Tanasak Changbunjong
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
7
|
Rodrigues GD, Centeno BL, Morales DF, Dimer RDFRM, Cavalheiro CDS, Krolow TK, Moura MO, Krüger RF. Discrimination of cryptic species: Tabanus triangulum and Tabanus occidentalis (Diptera: Tabanidae) differ in size and shape. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e020123. [PMID: 38896757 PMCID: PMC11253824 DOI: 10.1590/s1984-29612024028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/17/2024] [Indexed: 06/21/2024]
Abstract
Horse fly females (Diptera, Tabanidae) are hematophagous and can vector pathogens that affect livestock. Complexes of cryptic species are common in Tabanidae, as exemplified by some species of Tabanus, including Tabanus triangulum and Tabanus occidentalis, both prevalent in the Southern region of Brazil. In this study, geometric morphometrics were employed to ascertain the wing venation in species identification. It was demonstrated that this tool effectively differentiates T. triangulum from T. occidentalis in the coastal plain of Rio Grande do Sul state, situated within the Pampa biome. The results indicate that T. triangulum and T. occidentalis occupy distinct regions of the morphological space, allowing their precise identification through geometric morphometrics, which is fast, affordable, and easy to implement.
Collapse
Affiliation(s)
- Gratchela Dutra Rodrigues
- Programa de Pós-graduação em Biodiversidade Animal – PPGBDiv, Universidade Federal de Pelotas – UFPel, Pelotas, RS, Brasil
| | - Boaventura Lobo Centeno
- Programa de Pós-graduação em Entomologia – PPGEnt, Universidade Federal de Pelotas – UFPel, Pelotas, RS, Brasil
| | - Diuliani Fonseca Morales
- Programa de Pós-graduação em Microbiologia e Parasitologia – PPGMPar, Universidade Federal de Pelotas – UFPel, Pelotas, RS, Brasil
| | | | | | - Tiago Kütter Krolow
- Programa de Pós-graduação em Biodiversidade, Ecologia e Conservação – PPGBEC, Universidade Federal de Tocantins – UFT, Porto Nacional, TO, Brasil
| | | | - Rodrigo Ferreira Krüger
- Laboratório de Ecologia de Parasitos e Vetores, Universidade Federal de Pelotas – UFPel, Pelotas, RS, Brasil
| |
Collapse
|
8
|
Rubio AO, Dye AM, Ifill KE, Summers K. On the wings of dragons: Wing morphometric differences in the sexually dichromatic common whitetail skimmer dragonfly, Plathemis lydia (Odonata: Libellulidae). PLoS One 2024; 19:e0303690. [PMID: 38809838 PMCID: PMC11135787 DOI: 10.1371/journal.pone.0303690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Sexual dimorphism is common throughout the animal kingdom, leading to sex-specific phenotypic differences. The common whitetail skimmer dragonfly, Plathemis lydia (Drury, 1773), is sexually dichromatic, where males of this species display a conspicuous white abdomen and females display a dark brown abdomen. Differences in abdomen conspicuousness between male and female P. lydia are likely attributed to differences in selective pressure where males use their white conspicuous abdomen during male-male territorial chases. We hypothesized that male P. lydia would exhibit wing morphology adaptations to better offset the costs of predation and territoriality and that these adaptations would differ from females. We used field-collected images to quantify differences in body length, wing length, wing area, wing shape, and wing loading between male and female P. lydia. Our results show that male P. lydia have significantly shorter fore and hind wings relative to body size with a higher wing loading when compared to females. We also found that male P. lydia have narrower and pointier fore and hind wings compared to females. These results are consistent with the idea that males are adapted for faster flight, specifically higher acceleration capacity, and higher agility whereas females are adapted for higher maneuverability.
Collapse
Affiliation(s)
- Andrew O. Rubio
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Ashley M. Dye
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Kyle E. Ifill
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
9
|
García-Sánchez AM, Trujillo I, Zurita A, Cutillas C. Differentiation of Synanthropic Fleas from Andalusia (Spain) through Geometric Morphometrics Analysis. Animals (Basel) 2024; 14:1582. [PMID: 38891629 PMCID: PMC11171366 DOI: 10.3390/ani14111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Fleas (Siphonaptera) are ectoparasitic hematophagous insects responsible for causing bites and itchy skin conditions in both humans and animals. Furthermore, they can act as vectors of different pathogens of a wide variety of diseases worldwide, including bartonellosis, rickettsiosis, and bubonic plague. Accurate identification of fleas is necessary for the study of their epidemiology, prevention, and control. In addition to traditional morphological classification approaches and molecular biology techniques, geometric morphometrics is increasingly proving to be a useful complementary tool for discriminating between Siphonaptera taxa. With the objective of determining the capacity of this technique to identify and differentiate synanthropic fleas, a principal component analysis was carried out on populations of Ctenocephalides felis, Pulex irritans, and Archaeopsylla erinacei collected in distinct regions of Andalusia (Spain). The analysis carried out on 81 male and female specimens revealed factorial maps that allowed the differentiation of the populations under study, with only partial overlaps that did not prevent their correct identification. Global size differences were also detected, with a slightly larger size in P. irritans males and a bigger size in A. erinacei females. Therefore, the present study emphasizes the role of geometric morphometrics as a useful complementary technique in taxonomic studies of arthropods, especially in the case of flea specimens lacking representative morphological features.
Collapse
Affiliation(s)
| | | | - Antonio Zurita
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Sevilla, Spain; (A.M.G.-S.); (I.T.); (C.C.)
| | | |
Collapse
|
10
|
Laojun S, Changbunjong T, Chaiphongpachara T. Population genetic structure and wing geometric morphometrics of the filarial vector Armigeres subalbatus (Diptera: Culicidae) in Thailand. Acta Trop 2024; 253:107171. [PMID: 38447704 DOI: 10.1016/j.actatropica.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Armigeres subalbatus (Diptera: Culicidae) is a mosquito species of significant medical and veterinary importance. It is widely distributed across Southeast and East Asia and is commonly found throughout Thailand. This study assessed the genetic diversity and population structure of Ar. subalbatus in Thailand using the cytochrome c oxidase subunit I (COI) gene sequences. Additionally, wing shape variations among these populations were examined using geometric morphometrics (GM). Our results demonstrated that the overall haplotype diversity (Hd) was 0.634, and the nucleotide diversity (π) was 0.0019. Significant negative values in neutrality tests (p < 0.05) indicate that the Ar. subalbatus populations in Thailand are undergoing a phase of expansion following a bottleneck event. The mismatch distribution test suggests that the populations may have started expanding approximately 16,678 years ago. Pairwise genetic differentiation among the 12 populations based on Fst revealed significant differences in 32 pairs (p < 0.05), with the degree of differentiation ranging from 0.000 to 0.419. The GM analysis of wing shape also indicated significant differences in nearly all pairs (p < 0.05), except for between populations from Nakhon Pathom and Samut Songkhram, and between those from Chiang Mai and Mae Hong Son, suggesting no significant difference due to their similar environmental settings. These findings enhance our understanding of the population structure and phenotypic adaptations of mosquito vectors, providing vital insights for the formulation of more efficacious vector control strategies.
Collapse
Affiliation(s)
- Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand.
| |
Collapse
|
11
|
Maciel-de-Freitas R, Sauer FG, Kliemke K, Garcia GA, Pavan MG, David MR, Schmidt-Chanasit J, Hoffmann A, Lühken R. Wolbachia strains wMel and wAlbB differentially affect Aedes aegypti traits related to fecundity. Microbiol Spectr 2024; 12:e0012824. [PMID: 38483475 PMCID: PMC10986601 DOI: 10.1128/spectrum.00128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Two Wolbachia strains, wMel and wAlbB, have been transinfected into Aedes aegypti mosquitoes for population replacement with the aim of reducing dengue transmission. Epidemiological data from various endemic sites suggest a pronounced decrease in dengue transmission after implementing this strategy. In this study, we investigated the impact of the Wolbachia strains wMel and wAlbB on Ae. aegypti fitness in a common genetic background. We found that Ae. aegypti females infected with the wMel strain exhibited several significant differences compared with those infected with the wAlbB strain. Specifically, wMel-infected females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on Ae. aegypti fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations in endemic settings. Further research is needed to better understand the underlying mechanisms responsible for these differences in fitness effects and their potential impact on the long-term efficacy of Wolbachia-based dengue control programs.IMPORTANCEThe transmission of arboviruses such as dengue, Zika, and chikungunya is on the rise globally. Among the most promising strategies to reduce arbovirus burden is the release of one out of two strains of Wolbachia-infected Aedes aegypti: wMel and wAlbB. One critical aspect of whether this approach will succeed involves the fitness cost of either Wolbachia strains on mosquito life history traits. For instance, we found that wMel-infected Ae. aegypti females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on mosquito fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations.
Collapse
Affiliation(s)
- Rafael Maciel-de-Freitas
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felix G. Sauer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Gabriela A. Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Márcio G. Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Mariana R. David
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Ary Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
12
|
Kanta W, Limsopatham K, Sukontason KL, Sukontason K, Dujardin JP, Dujardin S, Sanit S. Geometry of posterior larval spiracles to identify medically and forensically important calliphorids in Thailand. Acta Trop 2024; 252:107126. [PMID: 38316241 DOI: 10.1016/j.actatropica.2024.107126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
Fly identification is the primary step of analysis in forensic entomology. Although morphology and molecular techniques are considered satisfactory methods, some constraints may arise from a financial or even human point of view. Over the past decade, the geometric morphometric approach has been increasingly advocated for the classification and identification of arthropods. This study explored the method for species identification of 800 third-instar larvae of eight blow fly species of medical and forensic importance: Chrysomya chani Kurahashi, Chrysomya megacephala (Fabricius), Chrysomya (Ceylonomyia) nigripes Aubertin, Chrysomya pinguis (Walker), Chrysomya (Achoetandrus) rufifacies (Macquart), Hemipyrellia ligurriens (Wiedemann), Lucilia cuprina (Wiedemann), and Lucilia porphyrina (Walker). Based on the posterior spiracles geometry, the cross-validation revealed a relatively high percentage of correct classification in most species, ranking from 86% to 100%. The results of this study confirmed that the geometric morphometric (GM) analysis of posterior spiracles might be utilized as a larva identification tool. Therefore, this GM method represents one way of overcoming difficulties with the identification of blow fly larvae and can support further studies of these flies.
Collapse
Affiliation(s)
- Wanida Kanta
- Master of Science Program in Forensic Science, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kwankamol Limsopatham
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kabkaew L Sukontason
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kom Sukontason
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sebastien Dujardin
- INTERTRYP, University of Montpellier, CIRAD, IRD, F-34398, Montpellier, France
| | - Sangob Sanit
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
13
|
Oliveira-Correia JPS, de Oliveira J, Gil-Santana HR, da Silva Rocha D, Galvão C. Taxonomic reassessment of Rhodnius zeledoni Jurberg, Rocha & Galvão: a morphological and morphometric analysis comparing its taxonomic relationship with Rhodnius domesticus Neiva & Pinto. BMC ZOOL 2024; 9:6. [PMID: 38515212 PMCID: PMC10956182 DOI: 10.1186/s40850-024-00197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Rhodnius zeledoni was described from a single specimen. Since its description, doubts have arisen regarding the taxonomic status of this species in relation to Rhodnius domesticus. METHODS The present study reviewed and compared R. zeledoni with R. domesticus based on morphological analysis and head geometric morphometrics. RESULTS Our analysis revealed the absence of distinctive diagnostic characters between the two species at specific levels. Rhodnius zeledoni and R. domesticus show morphological and morphometric similarity, with only minor differences in coloration observed between them. Contrary to previous statements, our analysis showed that R. zeledoni and R. paraensis are not closely related species, not corroborating previous studies with such an assumption. CONCLUSIONS Therefore, we formally propose R. zeledoni as a junior synonym of R. domesticus.
Collapse
Affiliation(s)
- João Paulo Sales Oliveira-Correia
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Jader de Oliveira
- Laboratório de Entomologia em Saúde Pública, Faculdade de Saúde Pública, Universidade de São Paulo, USP, São Paulo, Brazil
| | | | - Dayse da Silva Rocha
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Cleber Galvão
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
de Lima VR, de Morais MCC, Kirchgatter K. Integrating artificial intelligence and wing geometric morphometry to automate mosquito classification. Acta Trop 2024; 249:107089. [PMID: 38043672 DOI: 10.1016/j.actatropica.2023.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Mosquitoes (Diptera: Culicidae) comprise over 3500 global species, primarily in tropical regions, where the females act as disease vectors. Thus, identifying medically significant species is vital. In this context, Wing Geometric Morphometry (WGM) emerges as a precise and accessible method, excelling in species differentiation through mathematical approaches. Computational technologies and Artificial Intelligence (AI) promise to overcome WGM challenges, supporting mosquito identification. AI explores computers' thinking capacity, originating in the 1950s. Machine Learning (ML) arose in the 1980s as a subfield of AI, and deep Learning (DL) characterizes ML's subcategory, featuring hierarchical data processing layers. DL relies on data volume and layer adjustments. Over the past decade, AI demonstrated potential in mosquito identification. Various studies employed optical sensors, and Convolutional Neural Networks (CNNs) for mosquito identification, achieving average accuracy rates between 84 % and 93 %. Furthermore, larval Aedes identification reached accuracy rates of 92 % to 94 % using CNNs. DL models such as ResNet50 and VGG16 achieved up to 95 % accuracy in mosquito identification. Applying CNNs to georeference mosquito photos showed promising results. AI algorithms automated landmark detection in various insects' wings with repeatability rates exceeding 90 %. Companies have developed wing landmark detection algorithms, marking significant advancements in the field. In this review, we discuss how AI and WGM are being combined to identify mosquito species, offering benefits in monitoring and controlling mosquito populations.
Collapse
Affiliation(s)
- Vinicio Rodrigues de Lima
- Programa de Pós-Graduação em Medicina Tropical, Faculdade de Medicina, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil
| | - Mauro César Cafundó de Morais
- Instituto Israelita de Ensino e Pesquisa Albert Einstein (IIEPAE), Sociedade Beneficente Israelita Brasileira Albert Einstein (SBIBAE), São Paulo, SP, Brazil; Computational Systems Biology Laboratory (CSBL), Institut Pasteur de São Paulo, São Paulo, SP 05508-020, Brazil
| | - Karin Kirchgatter
- Programa de Pós-Graduação em Medicina Tropical, Faculdade de Medicina, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo, SP 01027-000, Brazil.
| |
Collapse
|
15
|
Sauer FG, Pfitzner WP, Jöst H, Rauhöft L, Kliemke K, Lange U, Heitmann A, Jansen S, Lühken R. Using geometric wing morphometrics to distinguish Aedes japonicus japonicus and Aedes koreicus. Parasit Vectors 2023; 16:418. [PMID: 37968721 PMCID: PMC10648383 DOI: 10.1186/s13071-023-06038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Aedes japonicus japonicus (Theobald, 1901) and Aedes koreicus (Edwards, 1917) have rapidly spread in Europe over the last decades. Both species are very closely related and occur in sympatry. Females and males are difficult to distinguish. However, the accurate species discrimination is important as both species may differ in their vectorial capacity and spreading behaviour. In this study, we assessed the potential of geometric wing morphometrics as alternative to distinguish the two species. METHODS A total of 147 Ae. j. japonicus specimens (77 females and 70 males) and 124 Ae. koreicus specimens (67 females and 57 males) were collected in southwest Germany. The left wing of each specimen was removed, mounted and photographed. The coordinates of 18 landmarks on the vein crosses were digitalised by a single observer. The resulting two-dimensional dataset was used to analyse the differences in the wing size (i.e. centroid size) and wing shape between Ae. j. japonicus and Ae. koreicus using geometric morphometrics. To analyse the reproducibility of the analysis, the landmark collection was repeated for 20 specimens per sex and species by two additional observers. RESULTS The wing size in female Ae. koreicus was significantly greater than in Ae. j. japonicus but did not differ significantly for males. However, the strong overlap in wing size also for the females would not allow to discriminate the two species. In contrast, the wing shape clustering was species specific and a leave-one-out validation resulted in a reclassification accuracy of 96.5% for the females and 91.3% for the males. The data collected by different observers resulted in a similar accuracy, indicating a low observer bias for the landmark collection. CONCLUSIONS Geometric wing morphometrics provide a reliable and robust tool to distinguish female and male specimens of Ae. j. japonicus and Ae. koreicus.
Collapse
Affiliation(s)
- Felix G Sauer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | - Wolf Peter Pfitzner
- Kommunale Aktionsgemeinschaft Zur Bekämpfung Der Schnakenplage e. V. (KABS), Georg-Peter-Süß-Str. 3, 67346, Speyer, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Leif Rauhöft
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
16
|
Hadj-Henni L, Millot C, Lehrter V, Augot D. Wing morphometrics of biting midges (Diptera: Culicoides) of veterinary importance in Madagascar. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105494. [PMID: 37640128 DOI: 10.1016/j.meegid.2023.105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Biting midges are vectors of arboviruses such as bluetongue virus, bovine ephemeral fever virus, Akabane virus, African horse sickness virus, epizootic haemorrhagic disease virus and Schmallenberg virus. Fast and accurate identification of biting midges is crucial in the study of Culicoides-borne diseases. Morphological identification of biting midges has revealed the presence of cryptic species. A total of 20 species are reported in Madagascar. In this study, we assessed wing morphometric analysis for identification of seven species namely C. dubitatus Kremer, Rebholtz-Hirtzel and Delécolle, C. enderleini Cornet and Brunhes, C. kibatiensis Goetghebuer, C. miombo Meiswinkel, C. moreli Clastrier, C. nevilli Cornet and Brunhes, and C. zuluensis de Meillon. Culicoides enderleini, C. miombo, C. moreli, C. nevilli and C. zuluensis are vectors diseases. A molecular approach, based on the cytochrome oxidase I gene (Cox1), was used for species delimitation. The molecular analysis presented seven different clades grouped two-by-two according to morphological characters. A total of 179 wing images were digitised. We found morphometric variation among seven species based on 11 landmarks and two outlines. Wing shape variation plots showed that species overlapped with species belonging to the same group. The cross-validation revealed a relatively high percentage of correct classification in most species, ranging from 91.3% to 100% for landmarks; 60% to 82.6% for outlines-1 and 77.1% to 91.3% for outlines-2. Our study suggests that wing geometric morphometric analysis is a robust tool for reliable "Moka Fohy" identification in Madagascar. This inexpensive and simple method is a precise supplement to morphological identification, with reaches the accuracy of Cox1 barcoding.
Collapse
Affiliation(s)
- Leila Hadj-Henni
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | - Christine Millot
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France.
| | - Véronique Lehrter
- Unité BioSpecT, EA7506, Université de Reims Champagne-Ardenne, Reims, France
| | - Denis Augot
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France; ANSES, INRAe, ENVA, UMR-BIPAR, Laboratoire de Santé Animale, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France.
| |
Collapse
|
17
|
Hounkanrin G, Tchibozo C, Sauer FG, Agboli E, Schmidt-Chanasit J, Yadouleton A, Lühken R, Jöst H. Genetic diversity and wing geometric morphometrics among four populations of Aedes aegypti (Diptera: Culicidae) from Benin. Parasit Vectors 2023; 16:320. [PMID: 37684701 PMCID: PMC10492319 DOI: 10.1186/s13071-023-05943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The impact of the arbovirus vector Aedes aegypti is of major concern for global public health as the viruses that it transmits affect millions of people each year worldwide. Originating in Africa, Ae. aegypti has now spread throughout much of the world. While the genetic makeup of Ae. aegypti in the New World has been extensively studied, there is limited knowledge on its genetic diversity in Africa, particularly at a microgeographical level. METHODS We investigated mitochondrial cytochrome oxidase I of four Ae. aegypti populations from Benin and employed wing morphometric analyses as a cost-effective and reliable tool to explore population structure. Our sampling encompassed various areas of Benin, from the southern to the northern borders of the country, and included urban, semi-urban, and sylvatic sites. RESULTS We observed a notable level of genetic diversity (haplotype diversity of 0.8333) and nucleotide diversity (0.00421986), and identified seven distinct haplotypes. Sylvatic and semi-urban sites exhibited a greater number of haplotypes compared to urban sites. Utilizing 18 wing landmarks, we calculated the centroid size, which revealed significant variation among the three landscape types. However, principal component analysis, employed to assess wing shape variation, did not demonstrate significant differences between populations based on landscape type. CONCLUSIONS Our findings indicate substantial genetic and morphological diversity among Ae. aegypti populations in Benin, and provide insight into important biological characteristics of these populations with respect to their potential to transmit viruses. To the best of our knowledge, this is the first study undertaken in Africa to integrate genetics with morphology to analyse the population structure of the major arbovirus vector Ae. aegypti.
Collapse
Affiliation(s)
- Gildas Hounkanrin
- Laboratory of Viral Haemorrhagic Fevers and Arboviruses of Benin, Cotonou, Benin
| | - Carine Tchibozo
- Laboratory of Viral Haemorrhagic Fevers and Arboviruses of Benin, Cotonou, Benin
| | - Felix Gregor Sauer
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Eric Agboli
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
- School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Anges Yadouleton
- Laboratory of Viral Haemorrhagic Fevers and Arboviruses of Benin, Cotonou, Benin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Ecole Normale Supérieure de Natitingou, National University of Science, Technology, Engineering and Mathematics, Abomey, Benin
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany.
| |
Collapse
|
18
|
Ardkhongharn N, Ravichotikul R, Aksornchai P, Weluwanarak T, Chaiphongpachara T, Changbunjong T. Wing geometric morphometrics to distinguish and identify Haematobosca flies (Diptera: Muscidae) from Thailand. Int J Parasitol Parasites Wildl 2023; 21:74-82. [PMID: 37144141 PMCID: PMC10151224 DOI: 10.1016/j.ijppaw.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
The hematophagous flies of the genus Haematobosca Bezzi, 1907 (Diptera: Muscidae) are important ectoparasites in domestic animals and wildlife. Two species of this genus have been recorded in Thailand, viz., Haematobosca sanguinolenta (Austen, 1909) and Haematobosca aberrans (Pont, Duvallet & Changbunjong, 2020). They have a similar morphology and coexist in the same habitat. The correct species identification of these flies is extremely important for understanding disease epidemiology and developing effective control measures. Geometric morphometrics (GM) has been confirmed to be a useful tool for differentiating and identifying morphologically similar insect species. Therefore, GM was used to distinguish and identify H. sanguinolenta and H. aberrans in Thailand. Adult flies of both sexes were collected using Nzi traps, morphologically identified, and analyzed by landmark-based GM of the wing. Results showed that GM was highly effective in distinguishing the two Haematobosca species based on their wing shape, with an overall accuracy score of 99.3%. We also revealed that our study material could be used as reference data to identify new field specimens collected from other geographic locations. We propose that wing GM can be used as a supplement to conventional morphology identification, particularly for Haematobosca specimen that has been damaged or has lost its diagnostic characteristics due to specimen collection and processing in the field.
Collapse
Affiliation(s)
- Nusara Ardkhongharn
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Romyakorn Ravichotikul
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Patthanan Aksornchai
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thekhawet Weluwanarak
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
- Corresponding author. Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
19
|
Oliveira-Christe R, de Carvalho GC, Wilke ABB, Marrelli MT. Assessment of wing geometric morphometrics of urban Culex quinquefasciatus (Diptera: Culicidae) populations. Acta Trop 2023:106971. [PMID: 37331646 DOI: 10.1016/j.actatropica.2023.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Culex quinquefasciatus is a cosmopolitan species distributed throughout tropical and subtropical areas of the world. The species is of great epidemiological importance as it is responsible for vectoring the causative agent of lymphatic filariasis and several arboviruses, including West Nile virus. Wing geometric morphometrics has been widely used to assess phenotypic variations in mosquito species. Here, we hypothesize that Cx. quinquefasciatus populations in urban parks in the city of São Paulo, Brazil, have been subjected to anthropogenic selective pressures that are responsible for driving their ecology and behavior. Mosquitoes were collected by CDC traps in five municipal parks in the city of São Paulo. Eighteen anatomical landmark coordinates on each female right wing were digitized. Canonical variate analysis, wireframe graphs, cross-validated reclassification tests and the neighbor-joining method were used to assess phenotypical dissimilarity in wing shape between populations. Centroid size was calculated to assess differences in wing size between populations, which can result from different environmental conditions during immature mosquito development. Moderately heterogeneous wing shape and wing size patterns were found in the populations analyzed, indicating that selective pressures in the urban environment are affecting the wing patterns of Cx. quinquefasciatus populations in the city of São Paulo, Brazil.
Collapse
Affiliation(s)
- Rafael Oliveira-Christe
- Institute of Tropical Medicine, University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar 470, São Paulo, SP, Brazil; (R.O.C.).
| | - Gabriela Cristina de Carvalho
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil.
| | - André Barretto Bruno Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| | - Mauro Toledo Marrelli
- Institute of Tropical Medicine, University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar 470, São Paulo, SP, Brazil; (R.O.C.).
| |
Collapse
|
20
|
Moura L, de Nadai BL, Corbi JJ. One does not simply apply larvicides: Aedes aegypti from Araraquara (Brazil) has reduced susceptibility to pyriproxyfen. Vet Parasitol Reg Stud Reports 2023; 41:100875. [PMID: 37208082 DOI: 10.1016/j.vprsr.2023.100875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Using larvicides is an essential method in the strategy to control the Aedes aegypti (Diptera: Culicidae) mosquito in Brazil. However, over the years this practice can select resistant strains, decreasing the efficiency of the larvicide in vector control. We compared two Aedes aegypti populations to verify mosquito resistance to pyriproxyfen larvicide: a population from Araraquara and a susceptible Rockefeller strain. We tested four concentrations of pyriproxyfen (0.005, 0.01, 0.02, and 0.04 mg/L) and observed that the Araraquara strain showed a significant reduction in mortality when compared to the Rockefeller strain, except in the highest concentration tested. We also found a moderate resistance for the Araraquara larvae, which may be related to Araraquara temperatures due to be optimum for Ae. aegypti most part of the epidemic periods. Survivor mosquitoes of pyriproxyfen exposure showed reduced wing centroid sizes, which is related to the mosquitoes' vectorial capacity: frequency of blood meals, chances of hematophagy, and virus dissemination ability. Our results provide the current susceptibility status of an Araraquara Ae. aegypti population and can assist in promoting information to epidemiologic surveillance agencies.
Collapse
Affiliation(s)
- Lidia Moura
- University of São Paulo, Department of Hydraulics and Sanitation, São Carlos, São Paulo, Brazil.
| | - Barbara Lepretti de Nadai
- Western Paraná State University, Department of Engineering and Exact Sciences, Foz do Iguassu, Paraná, Brazil
| | - Juliano José Corbi
- University of São Paulo, Department of Hydraulics and Sanitation, São Carlos, São Paulo, Brazil
| |
Collapse
|
21
|
Téllez-Rendón J, Esteban L, Rengifo-Correa L, Díaz-Albiter H, Huerta H, Dale C. Triatoma yelapensis sp. nov. (Hemiptera: Reduviidae) from Mexico, with a Key of Triatoma Species Recorded in Mexico. INSECTS 2023; 14:insects14040331. [PMID: 37103146 PMCID: PMC10142269 DOI: 10.3390/insects14040331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 05/31/2023]
Abstract
Thirty-four species of Triatominae (Hemiptera, Reduviidae) are recorded in Mexico, Triatoma Laporte, 1832 the most speciose genus in this country. Here, we describe Triatoma yelapensis sp. nov. from the Pacific coast of Jalisco (Mexico). The most similar species to T. yelapensis sp. nov. is T. recurva (Stål, 1868), but they differ in head longitude, the proportion of labial segments, coloration pattern of corium and connexivum, spiracles location, and male genitalia. To provide statistical support for the morphological distinctiveness of the new species, we performed a geometric morphometric analysis of T. yelapensis sp. nov., T. dimidiata s.s. (Latreille, 1811), T. gerstaeckeri (Stål, 1859), and T. recurva (Stål, 1868), considering head morphology. We also provide an updated key of the genus Triatoma for species recorded in Mexico.
Collapse
Affiliation(s)
- Juan Téllez-Rendón
- Institute of Epidemiological Diagnosis and Reference (InDRE), Mexico City 01480, Mexico
| | - Lyda Esteban
- Tropical Diseases Research Center (CINTROP), Universidad Industrial de Santander, Piedecuesta 681012, Colombia
| | - Laura Rengifo-Correa
- Tropical Diseases Research Center (CINTROP), Universidad Industrial de Santander, Piedecuesta 681012, Colombia
| | - Héctor Díaz-Albiter
- Department of Health, The School of the Southern Border (ECOSUR), Villahermosa 86280, Mexico
| | - Herón Huerta
- Institute of Epidemiological Diagnosis and Reference (InDRE), Mexico City 01480, Mexico
| | - Carolina Dale
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 4365, Brazil
| |
Collapse
|
22
|
Geographical Influence on Morphometric Variability of Genetically “Pure” Schistosoma haematobium Eggs from Sub-Saharan Migrants in Spain. Trop Med Infect Dis 2023; 8:tropicalmed8030144. [PMID: 36977146 PMCID: PMC10054267 DOI: 10.3390/tropicalmed8030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Schistosome eggs play a key role in schistosomiasis diagnosis and research. The aim of this work is to morphogenetically study the eggs of Schistosoma haematobium found in sub-Saharan migrants present in Spain, analyzing their morphometric variation in relation to the geographical origin of the parasite (Mali, Mauritania and Senegal). Only eggs considered “pure” S. haematobium by genetic characterization (rDNA ITS-2 and mtDNA cox1) have been used. A total of 162 eggs obtained from 20 migrants from Mali, Mauritania and Senegal were included in the study. Analyses were made by the Computer Image Analysis System (CIAS). Following a previously standardized methodology, seventeen measurements were carried out on each egg. The morphometric analysis of the three morphotypes detected (round, elongated and spindle) and the biometric variations in relation to the country of origin of the parasite on the egg phenotype were carried out by canonical variate analysis. Mahalanobis distances, when all egg measurements were analyzed, showed differences between: (i) Mali-Mauritania, Mali-Senegal and Mauritania-Senegal in the round morphotype; (ii) Mali-Mauritania and Mauritania-Senegal in the elongated morphotype; and (iii) Mauritania-Senegal in the spindle morphotype. Mahalanobis distances, when spine variables were analyzed, showed differences between Mali-Senegal in the round morphotype. In conclusion, this is the first phenotypic study performed on individually genotyped “pure” S. haematobium eggs, allowing the assessment of the intraspecific morphological variations associated with the geographical origin of the schistosome eggs.
Collapse
|
23
|
Changbunjong T, Chaiphongpachara T, Weluwanarak T. Species Discrimination of Stomoxys Flies S. bengalensis, S. calcitrans, and S. sitiens (Diptera: Muscidae) Using Wing Geometric Morphometrics. Animals (Basel) 2023; 13:647. [PMID: 36830433 PMCID: PMC9951760 DOI: 10.3390/ani13040647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The flies of the genus Stomoxys Geoffroy, 1762 (Diptera: Muscidae), are regarded as pests of veterinary and medical importance. In Thailand, Stomoxys calcitrans (Linnaeus, 1758) is the most abundant species and is widely distributed throughout the country. This Stomoxys species can coexist with two other morphologically similar species: Stomoxys bengalensis Picard, 1908, and Stomoxys sitiens Rondani, 1873. Hence, discriminating using morphological characteristics is difficult, especially if the specimen is damaged or loses its diagnostic characteristics. In this study, we evaluated the effectiveness of the landmark-based geometric morphometric (GM) approach to discriminate among the three Stomoxys spp.: S. bengalensis, S. calcitrans, and S. sitiens. Left-wing images of S. bengalensis (n = 120), S. calcitrans (n = 150), and S. sitiens (n = 155) were used for the GM analyses. The results of the wing shape analyses revealed that the GM approach was highly effective for discriminating three Stomoxys, with high accuracy scores ranging from 93.75% to 100%. This study adds to the evidence that landmark-based GM is an excellent alternative approach for discriminating Stomoxys species.
Collapse
Affiliation(s)
- Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand
| | - Thekhawet Weluwanarak
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
24
|
Saiwichai T, Laojun S, Chaiphongpachara T, Sumruayphol S. Species Identification of the Major Japanese Encephalitis Vectors within the Culex vishnui Subgroup (Diptera: Culicidae) in Thailand Using Geometric Morphometrics and DNA Barcoding. INSECTS 2023; 14:insects14020131. [PMID: 36835700 PMCID: PMC9964587 DOI: 10.3390/insects14020131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/02/2023]
Abstract
Japanese encephalitis (JE) is a viral infection of the brain caused by the Japanese encephalitis virus, which spreads globally, particularly in 24 countries of Southeast Asia and the Western Pacific region. In Thailand, the primary vectors of JE are Cx. pseudovishnui, Cx. tritaeniorhynchus, and Cx. vishnui of the Cx. vishnui subgroup. The morphologies of three mosquito species are extremely similar, making identification challenging. Thus, geometric morphometrics (GM) and DNA barcoding were applied for species identification. The results of cross-validation reclassification revealed that the GM technique based on wing shape analysis had relatively high potential for distinguishing Cx. pseudovishnui, Cx. tritaeniorhynchus, and Cx. vishnui (total performance = 88.34% of correctly assigned individuals). While the DNA barcoding yielded excellent results in identifying these Culex species based on the DNA barcode gap (average intraspecific genetic distance = 0.78% ± 0.39% and average interspecific genetic distance = 6.14% ± 0.79%). However, in the absence of the required facilities for DNA barcoding, GM techniques can be employed in conjunction with morphological methods to enhance the reliability of species identification. Based on the results of this study, our approach can help guide efforts to identify members of the Cx. vishnui subgroup, which will be useful for the effective vector control of JE in Thailand.
Collapse
Affiliation(s)
- Tawee Saiwichai
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Sedthapong Laojun
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Science, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand
| | - Suchada Sumruayphol
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
25
|
Anand PP, Seena S, Girish Kumar P, Shibu Vardhanan Y. Species morphospace boundary revisited through wing phenotypic variations of Antodynerus species (Hymenoptera: Vespidae: Eumeninae) from the Indian subcontinent. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.965577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The main objective of this study was to investigate the taxonomic significance of wing phenotypic variations (size and shape) for classifying potter wasps. This is the first study investigating the wing size and shape variations, as well as wing asymmetry, sexual dimorphism, wing integration, and phylogenetic signal analysis of all known Antodynerus species from the Indian subcontinent: A. flavescens, A. limbatus, and A. punctatipennis. We used forewings and hindwings for geometric morphometric analysis, and we proved that each species’ wing had unique size and shape variations, as well as significant right–left wing asymmetry and sexual dimorphism across the Antodynerus species, as verified by discriminant function analysis. Wings of Vespidae are longitudinally folded; based on that, we tested two alternative wing modular hypotheses for evaluating the wing integration, using two subsets organization, such as anterior–posterior (AP) and proximal-distal (PD) wing modular organization. We proved that Antodynerus species wings are highly integrated units (RV > 0.5), and we rejected our hypothesis at p < 0.05. The morphospace distribution analysis revealed that each species has its unique morphospace boundary, although they share some level of homoplasy, which suggests to us that we can use wing morphometric traits for Antodynerus species delimitation. In addition, we revealed the phylogenetic signal of Antodynerus species. Surprisingly, we found a shape-related phylogenetic signal in the forewing, and there is no significant (p > 0.05) phylogenetic signal in forewing size, hindwing shape, and size. We observed that the Antodynerus species’ forewing shape is evolutionarily more highly constrained than the hindwing. We found that A. limbatus and A. flavescens with distinct geographical distribution share a similar evolutionary history, while A. punctatipennis evolved independently.
Collapse
|
26
|
Laojun S, Changbunjong T, Chaiphongpachara T. Evaluation of Modern Techniques for Species Identification of Lutzia Mosquitoes (Diptera: Culicidae) in Thailand: Geometric Morphometrics and DNA Barcoding. INSECTS 2023; 14:insects14010078. [PMID: 36662006 PMCID: PMC9862489 DOI: 10.3390/insects14010078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 05/22/2023]
Abstract
There are four species of Lutzia mosquitoes in Thailand, including Lutzia chiangmaiensis, Lt. fuscana, Lt. halifaxii, and Lt. vorax. The accurate species identification of adult Lutzia mosquitoes based on morphological features requires many body parts, including the abdominal terga and wing. However, species identification is difficult in the case of damaged specimens when some of their morphological character is missing due to transit or gathering in the field. Thus, we evaluated the efficacy of the landmark-based geometric morphometric (GM) approach for the discrimination of Lutzia species in Thailand. In addition, DNA barcoding was also used in parallel with the GM approach to identify the species. Larvae of Lutzia were collected, raised into adults, and identified based on their morphological characteristics. The validated reclassification test results clearly demonstrated that wing shape resulted in a high level of success in identification (correct identifications ranged from 92.50% to 100%); however, based on the DNA barcoding analyses, our results showed that it was poorly effective in identifying Lt. fuscana and Lt. halifaxii based on an overlap between the intraspecific and interspecific divergence. Moreover, our survey results provide updates on the distribution of Lt. chiangmaiensis and Lt. vorax in Thailand. This research will help medical entomologists more efficiently identify mosquitoes in the genus Lutzia, resulting in more effective mosquito control and surveillance.
Collapse
Affiliation(s)
- Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand
- Correspondence:
| |
Collapse
|
27
|
Hadj-Henni L, Djerada Z, Millot C, Cousinat M, Lehrter V, Augot D. Wing morphology variations in Culicoides circumscriptus from France. Front Vet Sci 2023; 10:1089772. [PMID: 37168098 PMCID: PMC10164937 DOI: 10.3389/fvets.2023.1089772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/23/2023] [Indexed: 05/13/2023] Open
Abstract
The biting midge Culicoides circumscriptus Kieffer, 1918 is a European widespread vector of avian malaria throughout the continent and is a possible vector of Akabane virus and Bluetongue virus. This species populates a wide range of environments in contrasting ecological settings often exposed to strong seasonal fluctuations. The main goals of this study were to investigate C. circumscriptus phenotypic variation at three departments in France (Corsica Island, Moselle and Var) and to determine if its phenotypes vary with the environment. Culicoides circumscriptus wing phenotypes were analyzed using a geometric morphometric approach based on anatomical landmarks and outlines of the wing. Dendogram trees based on landmarks and the outlines-2 set (cell m4) showed similar topologies and separated populations of C. circumscriptus. In contrast, another set of outlines-1 (covering the r-m cross vein, M, radiale and arculus) presented a different hierarchical clustering tree. The phenotypic variation observed in C. circumscriptus indicated that these populations are exposed to environmental and ecological pressures. Our results suggest the presence of phenotypic plasticity in this species.
Collapse
Affiliation(s)
- Leila Hadj-Henni
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
| | - Zoubir Djerada
- Department of Medical Pharmacology, EA 3801, SFR Cap Santé, Reims University Hospital, Reims Cedex, France
| | - Christine Millot
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
- *Correspondence: Christine Millot, ; Denis Augot,
| | - Mireille Cousinat
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
| | - Véronique Lehrter
- Université de Reims Champagne-Ardenne, Unité BioSpecT, EA7506, SFR Cap Santé, UFR de Pharmacie, Reims, France
| | - Denis Augot
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
- ANSES, INRAe, ENVA, UMR-BIPAR, Laboratoire de Santé Animale, Maisons-Alfort Cedex, France
- *Correspondence: Christine Millot, ; Denis Augot,
| |
Collapse
|
28
|
Altamiranda-Saavedra M, Naranjo-Díaz N, Conn JE, Correa MM. Entomological parameters and population structure at a microgeographic scale of the main Colombian malaria vectors Anopheles albimanus and Anopheles nuneztovari. PLoS One 2023; 18:e0280066. [PMID: 36607981 PMCID: PMC9821454 DOI: 10.1371/journal.pone.0280066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Population subdivision among several neotropical malaria vectors has been widely evaluated; however, few studies have analyzed population variation at a microgeographic scale, wherein local environmental variables may lead to population differentiation. The aim of the present study was to evaluate the genetic and geometric morphometric structure of Anopheles nuneztovari and Anopheles albimanus in endemic localities of northwestern Colombia. Genetic and phenetic structures were evaluated using microsatellites markers and wing geometric morphometrics, respectively. In addition, entomological indices of importance in transmission were calculated. Results showed that the main biting peaks of Anopheles nuneztovari were between 20:00 and 22:00, whereas Anopheles albimanus exhibited more variation in biting times among localities. Infection in An. nuneztovari by Plasmodium spp. (IR: 4.35%) and the annual entomological inoculation rate (30.31), indicated high vector exposure and local transmission risk. We did not detect Plasmodium-infected An. albimanus in this study. In general, low genetic and phenetic subdivision among the populations of both vectors was detected using a combination of phenotypic, genetic and environmental data. The results indicated high regional gene flow, although local environmental characteristics may be influencing the wing conformation differentiation and behavioral variation observed in An. albimanus. Furthermore, the population subdivision detected by microsatellite markers for both species by Bayesian genetic analysis provides a more accurate picture of the current genetic structure in comparison to previous studies. Finally, the biting behavior variation observed for both vectors among localities suggests the need for continuous malaria vector surveys covering the endemic region to implement the most effective integrated local control interventions.
Collapse
Affiliation(s)
- Mariano Altamiranda-Saavedra
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
- Grupo de Investigación Bioforense, Tecnológico de Antioquia, Medellín, Colombia
| | - Nelson Naranjo-Díaz
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
- Grupo de Investigación Bioforense, Tecnológico de Antioquia, Medellín, Colombia
| | - Jan E. Conn
- New York State Department of Health, Wadsworth Center, Albany, NY, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, United States of America
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| |
Collapse
|
29
|
Geometric morphometric and molecular techniques for discriminating among three cryptic species of the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand. Heliyon 2022; 8:e11261. [PMID: 36339998 PMCID: PMC9634016 DOI: 10.1016/j.heliyon.2022.e11261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/09/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Anopheles members of the Barbirostris complex are important vectors of malaria in Thailand. However, they are morphologically indistinguishable because they are closely related species. In this study, wing geometric morphometrics (GM) and DNA barcoding based on the cytochrome c oxidase subunit 1 (COI) gene were applied to differentiate cryptic species of the Barbirostris complex in Thailand. Three cryptic species of the Barbirostris complex, Anopheles dissidens (19.44%), Anopheles saeungae (24.54%), and Anopheles wejchoochotei (56.02%) were initially identified using the multiplex polymerase chain reaction assay. DNA barcoding analyses showed low intraspecific distances (range, 0.27%–0.63%) and high interspecific distances (range, 1.92%–3.68%), consistent with the phylogenetic analyses that showed clear species groups. While wing size and shape analyses based on landmark-based GM indicated differences between three species (p < 0.05). The cross-validated reclassification revealed that the overall efficacy of wing size analysis for species identification of the Barbirostris complex was less than the wing shape analysis (56.43% vs. 74.29% total performance). Therefore, this study's results are guidelines for applying modern techniques to identify members within the Barbirostris complex, which are still difficult to distinguish by morphology-based identification and contribute to further appropriate malaria control. DNA barcoding based on the cytochrome c oxidase subunit 1 (COI) gene is the most reliable identification tool for the Anopheles barbirostris complex. Analysis of wing size and shape of Anopheles dissidens, An. saeungae and An. wejchoochotei based on geometric morphometrics revealed differences between species (p < 0.05). The efficacy of wing shape analysis for species identification of the Barbirostris complex was moderate levels of performance (74.29% accuracy score).
Collapse
|
30
|
Chaiphongpachara T, Weluwanarak T, Changbunjong T. Intraspecific variation in wing geometry among Tabanus rubidus (Diptera: Tabanidae) populations in Thailand. Front Vet Sci 2022; 9:920755. [PMID: 36118331 PMCID: PMC9480827 DOI: 10.3389/fvets.2022.920755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tabanus rubidus (Wiedemann, 1821) (Diptera: Tabanidae) is a hematophagous insect of veterinary and medical importance and is the predominant Tabanus spp. in Thailand. It is a potential mechanical vector of Trypanosoma evansi, which causes surra in domestic and wild animals. Wing geometric morphometrics is widely used as morphological markers for species identification and to assess the insect population structure. Herein, we investigated the intraspecific variation in wing geometry among T. rubidus populations in Thailand using landmark-based geometric morphometric analysis. Tabanus rubidus females were collected from five populations in four geographical regions in Thailand. The left wings of 240 specimens were removed and digitized using 22 landmarks for analysis. While wing size variations were found between some populations, wing shape variations were detected in all. These intraspecific variations in T. rubidus populations indicate an adaptive response to the local environmental conditions.
Collapse
Affiliation(s)
- Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Thekhawet Weluwanarak
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Tanasak Changbunjong
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- *Correspondence: Tanasak Changbunjong
| |
Collapse
|
31
|
Rodrigues-Filho SJM, Prado E Castro C, Lopes LF, da Fonseca IP, Rebelo MT. Size does matter: intraspecific geometric morphometric analysis of wings of the blowfly Chrysomya albiceps (Diptera: Calliphoridae). Acta Trop 2022; 235:106662. [PMID: 35998679 DOI: 10.1016/j.actatropica.2022.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Blowflies have forensic, sanitary and veterinary importance, as well as being pollinators, parasitoids and ecological bioindicators. There is still little work with real data and from experiments assessing the relationship between blowflies' morphologic features and environmental and demographic factors. The present work tests whether the variation, in the shape and size, of Chrysomya albiceps (Wiedemann, 1819) wings is influenced by the following factors: 1) time; 2) temperature; 3) sex and; 4) different types of carcasses (pig, dog/cat and whale). Male and female wings from four different sites collected in six different years were used to obtain wing size and shape of C. albiceps. Analyses between wing shape and the variables tested had low explanatory power, even though they had statistical support. However, it was possible to identify differences in wing shape between males and females, with good returns in sex identification. The comparison between wing size and the variables tested showed that wing size has a negative relationship with temperature, significant differences between sexes, slight variation over time and no influence by carcass types. Furthermore, wing size influenced wing shape. Understanding population-specific characteristics of C. albiceps provide important insights about how the species reacts under specific conditions.
Collapse
Affiliation(s)
- Sérgio J M Rodrigues-Filho
- Departamento de Biologia Animal, Centro de Estudos do Ambiente e do Mar/Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Universidade do Estado do Amapá, Departamento de Engenharia Ambiental, Avenida Presidente Vargas, 650 - Central, Macapá AP, 68900-070, Brasil.
| | - Catarina Prado E Castro
- Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Filipe Lopes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS)
| | - Maria Teresa Rebelo
- Departamento de Biologia Animal, Centro de Estudos do Ambiente e do Mar/Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
32
|
García-Sánchez AM, Zurita A, Cutillas C. Morphometrics as a Complementary Tool in the Differentiation of Two Cosmopolitan Flea Species: Ctenocephalides felis and Ctenocephalides canis. INSECTS 2022; 13:insects13080707. [PMID: 36005332 PMCID: PMC9409166 DOI: 10.3390/insects13080707] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 05/30/2023]
Abstract
Fleas (Siphonaptera) are one of the most important ectoparasites that represent a potential danger for the transmission of pathogens in our environment. The cat flea, Ctenocephalides felis (Bouché, 1835), and the dog flea, Ctenocephalides canis (Curtis, 1826) are among the most prevalent and most frequently studied species throughout the world. However, the variations observed in their morphological characteristics complicate their correct identification, especially when there is a lack of access to the equipment and funds required to carry out molecular biology techniques. With the objective to provide an additional tool to help in the differentiation of Ctenocephalides species, a principal component analysis was carried out for the first time in the present work on populations of C. felis and C. canis from countries in three continents, namely Spain (Europe), South Africa (Africa) and Iran (Asia). The factor maps assisted in the differentiation of both species and the detection of differences in overall size, although morphological ambiguity prevented the delimitation in populations of the same species. Thus, morphometrics represents a complementary tool to other traditional and modern techniques, with great potential to assist in the differentiation of fleas, particularly species that have historically been difficult to identify.
Collapse
|
33
|
Sukontason KL, Sanit S, Limsopatham K, Wannasan A, Somboon P, Sukontason K. Chrysomya pinguis (Walker) (Diptera: Calliphoridae), blow fly of forensic importance: A review of bionomics and forensic entomology appraisal. Acta Trop 2022; 232:106506. [PMID: 35562089 DOI: 10.1016/j.actatropica.2022.106506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022]
Abstract
Role of blow flies as the entomological evidence used in forensic investigations has risen dramatically worldwide. As the diverse habitats of Thailand suitably endowed with biodiversity of insects, blow flies of forensic importance need investigation in their bionomics, which are further applied in forensic investigations. Chrysomya pinguis (Walker, 1858) (Diptera: Calliphoridae) make up one of the most common blow fly species found associated with the human corpses and/or death scenes in several countries of the Asia continent. Given the major species as forensically important, this review is performed by the need for gathering information of C. pinguis from literature search in the future application in the regions where this species exists. This review deals with morphology, current knowledge on bionomics and forensic entomology involvement. Important morphological characteristics of egg, larva, puparium and adult were highlighted with illustration and/or micrographs. Search pertaining to molecular analysis used for fly identification and developmental rate of larvae were included. Furthermore, we outline potential issues and challenges of C. pinguis research that necessitate forensic applications in the future.
Collapse
Affiliation(s)
- Kabkaew L Sukontason
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sangob Sanit
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kwankamol Limsopatham
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anchalee Wannasan
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kom Sukontason
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
34
|
Oliveira Correia JPS, Gil-Santana HR, Dale C, Galvão C. Triatoma guazu Lent and Wygodzinsky Is a Junior Synonym of Triatoma williami Galvão, Souza and Lima. INSECTS 2022; 13:591. [PMID: 35886767 PMCID: PMC9318919 DOI: 10.3390/insects13070591] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/07/2022]
Abstract
Triatoma guazu Lent and Wygodzinsky and Triatoma williami Galvão, Souza, and Lima (Hemiptera: Triatominae) are found in human dwellings and are potential vectors of the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. Triatoma guazu was described based solely on a single female specimen, from the municipality of Villarica, Guairá Department, Paraguay, and posteriorly, a male from Barra do Garças, Mato Grosso, Brazil was described and designated as the allotype of this species. Triatoma williami is found in the central-west of Brazil between Goiás, Mato Grosso, and Mato Grosso do Sul. However, the taxonomic "status" of these species is questioned. Previous studies indicate the lack of isoenzymatic diagnostic loci, morphometric similarity, low genetic divergence, and close evolutionary relationship of these species. In this study, we compared the morphology, morphometry, and mitochondrial DNA fragments of the populations of the two species. The morphological diagnostic characteristic among these species is the difference in the connexivum spots pattern, which has been recognized as a phenotypic variation that exists among populations resulting from ecological diversity. Furthermore, our analysis also revealed the morphometric similarity and low genetic divergence between these species. Therefore, in the present paper, we formally propose T. guazu as a junior synonym of T. williami.
Collapse
Affiliation(s)
- João Paulo Sales Oliveira Correia
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro 21040-900, Brazil;
| | | | - Carolina Dale
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro 21040-900, Brazil;
| | - Cleber Galvão
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro 21040-900, Brazil;
| |
Collapse
|
35
|
Belintani T, de Paiva VF, de Oliveira J, da Rosa JA. New in morphometry: Geometric morphometry of the external female genitalia of Triatominae (Hemiptera: Reduviidae). Acta Trop 2022; 229:106383. [PMID: 35192796 DOI: 10.1016/j.actatropica.2022.106383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/26/2022]
Abstract
The study of geometric morphometry has an impact on Triatominae studies. Currently, several taxonomic and systematic studies use this approach. The Triatominae subfamily comprises three fossil species and 154 extant species potentially capable of transmitting Trypanosoma cruzi, the causative agent of Chagas disease. This study aims to evaluate the external female genitalia of adult triatomines using multivariate geometric morphometric approaches, not only for validation but also for systematic inferences. Specimens belonging to the genera Panstrongylus, Psammolestes, Rhodnius, and Triatoma were evaluated, in addition to two species previously included in Triatoma: T. longipennis and T. phyllosoma. The results show that the external female genitalia have operational morphology and allow characterization of the species and the genera of the Triatominae. In addition, the multivariate technique enabled delimitation of the phylogenetic relationships of the subfamily, presenting results consistent with systematic studies. It can be concluded that the external female genitalia evaluated by geometric morphometry is a useful character for the taxonomy and systematics of Triatominae.
Collapse
|
36
|
Chaiphongpachara T, Duvallet G, Changbunjong T. Wing Phenotypic Variation among Stomoxys calcitrans (Diptera: Muscidae) Populations in Thailand. INSECTS 2022; 13:405. [PMID: 35621741 PMCID: PMC9143182 DOI: 10.3390/insects13050405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023]
Abstract
Stomoxys calcitrans (Linnaeus, 1758) (Diptera: Muscidae) is a cosmopolitan hematophagous ectoparasite of veterinary and medical importance. It is an important mechanical vector of several animal pathogens and can cause significant economic losses. However, the morphological variation of this species remains unknown. This study aimed to investigate the phenotypic variation in the wing size and shape of S. calcitrans populations in Thailand based on a landmark-based geometric morphometric approach. Specimens were collected from five populations in five geographical regions in Thailand. A total of 490 left wings of S. calcitrans (245 female and 245 male individuals) were used for geometric morphometric analysis. Wing size differences were detected between some populations of S. calcitrans, whereas wing shape differences were found among populations. Therefore, the phenotypic variation in S. calcitrans populations indicated that these populations are adaptive responses to local environmental pressures, suggesting the presence of phenotypic plasticity in this species.
Collapse
Affiliation(s)
- Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Bangkok 10300, Thailand;
| | - Gerard Duvallet
- UMR5175, Université Paul-Valéry Montpellier, 34090 Montpellier, France;
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
37
|
Samung Y, Chaiphongpachara T, Ruangsittichai J, Sriwichai P, Phayakkaphon A, Jaitrong W, Dujardin JP, Sumruayphol S. Species Discrimination of Three Odontomachus (Formicidae: Ponerinae) Species in Thailand Using Outline Morphometrics. INSECTS 2022; 13:insects13030287. [PMID: 35323585 PMCID: PMC8955869 DOI: 10.3390/insects13030287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary Determination of species in the ant genus Odontomachus, which is a venomous group of ants, may require the use of highly trained entomologists. In Thailand, three species are very similar and difficult to distinguish: O. monticola, O. rixosus, and O. simillimus. In such a situation, a complementary technique not requiring highly specialized entomological knowledge is welcome. The geometric morphometric approach has proven to be this sort of tool, especially powerful for morphologically close or even cryptic species. In its most recent development, the geometric method uses the relative position of some anatomical landmarks. However, in worker ants these landmarks are few in number and can be difficult to assess without dissection. Here, therefore, we use the outline-based approach, an alternative geometric technique that has not yet been tested in ants. We show that the simple outline of the head contains a strong taxonomic signal, much stronger than the one obtained from the pronotum shape. The outline technique therefore represents a promising approach to aid in the determination of ant species. Abstract All members of the ant genus Odontomachus Latreille, 1804 are venomous ants. Four species in this genus have been identified from Thailand: Odontomachus latidens Mayr, 1867; O. monticola Emery, 1892; O. rixosus Smith, 1757; and O. simillimus Smith, 1758. The three latter species are available and have been used for an outline morphometric study. They display similar morphology, which makes their distinction very difficult except for highly qualified individuals. A total of 80 worker specimens were studied, exploring the contour shapes of their head and pronotum as possible taxonomic characters. The size of each body part was estimated determining the contour perimeter, the values for which were largely overlapping between O. rixosus and O. simillimus; most O. monticola specimens exhibited a significantly larger size. In contrast to the size, each contour shape of the head or pronotum established O. rixosus as the most distinct species. An exploratory data analysis disclosed the higher taxonomic signal of the head contour relative to the pronotum one. The scores obtained for validated reclassification were much better for the head (99%) than for the pronotum (82%). This study supports outline morphometrics of the head as a promising approach to contribute to the morphological identification of ant species, at least for monomorphic workers.
Collapse
Affiliation(s)
- Yudthana Samung
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (Y.S.); (J.R.); (P.S.); (A.P.)
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Science, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand;
| | - Jiraporn Ruangsittichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (Y.S.); (J.R.); (P.S.); (A.P.)
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (Y.S.); (J.R.); (P.S.); (A.P.)
| | - Anon Phayakkaphon
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (Y.S.); (J.R.); (P.S.); (A.P.)
| | - Weeyawat Jaitrong
- Office of Natural Science Research, National Science Museum, Technopolis, Khlong 5, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Jean-Pierre Dujardin
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, F-34398 Montpellier, France
- Correspondence: (J.-P.D.); (S.S.)
| | - Suchada Sumruayphol
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (Y.S.); (J.R.); (P.S.); (A.P.)
- Correspondence: (J.-P.D.); (S.S.)
| |
Collapse
|
38
|
Limsopatham K, Tanajitaree C, Sanit S, Sukontason K, Somboon P, Amendt J, Feddern N, Sukontason KL. Wing morphometrics as a tool for the identification of forensic important Lucilia spp. (Diptera: Calliphoridae). Acta Trop 2022; 226:106242. [PMID: 34800378 DOI: 10.1016/j.actatropica.2021.106242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/19/2022]
Abstract
Blow flies of the genera Lucilia Robineau-Desvoidy (Diptera: Calliphoridae) are considered forensically important species across several regions of the world. Due to the similarity of adults, especially females, the usual methods based on morphology or even molecular techniques can experience some limitations; therefore, alternative or supportive tools are required. Recently, the landmark-based geometric morphometric analysis has been applied to discriminate many insects on genus and species level. Herein, we focus on wing morphometric analysis as a tool in classifying five species of Lucilia; three species from Thailand - L. cuprina (Wiedemann, 1830), L. porphyrina (Walker, 1856) and L. sinensis Aubertin, 1933; and two species from Switzerland - L. caesar (Linnaeus, 1758) and L. illustris (Meigen, 1826). Canonical variate analysis of 233 right wings showed four overlapping clusters of L. cuprina, L. sinensis, L. caesar, and L. illustris with one distinct cluster of L. porphyrina. Eighty-eight to 100 percent of correct classification was achieved, with an UPGMA dendrogram analysis revealing clear-cut branch and sub-branch of five species determined. Results from this study suggested that wing morphometric analysis is a useful tool for the identification of adult Lucilia spp.
Collapse
|
39
|
Rosseto LA, Paiva VFD, Belintani T, de Oliveira J, Mendonça VJ, Rosa JAD. Checklist and phenetics studies of nymphs of two species of triatomines: Triatoma lenti Sherlock & Serafim, 1967 and Triatoma sherlocki Papa, Jurberg, Carcavallo, Cerqueira, Barata, 2002 (Hemiptera: Reduviidae: Triatominae). Rev Soc Bras Med Trop 2021; 54:e03942021. [PMID: 34932763 PMCID: PMC8687502 DOI: 10.1590/0037-8682-0394-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Triatoma lenti and Triatoma sherlocki are endemic species of the State of Bahia, located in northeastern Brazil, where they have records of domiciliation in the human environment. In view of the epidemiological aspect and taxonomic importance of these species for the systematics of the Triatoma genus, a study was carried out with nymphs of all five instars. METHODS An extensive review of studies on nymphs from the subfamily Triatominae is presented. Morphology was studied using a scanning electron microscope and morphometric analyses. RESULTS The morphological study allowed us to characterize and discriminate species by means of scanning electron microscope of the last abdominal segment. In addition, the results show morphometric variability, with the total size of the head that best discriminates the species. CONCLUSIONS Studies on nymphs are fundamental to the ecosystem; however, the literature on the immature forms of certain groups is scarce, difficult to use, or nonexistent. Therefore, this study includes morphological and morphometric data of the nymphal instars of T. lenti and T. sherlocki, corroborating the specific taxonomy of these species.
Collapse
Affiliation(s)
- Leandro Augusto Rosseto
- Universidade Estadual de São Paulo, Faculdade de Ciências Farmacêuticas, Araraquara, SP, Brasil
| | | | - Tiago Belintani
- Universidade Estadual de Campinas, Instituto de Biologia, São Paulo, SP, Brasil
| | - Jader de Oliveira
- Universidade de São Paulo, Departamento de Epidemiologia, São Paulo, SP, Brasil
| | - Vagner José Mendonça
- Universidade Federal do Piauí, Departamento de Parasitologia e Microbiologia, Teresina, PI, Brasil
| | - João Aristeu Da Rosa
- Universidade Estadual de São Paulo, Faculdade de Ciências Farmacêuticas, Araraquara, SP, Brasil
| |
Collapse
|
40
|
Champakaew D, Junkum A, Sontigun N, Sanit S, Limsopatham K, Saeung A, Somboon P, Pitasawat B. Geometric morphometric wing analysis as a tool to discriminate female mosquitoes from different suburban areas of Chiang Mai province, Thailand. PLoS One 2021; 16:e0260333. [PMID: 34843516 PMCID: PMC8629303 DOI: 10.1371/journal.pone.0260333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquitoes are hematophagous insects that transmit parasites and pathogens with devastating effects on humans, particularly in subtropical regions. Different mosquito species display various behaviors, breeding sites, and geographic distribution; however, they can be difficult to distinguish in the field due to morphological similarities between species and damage caused during trapping and transportation. Vector control methods for controlling mosquito-borne disease epidemics require an understanding of which vector species are present in the area as well as the epidemiological patterns of disease transmission. Although molecular techniques can accurately distinguish between mosquito species, they are costly and laborious, making them unsuitable for extensive use in the field. Thus, alternative techniques are required. Geometric morphometrics (GM) is a rapid and inexpensive technique that can be used to analyze the size, shape, and shape variation of individuals based on a range of traits. Here, we used GM to analyze the wings of 1,040 female mosquitoes from 12 different species in Thailand. The right wing of each specimen was removed, imaged microscopically, and digitized using 17 landmarks. Wing shape variation among genera and species was analyzed using canonical variate analysis (CVA), while discriminant function analysis was used to cross-validate classification reliability based on Mahalanobis distances. Phenetic relationships were constructed to illustrate the discrimination patterns for genera and species. CVA of the morphological variation among Aedes, Anopheles, Armigeres, Culex, and Mansonia mosquito genera revealed five clusters. In particular, we demonstrated a high percentage of correctly-distinguished samples among Aedes (97.48%), Armigeres (96.15%), Culex (90.07%), and Mansonia (91.67%), but not Anopheles (64.54%). Together, these findings suggest that wing landmark-based GM analysis is an efficient method for identifying mosquito species, particularly among the Aedes, Armigeres, Culex, and Mansonia genera.
Collapse
Affiliation(s)
- Danita Champakaew
- School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand and Excellent Center for Dengue and Community Public Health (EC for DACH), Nakhon Si Thammarat, Thailand
- * E-mail:
| | - Anuluck Junkum
- Department of Parasitology, Center of Insect Vector Study, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Narin Sontigun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sangob Sanit
- Department of Parasitology, Center of Insect Vector Study, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kwankamol Limsopatham
- Department of Parasitology, Center of Insect Vector Study, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Atiporn Saeung
- Department of Parasitology, Center of Insect Vector Study, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pradya Somboon
- Department of Parasitology, Center of Insect Vector Study, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Benjawan Pitasawat
- Department of Parasitology, Center of Insect Vector Study, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
41
|
Changbunjong T, Prakaikowit N, Maneephan P, Kaewwiset T, Weluwanarak T, Chaiphongpachara T, Dujardin JP. Landmark Data to Distinguish and Identify Morphologically Close Tabanus spp. (Diptera: Tabanidae). INSECTS 2021; 12:974. [PMID: 34821775 PMCID: PMC8622361 DOI: 10.3390/insects12110974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022]
Abstract
Tabanus spp., also known as horse flies (Diptera: Tabanidae), are important vectors of several animal pathogens. Adult females of Tabanus megalops and Tabanus striatus, which are members of the T. striatus complex, are morphologically similar and hence difficult to distinguish using morphological characteristics. In addition, molecular identification by DNA barcoding is also unable to distinguish these species. These two species can occur sympatrically with Tabanus rubidus, which is morphologically similar to T. megalops and T. striatus. Wing geometric morphometrics has been widely used in various insects to distinguish morphologically similar species. This study explored the effectiveness of landmark-based geometrics at distinguishing and identifying T. megalops, T. rubidus, and T. striatus in Thailand. Specimens were collected from different geographical regions of Thailand, and only unambiguously identified specimens were used for geometric morphometric analyses. Left wings of females of T. megalops (n = 160), T. rubidus (n = 165), and T. striatus (n = 85) were photographed, and 22 wing landmarks were used for the analysis. Wing shape was able to distinguish among species with high accuracy scores, ranging from 94.38% to 99.39%. We showed that morphologically very close species of Tabanus can be reliably distinguished by the geometry of their wing venation, and we showed how our experimental material could be used as a reference to tentatively identify new field collected specimens.
Collapse
Affiliation(s)
- Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (N.P.); (P.M.); (T.K.)
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Nutnicha Prakaikowit
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (N.P.); (P.M.); (T.K.)
| | - Photchanun Maneephan
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (N.P.); (P.M.); (T.K.)
| | - Tipparat Kaewwiset
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (N.P.); (P.M.); (T.K.)
| | - Thekhawet Weluwanarak
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Science, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand;
| | - Jean-Pierre Dujardin
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherches INTERTRYP (IRD, et Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD), University of Montpellier, F-34398 Montpellier, France;
| |
Collapse
|
42
|
Limsopatham K, Klong-klaew T, Fufuang N, Sanit S, Sukontason KL, Sukontason K, Somboon P, Sontigun N. Wing morphometrics of medically and forensically important muscid flies (Diptera: Muscidae). Acta Trop 2021; 222:106062. [PMID: 34289390 DOI: 10.1016/j.actatropica.2021.106062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Many muscid flies (Diptera: Muscidae) are well-known as medical, veterinary, and forensically significant insects, thus correct species identification is critically important before applying for fly control and determining a minimal postmortem interval (PMImin) in forensic investigations. Limited in taxonomic keys and taxonomists, as well as scanty in advanced molecular laboratories lead to difficulty in identification of muscids. To date, a landmark-based geometric morphometric analysis of wings has proven to be a promising alternative technique for identifying many insect species. Herein, we assessed wing morphometric analysis for identification of six medically and forensically important muscids, namely Musca domestica Linnaeus, Musca pattoni Austen, Musca ventrosa Wiedemann, Hydrotaea chalcogaster (Wiedemann), Hydrotaea spinigera Stein, and Dichaetomyia quadrata (Wiedemann). A total of 302 right wing images were digitized based on 15 homologous landmarks and wing shape variation among genera and species was analyzed using canonical variate analysis, whereas sexual shape dimorphism of M. domestica, M. ventrosa, and D. quadrata was analyzed using discriminant function analysis. The cross-validation revealed a relatively high percentage of correct classification in most species, ranging from 86.4% to 100%, except for M. pattoni, being 67.5%. Misidentifications were mainly due to cross-pairings of the genus Musca; M. domestica VS M. pattoni VS M. ventrosa. The accuracy of classification using cross-validation test demonstrated that wing shape can be used to evaluate muscid flies at the genus- and species-level, and separate sexes of the three species analyzed, with a high reliability. This study sheds light on genus, species, and sex discrimination of six muscid species that have been approached using wing morphometric analysis.
Collapse
|
43
|
Chatpiyaphat K, Sumruayphol S, Dujardin J, Samung Y, Phayakkaphon A, Cui L, Ruangsittichai J, Sungvornyothin S, Sattabongkot J, Sriwichai P. Geometric morphometrics to distinguish the cryptic species Anopheles minimus and An. harrisoni in malaria hot spot villages, western Thailand. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:293-301. [PMID: 33205850 PMCID: PMC8451769 DOI: 10.1111/mve.12493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/09/2020] [Accepted: 11/02/2020] [Indexed: 06/02/2023]
Abstract
Anopheles minimus Theobald 1901 and An. harrisoni Harbach & Manguin 2007 belong to the same species complex. They are morphologically similar and can exist in sympatry but have blood host preferences. The most accurate method for their identification is based on molecular techniques. Here, we measure the level of interspecific discrimination by geometric morphometry. Sixty-seven An. minimus and 22 An. harrisoni specimens were selected based on their morphological integrity and confirmed by identification polymerase chain reaction of internal transcribed spacer 2. These samples were used as reference data allowing for a morphometric identification based on geometric shape. Despite size overlap between the two species, there was a significant shape divergence allowing for differentiation of An. minimus and An. harrisoni with 90% accuracy. An intraspecific study of An. minimus showed a summer period associated to the reducing of wing size, which did not influence the shape-based differentiation of An. harrisoni. Wing venation geometry can be used to distinguish between these cryptic species mainly based on shaped divergence. This study suggests that geometric morphometrics represent a convenient low-cost method to complement morphological identification, especially concerning damaged specimens, i.e., insects having accidentally lost the anatomical features allowing a reliable morphological identification.
Collapse
Affiliation(s)
- K. Chatpiyaphat
- Department of Medical Entomology, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - S. Sumruayphol
- Department of Medical Entomology, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - J.‐P. Dujardin
- Unité Mixte de Recherche 177‐Interactions Hôte‐Vecteur‐Parasite‐Enironnement dans les Maladies Tropicales Négligées dues aux Trypanosomatidés, Centre International de Recherches Agronomiques pour le Développement (CIRAD)Institut de Recherches pour le Développement (IRD), Campus international de BaillarguetMontpellierFrance
| | - Y. Samung
- Department of Medical Entomology, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - A. Phayakkaphon
- Department of Medical Entomology, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - L. Cui
- Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaU.S.A.
| | - J. Ruangsittichai
- Department of Medical Entomology, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - S. Sungvornyothin
- Department of Medical Entomology, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - J. Sattabongkot
- Vivax Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - P. Sriwichai
- Department of Medical Entomology, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| |
Collapse
|
44
|
Ruenchit P. State-of-the-Art Techniques for Diagnosis of Medical Parasites and Arthropods. Diagnostics (Basel) 2021; 11:diagnostics11091545. [PMID: 34573887 PMCID: PMC8470585 DOI: 10.3390/diagnostics11091545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Conventional methods such as microscopy have been used to diagnose parasitic diseases and medical conditions related to arthropods for many years. Some techniques are considered gold standard methods. However, their limited sensitivity, specificity, and accuracy, and the need for costly reagents and high-skilled technicians are critical problems. New tools are therefore continually being developed to reduce pitfalls. Recently, three state-of-the-art techniques have emerged: DNA barcoding, geometric morphometrics, and artificial intelligence. Here, data related to the three approaches are reviewed. DNA barcoding involves an analysis of a barcode sequence. It was used to diagnose medical parasites and arthropods with 95.0% accuracy. However, this technique still requires costly reagents and equipment. Geometric morphometric analysis is the statistical analysis of the patterns of shape change of an anatomical structure. Its accuracy is approximately 94.0-100.0%, and unlike DNA barcoding, costly reagents and equipment are not required. Artificial intelligence technology involves the analysis of pictures using well-trained algorithms. It showed 98.8-99.0% precision. All three approaches use computer programs instead of human interpretation. They also have the potential to be high-throughput technologies since many samples can be analyzed at once. However, the limitation of using these techniques in real settings is species coverage.
Collapse
Affiliation(s)
- Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
45
|
DNA Multi-Marker Genotyping and CIAS Morphometric Phenotyping of Fasciola gigantica-Sized Flukes from Ecuador, with an Analysis of the Radix Absence in the New World and the Evolutionary Lymnaeid Snail Vector Filter. Animals (Basel) 2021; 11:ani11092495. [PMID: 34573461 PMCID: PMC8472080 DOI: 10.3390/ani11092495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Fasciolid flukes collected from sheep and cattle in Ecuador showed a high diversity in DNA sequences whose analyses indicated introductions from South America, European and North American countries. These results agree with the numerous livestock importations performed by Ecuador. Abnormally big-sized liver flukes were found in Ecuadorian sheep. The morphometric phenotypic CIAS study showed that its size maximum and mean very pronouncedly and significantly surpassed those of the Fasciola hepatica populations from South America and Spain and proved to be intermediate between standard F. hepatica and F. gigantica populations. Such a feature is only known in intermediate fasciolid forms in Old World areas where the two species and their specific lymnaeid snail vectors overlap. This argues about a past hybridization after F. gigantica importation from Pakistan and/or introduction of intermediate hybrids previously generated in USA. The lack of heterozygotic rDNA ITS positions differentiating the two species, and of introgressed fragments and heteroplasmic positions in mtDNA genes, indicate a post-hybridization period sufficiently long as for rDNA concerted evolution to complete homogenization and mtDNA to return to homoplasmy. The vector specificity filter due to Radix absence should act as a driving force in accelerating such lineage evolution. Public health implications are finally emphasized. Abstract Fascioliasis is a disease caused by Fasciola hepatica worldwide transmitted by lymnaeid snails mainly of the Galba/Fossaria group and F. gigantica restricted to parts of Africa and Asia and transmitted by Radix lymnaeids. Concern has recently risen regarding the high pathogenicity and human infection capacity of F. gigantica. Abnormally big-sized fasciolids were found infecting sheep in Ecuador, the only South American country where F. gigantica has been reported. Their phenotypic comparison with F. hepatica infecting sheep from Peru, Bolivia and Spain, and F. gigantica from Egypt and Vietnam demonstrated the Ecuadorian fasciolids to have size-linked parameters of F. gigantica. Genotyping of these big-sized fasciolids by rDNA ITS-2 and ITS-1 and mtDNA cox1 and nad1 and their comparison with other countries proved the big-sized fasciolids to belong to F. hepatica. Neither heterozygotic ITS position differentiated the two species, and no introgressed fragments and heteroplasmic positions in mtDNA were found. The haplotype diversity indicates introductions mainly from other South American countries, Europe and North America. Big-sized fasciolids from Ecuador and USA are considered to be consequences of F.gigantica introductions by past livestock importations. The vector specificity filter due to Radix absence should act as driving force in the evolution in such lineages.
Collapse
|
46
|
López-Mercadal J, Barretto Bruno Wilke A, Barceló C, Miranda MA. Evidence of Wing Shape Sexual Dimorphism in Aedes (Stegomyia) albopictus in Mallorca, Spain. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.569034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Asian tiger mosquito Aedes albopictus (Skuse, 1894) is a highly invasive species widely distributed on the Spanish Mediterranean coast and the Balearic archipelago. Most studies involving this species in Spain have been focused on surveillance and control methods. However, micro-evolutionary studies for Ae. albopictus in Spain have been traditionally neglected. Morphological diversity could be the result of long-term evolutionary diversification in responses to selective pressures such as temperature, precipitation, food availability, predation, or competition that may influence flight activity, host-seeking, and blood-feeding behavior. Wing geometric morphometric have been used not only to study micro- and macro-evolution in mosquitoes but also in studies of population structuring and sexual dimorphism. Therefore, the main goal of this study was to investigate the wing shape patterns of Ae. albopictus populations to unveil sexual dimorphism that could provide information about their ecology and behavior. Mosquito eggs were collected using oviposition traps at the main campus of the University of the Balearic Islands (Palma de Mallorca, Spain) and reared under laboratory conditions. In order to study wing shape variation patterns in Ae. albopictus males and females, the left wing of each adult mosquito was removed and analyzed based on 18 landmarks. Our results indicated strong levels of sexual dimorphism between Ae. albopictus males and females. Furthermore, according to the cross-validated reclassification test, males were correctly distinguished from females with an accuracy of 84% and females from males 75%. We observed a significant sexual dimorphism in the wing shape patterns of Ae. albopictus when considering different seasonal patterns (spring vs. autumn). Our results suggested that selective pressures may affect males differently to females. Host-seeking, blood-feeding, and oviposition behavior of females may act as a major driver for wing shape sexual dimorphism. These results should be considered for the development of more effective and targeted mosquito control strategies.
Collapse
|
47
|
Demirci B, Bedir H, Akiner MM. Landmark-based geometric morphometric analysis of wing size and wing shape among Aedes albopictus (Skuse, 1894) populations in Turkey. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:103-111. [PMID: 35229587 DOI: 10.52707/1081-1710-46.1.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/15/2021] [Indexed: 06/14/2023]
Abstract
Aedes albopictus (Skuse, 1894) has a widespread distribution that includes both temperate and tropical climates. It is a potential vector of several important worldwide arboviruses, including chikungunya, zika, and dengue, and its geographical distribution expands rapidly. Despite its vectorial importance, the bioecological features of this species in newly established environments are still not very well known. Thus, this study investigated phenotypic variations among Ae. albopictus populations from different regions in Turkey. This is the first comparative morphological study of Ae. albopictus populations in Turkey. The procrustes distances phenogram derived from wing data indicates that the shape differences among some populations and the population from the Aegean coast differ from the Black Sea populations. Size differences were also detected between some populations.
Collapse
Affiliation(s)
- Berna Demirci
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Kafkas University, Kars, Turkey,
| | - Hilal Bedir
- Department of Medical Parasitology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - M Mustafa Akiner
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
48
|
Mezzacappo NF, de Souza LM, Inada NM, Dias LD, Garbuio M, Venturini FP, Corrêa TQ, Moura L, Blanco KC, de Oliveira KT, Bagnato VS. Curcumin/d-mannitol as photolarvicide: induced delay in larval development time, changes in sex ratio and reduced longevity of Aedes aegypti. PEST MANAGEMENT SCIENCE 2021; 77:2530-2538. [PMID: 33470514 DOI: 10.1002/ps.6286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Resistant populations of Ae. aegypti have been a major problem in arboviruses epidemic areas, generating a strong demand for novel methods of vector control. In this regard, our group has demonstrated the use of curcumin as an efficient photoactive larvicide to eliminate Ae. aegypti larvae. This work was aimed to evaluate the Ae. aegypti (Rockefeller) development under sublethal conditions, using a curcumin/d-mannitol (DMC) formulation. The photolarvicidal efficacy under semi-field and field conditions (wild populations) was also analyzed, as well as the photobleaching and residual activity of DMC. RESULTS A delay in development time when larvae were exposed to sublethal concentrations of DMC was observed, followed by significant changes in sex ratio and reduction in longevity. DMC also presented a low residual activity when compared to usual larvicides, and had a substantial photolarvicidal activity against wild populations in field trials, achieving 71.3% mortality after 48 h. CONCLUSIONS Overall, these findings are of great biological importance for the process of enabling the implementation of DMC as a new product in the control of Ae. aegypti larvae, and contributes to the improvement of new plant-based larvicides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Lucas Danilo Dias
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Matheus Garbuio
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- PPG Biotec, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Lidia Moura
- São Carlos School of Engineering, Department of Hydraulics and Sanitation, University of São Paulo (USP), São Carlos, Brazil
| | | | | | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Hagler Fellow, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
49
|
Virginio F, Domingues V, da Silva LCG, Andrade L, Braghetto KR, Suesdek L. WingBank: A Wing Image Database of Mosquitoes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.660941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mosquito-borne diseases affect millions of people and cause thousands of deaths yearly. Vaccines have been hitherto insufficient to mitigate them, which makes mosquito control the most viable approach. But vector control depends on correct species identification and geographical assignment, and the taxonomic characters of mosquitoes are often inconspicuous to non-taxonomists, which are restricted to a life stage and/or even damaged. Thus, geometric morphometry, a low cost and precise technique that has proven to be efficient for identifying subtle morphological dissimilarities, may contribute to the resolution of these types of problems. We have been applying this technique for more than 10 years and have accumulated thousands of wing images with their metadata. Therefore, the aims of this work were to develop a prototype of a platform for the storage of biological data related to wing morphometry, by means of a relational database and a web system named “WingBank.” In order to build the WingBank prototype, a multidisciplinary team performed a gathering of requirements, modeled and designed the relational database, and implemented a web platform. WingBank was designed to enforce data completeness, to ease data query, to leverage meta-studies, and to support applications of automatic identification of mosquitoes. Currently, the database of the WingBank contains data referring to 77 species belonging to 15 genera of Culicidae. From the 13,287 wing records currently cataloged in the database, 2,138 were already made available for use by third parties. As far as we know, this is the largest database of Culicidae wings of the world.
Collapse
|
50
|
Wing Morphometrics of Aedes Mosquitoes from North-Eastern France. INSECTS 2021; 12:insects12040341. [PMID: 33921410 PMCID: PMC8069731 DOI: 10.3390/insects12040341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND In the context of the increasing circulation of arboviruses, a simple, fast and reliable identification method for mosquitoes is needed. Geometric morphometrics have proven useful for mosquito classification and have been used around the world on known vectors such as Aedes albopictus. Morphometrics applied on French indigenous mosquitoes would prove useful in the case of autochthonous outbreaks of arboviral diseases. METHODS We applied geometric morphometric analysis on six indigenous and invasive species of the Aedes genus in order to evaluate its efficiency for mosquito classification. RESULTS Six species of Aedes mosquitoes (Ae. albopictus, Ae. cantans, Ae. cinereus, Ae. sticticus, Ae. japonicus and Ae. rusticus) were successfully differentiated with Canonical Variate Analysis of the Procrustes dataset of superimposed coordinates of 18 wing landmarks. CONCLUSIONS Geometric morphometrics are effective tools for the rapid, inexpensive and reliable classification of at least six species of the Aedes genus in France.
Collapse
|