1
|
Hernández-Zambrano LJ, Alfonso-González H, Buitrago SP, Castro-Cavadía CJ, Garzón-Ospina D. Exploring the genetic diversity pattern of PvEBP/DBP2: A promising candidate for an effective Plasmodium vivax vaccine. Acta Trop 2024; 255:107231. [PMID: 38685340 DOI: 10.1016/j.actatropica.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Malaria remains a public health challenge. Since many control strategies have proven ineffective in eradicating this disease, new strategies are required, among which the design of a multivalent vaccine stands out. However, the effectiveness of this strategy has been hindered, among other reasons, by the genetic diversity observed in parasite antigens. In Plasmodium vivax, the Erythrocyte Binding Protein (PvEBP, also known as DBP2) is an alternate ligand to Duffy Binding Protein (DBP); given its structural resemblance to DBP, EBP/DBP2 is proposed as a promising antigen for inclusion in vaccine design. However, the extent of genetic diversity within the locus encoding this protein has not been comprehensively assessed. Thus, this study aimed to characterize the genetic diversity of the locus encoding the P. vivax EBP/DBP2 protein and to determine the evolutionary mechanisms modulating this diversity. Several intrapopulation genetic variation parameters were estimated using 36 gene sequences of PvEBP/DBP2 from Colombian P. vivax clinical isolates and 186 sequences available in databases. The study then evaluated the worldwide genetic structure and the evolutionary forces that may influence the observed patterns of genetic variation. It was found that the PvEBP/DBP2 gene exhibits one of the lowest levels of genetic diversity compared to other vaccine-candidate antigens. Four major haplotypes were shared worldwide. Analysis of the protein's 3D structure and epitope prediction identified five regions with potential antigenic properties. The results suggest that the PvEBP/DBP2 protein possesses ideal characteristics to be considered when designing a multivalent effective antimalarial vaccine against P. vivax.
Collapse
Affiliation(s)
- Laura J Hernández-Zambrano
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Heliairis Alfonso-González
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Sindy P Buitrago
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Carlos J Castro-Cavadía
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba (GIMBIC), School of Health Sciences, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Diego Garzón-Ospina
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia.
| |
Collapse
|
2
|
Plata-Pineda SE, Cárdenas-Munévar LX, Castro-Cavadía CJ, Buitrago SP, Garzón-Ospina D. Evaluating the genetic diversity of the Plasmodium vivax siap2 locus: A promising candidate for an effective malaria vaccine? Acta Trop 2024; 251:107111. [PMID: 38151069 DOI: 10.1016/j.actatropica.2023.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
Malaria is the deadliest parasitic disease in the world. Traditional control measures have become less effective; hence, there is a need to explore alternative strategies, such as antimalarial vaccines. However, designing an anti-Plasmodium vivax vaccine is considered a challenge due to the complex parasite biology and the antigens' high genetic diversity. Recently, the sporozoite invasion-associated protein 2 (SIAP2) has been suggested as a potential antigen to be considered in vaccine design due to its significance during hepatocyte invasion. However, its use may be limited by the incomplete understanding of gene/protein diversity. Here, the genetic diversity of pvsiap2 using P. vivax DNA samples from Colombia was assessed. Through PCR amplification and sequencing, we compared the Colombian sequences with available worldwide sequences, revealing that pvsiap2 displays low genetic diversity. Molecular evolutionary analyses showed that pvsiap2 appears to be influenced by directional selection. Moreover, the haplotypes found differ by a few mutational steps and several of them were shared between different geographical areas. On the other hand, several conserved regions within PvSIAP2 were predicted as potential B-cell or T-cell epitopes. Considering these characteristics and its role in hepatocyte invasion, the PvSIAP2 protein emerges as a promising antigen to be considered in a multi-antigen-multi-stage (multivalent) fully effective vaccine against P. vivax malaria.
Collapse
Affiliation(s)
- Sergio E Plata-Pineda
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Laura X Cárdenas-Munévar
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Carlos J Castro-Cavadía
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba (GIMBIC), School of Health Sciences, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Sindy P Buitrago
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Diego Garzón-Ospina
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia.
| |
Collapse
|
3
|
Kuesap J, Rungsihirunrat K, Chaijaroenkul W, Mungthin M. Genetic diversity of Plasmodium vivax merozoite surface protein-3 alpha and beta from diverse geographic areas of Thailand. Jpn J Infect Dis 2021; 75:241-248. [PMID: 34588369 DOI: 10.7883/yoken.jjid.2021.457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Malaria is parasitic disease cause by Plasmodium infection. In Thailand, co-infections of Plasmodium vivax and P. falciparum are commonly found. P. vivax infection has been increasing in the past decade. The objective of this study was to investigate the genetic diversity patterns of Plasmodium vivax merozoite surface protein 3 (PvMSP-3) genes in total of 450 isolates collected from Thai-neighboring border during two different periods (2009-20 14 and 2015 -2016) using polymerase chain reaction (PCR) - restriction fragment length polymorphism (RFLP) method. Three major types of PvMSP-3α (A, B, and C) and PvMSP-3β (A, B, and C) were detected based on PCR products size. Forty five and 23 of PvMSP-3α and, 41 and 30 alleles of PvMSP-3β genes from the first period and second period, respectively, with difference frequencies of samples were distinguished. The results strongly indicate genetic diversity patterns of PvMSP-3 in the second period especially samples from Thai-Myanmar border. These two polymorphic genes could be used as a molecular epidemiologic marker for genotyping P. vivax isolate in Thailand.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University, Thailand
| | | | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Thailand
| | - Mathirut Mungthin
- Department of Pharmacology, Phramongkutklao College of Medicine, Thailand
| |
Collapse
|
4
|
Asali S, Raz A, Turki H, Mafakher L, Razmjou E, Solaymani-Mohammadi S. Restricted genetic heterogeneity of the Plasmodium vivax transmission-blocking vaccine (TBV) candidate Pvs48/45 in a low transmission setting: Implications for the Plasmodium vivax malaria vaccine development. INFECTION GENETICS AND EVOLUTION 2021; 89:104710. [PMID: 33421653 DOI: 10.1016/j.meegid.2021.104710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Plasmodium vivax is the most widespread malaria species parasitizing humans outside Africa, with approximately 100 million cases reported per year. Most human cases of P. vivax are asymptomatic with low parasitemia, making active case detection-based elimination programme challenging and less effective. Despite the widespread distribution of P. vivax, no effective vaccines are currently available. Transmission blocking vaccines have recently emerged as potential vaccine candidates to reduce transmission rates to below the essential levels required for the maintenance of the parasite life cycle. Here, we demonstrated that P. vivax was the predominant species found in a malaria-endemic area, although P. vivax/P. falciparum co-infections were also common. Through genomic sequence analysis and neighbor-joining algorithms, we demonstrated limited genetic heterogeneity in the P. vivax transmission-blocking vaccine candidate Pvs48/45 among clinical isolates of P. vivax. Restricted genetic polymorphism occurred at both nucleotide and amino acid levels. The most frequent mutation was A → G at nucleotide position 77 (46.7%), whereas the least frequent was C → T at nucleotide position 1230 (3.3%). The occurrence of single nucleotide polymorphisms (SNPs) distribution at 6/8 positions (75%) led to changes in amino acid sequences in the Pvs48/45 loci, whereas 2/8 (25%) of SNPs resulted in no amino acid sequence variations. Consistently, the nucleotide diversity in the Pvs48/45 locus among the P. vivax population studied was extremely low (π = 0.000525). Changes in amino acid sequences in the Pvs48/45 protein did not result in substantial conformational modifications in the tertiary structures of these proteins. Unveiling the population genetic structure and genetic heterogeneity of vaccine target antigens are necessary for rational design of transmission-blocking antibody vaccines and to monitor the vaccine efficacy in clinical trials in endemic areas for malaria.
Collapse
Affiliation(s)
- Soheila Asali
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Habibollah Turki
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ladan Mafakher
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Razmjou
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center (MBiRC), Iran University of Medical Sciences, Tehran, Iran.
| | - Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States.
| |
Collapse
|
5
|
Cheng CW, Jongwutiwes S, Putaporntip C, Jackson AP. Clinical expression and antigenic profiles of a Plasmodium vivax vaccine candidate: merozoite surface protein 7 (PvMSP-7). Malar J 2019; 18:197. [PMID: 31196098 PMCID: PMC6567670 DOI: 10.1186/s12936-019-2826-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Background Vivax malaria is the predominant form of malaria outside Africa, affecting about 14 million people worldwide, with about 2.5 billion people exposed. Development of a Plasmodium vivax vaccine is a priority, and merozoite surface protein 7 (MSP-7) has been proposed as a plausible candidate. The P. vivax genome contains 12 MSP-7 genes, which contribute to erythrocyte invasion during blood-stage infection. Previous analysis of MSP-7 sequence diversity suggested that not all paralogs are functionally equivalent. To explore MSP-7 functional diversity, and to identify the best vaccine candidate within the family, MSP-7 expression and antigenicity during bloodstream infections were examined directly from clinical isolates. Methods Merozoite surface protein 7 gene expression was profiled using RNA-seq data from blood samples isolated from ten human patients with vivax malaria. Differential expression analysis and co-expression cluster analysis were used to relate PvMSP-7 expression to genetic markers of life cycle stage. Plasma from vivax malaria patients was also assayed using a custom peptide microarray to measure antibody responses against the coding regions of 12 MSP-7 paralogs. Results Ten patients presented diverse transcriptional profiles that comprised four patient groups. Two MSP-7 paralogs, 7A and 7F, were expressed abundantly in all patients, while other MSP-7 genes were uniformly rare (e.g. 7J). MSP-7H and 7I were significantly more abundant in patient group 4 only, (two patients having experienced longer patency), and were co-expressed with a schizont-stage marker, while negatively associated with liver-stage and gametocyte-stage markers. Screening infections with a PvMSP-7 peptide array identified 13 linear B-cell epitopes in five MSP-7 paralogs that were recognized by plasma from all patients. Conclusions These results show that MSP-7 family members vary in expression profile during blood infections; MSP-7A and 7F are expressed throughout the intraerythrocytic development cycle, while expression of other paralogs is focused on the schizont. This may reflect developmental regulation, and potentially functional differentiation, within the gene family. The frequency of B-cell epitopes among paralogs also varies, with MSP-7A and 7L consistently the most immunogenic. Thus, MSP-7 paralogs cannot be assumed to have equal potential as vaccines. This analysis of clinical infections indicates that the most abundant and immunogenic paralog is MSP-7A. Electronic supplementary material The online version of this article (10.1186/s12936-019-2826-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chew Weng Cheng
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.,Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| |
Collapse
|
6
|
Evaluation of Plasmodium vivax isolates in Thailand using polymorphic markers Plasmodium merozoite surface protein (PvMSP) 1 and PvMSP3. Parasitol Res 2018; 117:3965-3978. [DOI: 10.1007/s00436-018-6106-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/01/2018] [Indexed: 12/27/2022]
|
7
|
Camargo-Ayala PA, Garzón-Ospina D, Moreno-Pérez DA, Ricaurte-Contreras LA, Noya O, Patarroyo MA. On the Evolution and Function of Plasmodium vivax Reticulocyte Binding Surface Antigen ( pvrbsa). Front Genet 2018; 9:372. [PMID: 30250483 PMCID: PMC6139305 DOI: 10.3389/fgene.2018.00372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022] Open
Abstract
The RBSA protein is encoded by a gene described in Plasmodium species having tropism for reticulocytes. Since this protein is antigenic in natural infections and can bind to target cells, it has been proposed as a potential candidate for an anti-Plasmodium vivax vaccine. However, genetic diversity (a challenge which must be overcome for ensuring fully effective vaccine design) has not been described at this locus. Likewise, the minimum regions mediating specific parasite-host interaction have not been determined. This is why the rbsa gene’s evolutionary history is being here described, as well as the P. vivax rbsa (pvrbsa) genetic diversity and the specific regions mediating parasite adhesion to reticulocytes. Unlike what has previously been reported, rbsa was also present in several parasite species belonging to the monkey-malaria clade; paralogs were also found in Plasmodium parasites invading reticulocytes. The pvrbsa locus had less diversity than other merozoite surface proteins where natural selection and recombination were the main evolutionary forces involved in causing the observed polymorphism. The N-terminal end (PvRBSA-A) was conserved and under functional constraint; consequently, it was expressed as recombinant protein for binding assays. This protein fragment bound to reticulocytes whilst the C-terminus, included in recombinant PvRBSA-B (which was not under functional constraint), did not. Interestingly, two PvRBSA-A-derived peptides were able to inhibit protein binding to reticulocytes. Specific conserved and functionally important peptides within PvRBSA-A could thus be considered when designing a fully-effective vaccine against P. vivax.
Collapse
Affiliation(s)
- Paola Andrea Camargo-Ayala
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Microbiology Postgraduate Programme, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego Garzón-Ospina
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Darwin Andrés Moreno-Pérez
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | | | - Oscar Noya
- Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Manuel A Patarroyo
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
8
|
Cheng CW, Putaporntip C, Jongwutiwes S. Polymorphism in merozoite surface protein-7E of Plasmodium vivax in Thailand: Natural selection related to protein secondary structure. PLoS One 2018; 13:e0196765. [PMID: 29718980 PMCID: PMC5931635 DOI: 10.1371/journal.pone.0196765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/19/2018] [Indexed: 11/18/2022] Open
Abstract
Merozoite surface protein 7 (MSP-7) is a multigene family expressed during malaria blood-stage infection. MSP-7 forms complex with MSP-1 prior to merozoite egress from erythrocytes, and could affect merozoite invasion of erythrocytes. To characterize sequence variation in the orthologue in P. vivax (PvMSP-7), a gene member encoding PvMSP-7E was analyzed among 92 Thai isolates collected from 3 major endemic areas of Thailand (Northwest: Tak, Northeast: Ubon Ratchathani, and South: Yala and Narathiwat provinces). In total, 52 distinct haplotypes were found to circulate in these areas. Although population structure based on this locus was observed between each endemic area, no genetic differentiation occurred between populations collected from different periods in the same endemic area, suggesting spatial but not temporal genetic variation. Sequence microheterogeneity in both N- and C- terminal regions was predicted to display 4 and 6 α-helical domains, respectively. Signals of purifying selection were observed in α-helices II-X, suggesting structural or functional constraint in these domains. By contrast, α-helix-I spanning the putative signal peptide was under positive selection, in which amino acid substitutions could alter predicted CD4+ T helper cell epitopes. The central region of PvMSP-7E comprised the 5’-trimorphic and the 3’-dimorphic subregions. Positive selection was identified in the 3’ dimorphic subregion of the central domain. A consensus of intrinsically unstructured or disordered protein was predicted to encompass the entire central domain that contained a number of putative B cell epitopes and putative protein binding regions. Evidences of intragenic recombination were more common in the central region than the remainders of the gene. These results suggest that the extent of sequence variation, recombination events and selective pressures in the PvMSP-7E locus seem to be differentially affected by protein secondary structure.
Collapse
Affiliation(s)
- Chew Weng Cheng
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
9
|
Garzón-Ospina D, Buitrago SP, Ramos AE, Patarroyo MA. Identifying Potential Plasmodium vivax Sporozoite Stage Vaccine Candidates: An Analysis of Genetic Diversity and Natural Selection. Front Genet 2018; 9:10. [PMID: 29422913 PMCID: PMC5788960 DOI: 10.3389/fgene.2018.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/09/2018] [Indexed: 11/30/2022] Open
Abstract
Parasite antigen genetic diversity represents a great obstacle when designing a vaccine against malaria caused by Plasmodium vivax. Selecting vaccine candidate antigens has been focused on those fulfilling a role in invasion and which are conserved, thus avoiding specific-allele immune responses. Most antigens described to date belong to the blood stage, thereby blocking parasite development within red blood cells, whilst studying antigens from other stages has been quite restricted. Antigens from different parasite stages are required for developing a completely effective vaccine; thus, pre-erythrocyte stage antigens able to block the first line of infection becoming established should also be taken into account. However, few antigens from this stage have been studied to date. Several P. falciparum sporozoite antigens are involved in invasion. Since 77% of genes are orthologous amongst Plasmodium parasites, P. vivax sporozoite antigen orthologs to those of P. falciparum might be present in its genome. Although these genes might have high genetic diversity, conserved functionally-relevant regions (ideal for vaccine development) could be predicted by comparing genetic diversity patterns and evolutionary rates. This study was thus aimed at searching for putative P. vivax sporozoite genes so as to analyse their genetic diversity for determining their potential as vaccine candidates. Several DNA sequence polymorphism estimators were computed at each locus. The evolutionary force (drift, selection and recombination) drawing the genetic diversity pattern observed was also determined by using tests based on polymorphism frequency spectrum as well as the type of intra- and inter-species substitutions. Likewise, recombination was assessed both indirectly and directly. The results showed that sporozoite genes were more conserved than merozoite genes evaluated to date. Putative domains implied in cell traversal, gliding motility and hepatocyte interaction had a negative selection signal, being conserved amongst different species in the genus. PvP52, PvP36, PvSPATR, PvPLP1, PvMCP1, PvTLP, PvCelTOS, and PvMB2 antigens or functionally restricted regions within them would thus seem promising vaccine candidates and could be used when designing a pre-erythrocyte and/or multi-stage vaccine against P. vivax to avoid allele-specific immune responses that could reduce vaccine efficacy.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Sindy P Buitrago
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | - Andrea E Ramos
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
10
|
Baquero LA, Moreno-Pérez DA, Garzón-Ospina D, Forero-Rodríguez J, Ortiz-Suárez HD, Patarroyo MA. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasit Vectors 2017; 10:251. [PMID: 28526096 PMCID: PMC5438544 DOI: 10.1186/s13071-017-2183-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/10/2017] [Indexed: 12/11/2022] Open
Abstract
Background Adhesin proteins are used by Plasmodium parasites to bind and invade target cells. Hence, characterising molecules that participate in reticulocyte interaction is key to understanding the molecular basis of Plasmodium vivax invasion. This study focused on predicting functionally restricted regions of the P. vivax GPI-anchored micronemal antigen (PvGAMA) and characterising their reticulocyte binding activity. Results The pvgama gene was initially found in P. vivax VCG-I strain schizonts. According to the genetic diversity analysis, PvGAMA displayed a size polymorphism very common for antigenic P. vivax proteins. Two regions along the antigen sequence were highly conserved among species, having a negative natural selection signal. Interestingly, these regions revealed a functional role regarding preferential target cell adhesion. Conclusions To our knowledge, this study describes PvGAMA reticulocyte binding properties for the first time. Conserved functional regions were predicted according to natural selection analysis and their binding ability was confirmed. These findings support the notion that PvGAMA may have an important role in P. vivax merozoite adhesion to its target cells. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2183-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis A Baquero
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia
| | - Darwin A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá DC, Colombia
| | - Diego Garzón-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá DC, Colombia
| | - Johanna Forero-Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia
| | - Heidy D Ortiz-Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá DC, Colombia. .,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá DC, Colombia.
| |
Collapse
|
11
|
Garzón-Ospina D, Forero-Rodríguez J, Patarroyo MA. Evidence of functional divergence in MSP7 paralogous proteins: a molecular-evolutionary and phylogenetic analysis. BMC Evol Biol 2016; 16:256. [PMID: 27894257 PMCID: PMC5126858 DOI: 10.1186/s12862-016-0830-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background The merozoite surface protein 7 (MSP7) is a Plasmodium protein which is involved in parasite invasion; the gene encoding it belongs to a multigene family. It has been proposed that MSP7 paralogues seem to be functionally redundant; however, recent experiments have suggested that they could have different roles. Results The msp7 multigene family has been described in newly available Plasmodium genomes; phylogenetic relationships were established in 12 species by using different molecular evolutionary approaches for assessing functional divergence amongst MSP7 members. Gene expansion and contraction rule msp7 family evolution; however, some members could have had concerted evolution. Molecular evolutionary analysis showed that relaxed and/or intensified selection modulated Plasmodium msp7 paralogous evolution. Furthermore, episodic diversifying selection and changes in evolutionary rates suggested that some paralogous proteins have diverged functionally. Conclusions Even though msp7 has mainly evolved in line with a birth-and-death evolutionary model, gene conversion has taken place between some paralogous genes allowing them to maintain their functional redundancy. On the other hand, the evolutionary rate of some MSP7 paralogs has become altered, as well as undergoing relaxed or intensified (positive) selection, suggesting functional divergence. This could mean that some MSP7s can form different parasite protein complexes and/or recognise different host receptors during parasite invasion. These results highlight the importance of this gene family in the Plasmodium genus. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0830-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, DC, Colombia
| | - Johanna Forero-Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC, Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, DC, Colombia.
| |
Collapse
|
12
|
Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. INFECTION GENETICS AND EVOLUTION 2015; 33:182-8. [PMID: 25943417 DOI: 10.1016/j.meegid.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
Abstract
Detecting natural selection signals in Plasmodium parasites antigens might be used for identifying potential new vaccine candidates. Fifty-nine Plasmodium vivax-Sal-I genes encoding proteins having a potential role in invasion were used as query for identifying them in recent P. vivax strain genome sequences and two closely-related Plasmodium species. Several measures of DNA sequence variation were then calculated and selection signatures were detected by using different approaches. Our results may be used for determining which genes expressed during P. vivax merozoite stage could be prioritised for further population genetics or functional studies for designing a P. vivax vaccine which would avoid allele-specific immune responses.
Collapse
|
13
|
Mo J, Li J. In silico analysis for structure, function and T-cell epitopes of a hypothetical conserved (HP-C) protein coded by PVX_092425 in Plasmodium vivax. Pathog Glob Health 2015; 109:61-7. [PMID: 25706099 DOI: 10.1179/2047773215y.0000000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE Plasmodium spp. merozoite glycosylphosphatidylinositol-anchored proteins (GPI-APs) considered as protective immunogen in novel vaccines against malaria. To analyze the structure and function of a hypothetical conserved (HP-C) GPI-AP coded by gene PVX_092425 from Plasmodium vivax, and find its potential T-cell epitopes for further vivax malaria vaccine study. METHODS The structure, function and T-cell epitopes of the HP-C protein named Pvx_092425 were analyzed and predicted by online and offline bioinformatics software. RESULTS The bioinformatics data showed that the Pvx_092425 is an 830 amino acid (AA) long polypeptide encoded by five exons gene PVX_092425.It contains a pectin lyase-like superfamily, an AA repeats region, a cys-rich region and a transmembrane domain (TM) in C-terminal region. The alignment analysis drew it has a unique AA repeats region among Plasmodium spp. It was located in the cytoplasm, secretory system or cellular nucleus of P. vivax merozoite. For the sequence, the fragment of I823-V829 inserts in the interior side of the membrane, and M1--A812 belongs to the cytoplasmic tail. It has seven protein-protein binding sites. The peptides with the best predicted binding affinities were human leucocyte antigen (HLA) HLA-A*0203, HLA-DRB1*0101 and HLA- DRB1*0701.Among these predicted peptides, 582FLWDKALFD590 epitope interacted with HLA-DRB1*0101 allele showed best binding affinity compared to others. Structural analysis explained that the epitope fits well into the epitope-binding groove of HLA-DRB1*0101. CONCLUSIONS It proposes that the Pvx_092425 plays a key role during erythrocyte stage and generates information that is useful for development of blood-stage vaccine to block the merozoites invasion.
Collapse
|
14
|
Heterogeneous genetic diversity pattern in Plasmodium vivax genes encoding merozoite surface proteins (MSP) -7E, -7F and -7L. Malar J 2014; 13:495. [PMID: 25496322 PMCID: PMC4300842 DOI: 10.1186/1475-2875-13-495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 11/15/2022] Open
Abstract
Background The msp-7 gene has become differentially expanded in the Plasmodium genus; Plasmodium vivax has the highest copy number of this gene, several of which encode antigenic proteins in merozoites. Methods DNA sequences from thirty-six Colombian clinical isolates from P. vivax (pv) msp-7E, −7F and -7L genes were analysed for characterizing and studying the genetic diversity of these pvmsp-7 members which are expressed during the intra-erythrocyte stage; natural selection signals producing the variation pattern so observed were evaluated. Results The pvmsp-7E gene was highly polymorphic compared to pvmsp-7F and pvmsp-7L which were seen to have limited genetic diversity; pvmsp-7E polymorphism was seen to have been maintained by different types of positive selection. Even though these copies seemed to be species-specific duplications, a search in the Plasmodium cynomolgi genome (P. vivax sister taxon) showed that both species shared the whole msp-7 repertoire. This led to exploring the long-term effect of natural selection by comparing the orthologous sequences which led to finding signatures for lineage-specific positive selection. Conclusions The results confirmed that the P. vivax msp-7 family has a heterogeneous genetic diversity pattern; some members are highly conserved whilst others are highly diverse. The results suggested that the 3′-end of these genes encode MSP-7 proteins’ functional region whilst the central region of pvmsp-7E has evolved rapidly. The lineage-specific positive selection signals found suggested that mutations occurring in msp-7s genes during host switch may have succeeded in adapting the ancestral P. vivax parasite population to humans. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-495) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Forero-Rodríguez J, Garzón-Ospina D, Patarroyo MA. Low genetic diversity and functional constraint in loci encoding Plasmodium vivax P12 and P38 proteins in the Colombian population. Malar J 2014; 13:58. [PMID: 24533461 PMCID: PMC3930544 DOI: 10.1186/1475-2875-13-58] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 02/13/2014] [Indexed: 11/11/2022] Open
Abstract
Background Plasmodium vivax is one of the five species causing malaria in human beings, affecting around 391 million people annually. The development of an anti-malarial vaccine has been proposed as an alternative for controlling this disease. However, its development has been hampered by allele-specific responses produced by the high genetic diversity shown by some parasite antigens. Evaluating these antigens’ genetic diversity is thus essential when designing a completely effective vaccine. Methods The gene sequences of Plasmodium vivax p12 (pv12) and p38 (pv38), obtained from field isolates in Colombia, were used for evaluating haplotype polymorphism and distribution by population genetics analysis. The evolutionary forces generating the variation pattern so observed were also determined. Results Both pv12 and pv38 were shown to have low genetic diversity. The neutral model for pv12 could not be discarded, whilst polymorphism in pv38 was maintained by balanced selection restricted to the gene’s 5′ region. Both encoded proteins seemed to have functional/structural constraints due to the presence of s48/45 domains, which were seen to be highly conserved. Conclusions Due to the role that malaria parasite P12 and P38 proteins seem to play during invasion in Plasmodium species, added to the Pv12 and Pv38 antigenic characteristics and the low genetic diversity observed, these proteins might be good candidates to be evaluated in the design of a multistage/multi-antigen vaccine.
Collapse
Affiliation(s)
| | | | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No, 26-20, Bogotá, DC, Colombia.
| |
Collapse
|
16
|
Rice BL, Acosta MM, Pacheco MA, Escalante AA. Merozoite surface protein-3 alpha as a genetic marker for epidemiologic studies in Plasmodium vivax: a cautionary note. Malar J 2013; 12:288. [PMID: 23964962 PMCID: PMC3765194 DOI: 10.1186/1475-2875-12-288] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/18/2013] [Indexed: 11/22/2022] Open
Abstract
Background Plasmodium vivax is the most widespread of the human malaria parasites in terms of geography, and is thought to present unique challenges to local efforts aimed at control and elimination. Parasite molecular markers can provide much needed data on P. vivax populations, but few such markers have been critically evaluated. One marker that has seen extensive use is the gene encoding merozoite surface protein 3-alpha (MSP-3α), a blood-stage antigen known to be highly variable among P. vivax isolates. Here, a sample of complete msp-3α gene sequences is analysed in order to assess its utility as a molecular marker for epidemiologic investigations. Methods Amplification, cloning and sequencing of additional P. vivax isolates from different geographic locations, including a set of Venezuelan field isolates (n = 10), yielded a sample of 48 complete msp-3α coding sequences. Characterization of standard population genetic measures of diversity, phylogenetic analysis, and tests for recombination were performed. This allowed comparisons to patterns inferred from the in silico simulation of a polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) protocol used widely. Results The larger sample of MSP-3α diversity revealed incongruence between the observed levels of nucleotide polymorphism, which were high in all populations, and the pattern of PCR-RFLP haplotype diversity. Indeed, PCR-RFLP haplotypes were not informative of a population’s genetic diversity and identical haplotypes could be produced from analogous bands in the commonly used protocol. Evidence of frequent and variable insertion-deletion mutations and recurrent recombination between MSP-3α haplotypes complicated the inference of genetic diversity patterns and reduced the phylogenetic signal. Conclusions The genetic diversity of P. vivax msp-3α involves intragenic recombination events. Whereas the high genetic diversity of msp-3α makes it a promising marker for some epidemiological applications, the ability of msp-3α PCR-RFLP analysis to accurately track parasites is limited. Local studies of the circulating alleles are needed before implementing PCR-RFLP approaches. Furthermore, evidence from the global sample analysed here suggests such msp-3α PCR-RFLP methods are not suitable for broad geographic studies or tracking parasite populations for an extended period of time.
Collapse
Affiliation(s)
- Benjamin L Rice
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | | | | |
Collapse
|
17
|
The Plasmodium vivax merozoite surface protein 1 paralog is a novel erythrocyte-binding ligand of P. vivax. Infect Immun 2013; 81:1585-95. [PMID: 23460511 DOI: 10.1128/iai.01117-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merozoite surface protein 1 of Plasmodium vivax (PvMSP1), a glycosylphosphatidylinositol-anchored protein (GPI-AP), is a malaria vaccine candidate for P. vivax. The paralog of PvMSP1, named P. vivax merozoite surface protein 1 paralog (PvMSP1P; PlasmoDB PVX_099975), was recently identified and predicted as a GPI-AP. The similarities in genetic structural characteristics between PvMSP1 and PvMSP1P (e.g., size of open reading frames, two epidermal growth factor-like domains, and GPI anchor motif in the C terminus) led us to study this protein. In the present study, different regions of the PvMSP1P protein, demarcated based on the processed forms of PvMSP1, were expressed successfully as recombinant proteins [i.e., 83 (A, B, and C), 30, 38, 42, 33, and 19 fragments]. We studied the naturally acquired immune response against each fragment of recombinant PvMSP1P and the potential ability of each fragment to bind erythrocytes. The N-terminal fragment (83A) and two C-terminal fragments (33 and 19) reacted strongly with sera from P. vivax-infected patients, with 50 to 68% sensitivity and 95 to 96% specificity, respectively. Due to colocalization of PvMSP1P with PvMSP1, we supposed that PvMSP1P plays a similar role as PvMSP1 during erythrocyte invasion. An in vitro cytoadherence assay showed that PvMSP1P, especially the 19-kDa C-terminal region, could bind to erythrocytes. We also found that human sera from populations naturally exposed to vivax malaria and antisera obtained by immunization using the recombinant molecule PvMSP1P-19 inhibited in vitro binding of human erythrocytes to PvMSP1P-19. These results provide further evidence that the PvMSP1P might be an essential parasite adhesion molecule in the P. vivax merozoite and is a potential vaccine candidate against P. vivax.
Collapse
|
18
|
Garzón-Ospina D, López C, Forero-Rodríguez J, Patarroyo MA. Genetic diversity and selection in three Plasmodium vivax merozoite surface protein 7 (Pvmsp-7) genes in a Colombian population. PLoS One 2012; 7:e45962. [PMID: 23049905 PMCID: PMC3458108 DOI: 10.1371/journal.pone.0045962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Fundación Instituto de Inmunología de Colombia – FIDIC, Bogotá DC, Colombia
- Microbiology postgraduate program, Universidad Nacional de Colombia, Bogotá DC, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Carolina López
- Fundación Instituto de Inmunología de Colombia – FIDIC, Bogotá DC, Colombia
- Microbiology postgraduate program, Universidad Nacional de Colombia, Bogotá DC, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | | | - Manuel A. Patarroyo
- Fundación Instituto de Inmunología de Colombia – FIDIC, Bogotá DC, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
- * E-mail:
| |
Collapse
|
19
|
Pv12, a 6-Cys antigen of Plasmodium vivax, is localized to the merozoite rhoptry. Parasitol Int 2012; 61:443-9. [DOI: 10.1016/j.parint.2012.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 11/21/2022]
|
20
|
The GPI-anchored 6-Cys protein Pv12 is present in detergent-resistant microdomains of Plasmodium vivax blood stage schizonts. Protist 2012; 164:37-48. [PMID: 22554829 DOI: 10.1016/j.protis.2012.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 03/16/2012] [Accepted: 03/31/2012] [Indexed: 11/21/2022]
Abstract
Plasmodium vivax malaria remains one of the tropical diseases causing an enormous burden on global public health. Several proteins located on this parasite species' merozoite surface have been considered the most suitable antigens for being included in an anti-malarial vaccine, given the functional role they play during the parasite's interaction with red blood cells. The present study identifies and characterizes the P. vivax Pv12 surface protein which was evaluated by using molecular biology and immunochemistry assays; its antigenic potential was also examined in natural and experimental P. vivax malaria infections. The P. vivax VCG-1 strain Pv12 gene encodes a 362 amino acid-long protein exhibiting a signal peptide, a glycosylphosphatidylinositol (GPI) anchor sequence and two 6-Cys domains. The presence of the Pv12 protein on the parasite's surface and its association with detergent-resistant membrane complexes, together with its antigenic potential, supports the notion that this antigen could play an important role as a red blood cell binding ligand. Further studies aimed at establishing the immunogenicity and protection-inducing ability of the Pv12 protein or its products in the Aotus experimental model are thus suggested.
Collapse
|
21
|
Pacheco MA, Elango AP, Rahman AA, Fisher D, Collins WE, Barnwell JW, Escalante AA. Evidence of purifying selection on merozoite surface protein 8 (MSP8) and 10 (MSP10) in Plasmodium spp. INFECTION GENETICS AND EVOLUTION 2012; 12:978-86. [PMID: 22414917 DOI: 10.1016/j.meegid.2012.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 01/08/2023]
Abstract
Evidence for natural selection, positive or negative, on gene encoding antigens may indicate variation or functional constraints that are immunologically relevant. Most malaria surface antigens with high genetic diversity have been reported to be under positive-diversifying selection. However, antigens with limited genetic variation are usually ignored in terms of the role that natural selection may have in generating such patterns. We investigated orthologous genes encoding two merozoite proteins, MSP8 and MSP10, among several mammalian Plasmodium spp. These antigens, together with MSP1, are among the few MSPs that have two epidermal growth factor-like domains (EGF) at the C-terminal. Those EGF are relatively conserved (low levels of genetic polymorphism) and have been proposed to act as ligands during the invasion of RBCs. We use several evolutionary genetic methods to detect patterns consistent with natural selection acting on MSP8 and MSP10 orthologs in the human parasites Plasmodium falciparum and P. vivax, as well as closely related malarial species found in non-human primates (NHPs). Overall, these antigens have low polymorphism in the human parasites in comparison with the orthologs from other Plasmodium spp. We found that the MSP10 gene polymorphism in P. falciparum only harbor non-synonymous substitutions, a pattern consistent with a gene under positive selection. Evidence of purifying selection was found on the polymorphism observed in both orthologs from P. cynomolgi, a non-human primate parasite closely related to P. vivax, but it was not conclusive in the human parasite. Yet, using phylogenetic base approaches, we found evidence for purifying selection on both MSP8 and MSP10 in the lineage leading to P. vivax. Such antigens evolving under strong functional constraints could become valuable vaccine candidates. We discuss how comparative approaches could allow detecting patterns consistent with negative selection even when there is low polymorphism in the extant populations.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | | | | | | | | | | | | |
Collapse
|