1
|
Mee PT, Buultjens AH, Oliver J, Brown K, Crowder JC, Porter JL, Hobbs EC, Judd LM, Taiaroa G, Puttharak N, Williamson DA, Blasdell KR, Tay EL, Feldman R, Muzari MO, Sanders C, Larsen S, Crouch SR, Johnson PDR, Wallace JR, Price DJ, Hoffmann AA, Gibney KB, Stinear TP, Lynch SE. Mosquitoes provide a transmission route between possums and humans for Buruli ulcer in southeastern Australia. Nat Microbiol 2024; 9:377-389. [PMID: 38263454 PMCID: PMC10847040 DOI: 10.1038/s41564-023-01553-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/08/2023] [Indexed: 01/25/2024]
Abstract
Buruli ulcer, a chronic subcutaneous infection caused by Mycobacterium ulcerans, is increasing in prevalence in southeastern Australia. Possums are a local wildlife reservoir for M. ulcerans and, although mosquitoes have been implicated in transmission, it remains unclear how humans acquire infection. We conducted extensive field survey analyses of M. ulcerans prevalence among mosquitoes in the Mornington Peninsula region of southeastern Australia. PCR screening of trapped mosquitoes revealed a significant association between M. ulcerans and Aedes notoscriptus. Spatial scanning statistics revealed overlap between clusters of M. ulcerans-positive Ae. notoscriptus, M. ulcerans-positive possum excreta and Buruli ulcer cases, and metabarcoding analyses showed individual mosquitoes had fed on humans and possums. Bacterial genomic analysis confirmed shared single-nucleotide-polymorphism profiles for M. ulcerans detected in mosquitoes, possum excreta and humans. These findings indicate Ae. notoscriptus probably transmit M. ulcerans in southeastern Australia and highlight mosquito control as a Buruli ulcer prevention measure.
Collapse
Affiliation(s)
- Peter T Mee
- Centre for AgriBioscience, AgriBio, Agriculture Victoria, Bundoora, Victoria, Australia.
| | - Andrew H Buultjens
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane Oliver
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Karen Brown
- Centre for AgriBioscience, AgriBio, Agriculture Victoria, Bundoora, Victoria, Australia
| | - Jodie C Crowder
- Centre for AgriBioscience, AgriBio, Agriculture Victoria, Bundoora, Victoria, Australia
| | - Jessica L Porter
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Emma C Hobbs
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise M Judd
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - George Taiaroa
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Natsuda Puttharak
- Centre for AgriBioscience, AgriBio, Agriculture Victoria, Bundoora, Victoria, Australia
| | - Deborah A Williamson
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute for Infection and Immunity, Melbourne Health, Melbourne, Victoria, Australia
| | - Kim R Blasdell
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Ee Laine Tay
- Department of Health, Melbourne, Victoria, Australia
| | | | - Mutizwa Odwell Muzari
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital and Health Services, Cairns, Queensland, Australia
| | - Chris Sanders
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart Larsen
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon R Crouch
- South East Public Health Unit, Monash Health, Clayton, Victoria, Australia
| | - Paul D R Johnson
- North East Public Health Unit, Austin Health, Heidelberg, Victoria, Australia
| | - John R Wallace
- Department of Biology, Millersville University, Millersville, PA, USA
| | - David J Price
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Katherine B Gibney
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
- WHO Collaborating Centre for Mycobacterium ulcerans, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Stacey E Lynch
- Centre for AgriBioscience, AgriBio, Agriculture Victoria, Bundoora, Victoria, Australia
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| |
Collapse
|
2
|
Urban population structure and dispersal of an Australian mosquito (Aedes notoscriptus) involved in disease transmission. Heredity (Edinb) 2023; 130:99-108. [PMID: 36539450 PMCID: PMC9905534 DOI: 10.1038/s41437-022-00584-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Dispersal is a critical parameter for successful pest control measures as it determines the rate of movement across target control areas and influences the risk of human exposure. We used a fine-scale spatial population genomic approach to investigate the dispersal ecology and population structure of Aedes notoscriptus, an important disease transmitting mosquito at the Mornington Peninsula, Australia. We sampled and reared Ae. notoscriptus eggs at two time points from 170 traps up to 5 km apart and generated genomic data from 240 individuals. We also produced a draft genome assembly from a laboratory colony established from mosquitoes sampled near the study area. We found low genetic structure (Fst) and high coancestry throughout the study region. Using genetic data to identify close kin dyads, we found that mosquitoes had moved distances of >1 km within a generation, which is further than previously recorded. A spatial autocorrelation analysis of genetic distances indicated genetic similarity at >1 km separation, a tenfold higher distance than for a comparable population of Ae. aegypti, from Cairns, Australia. These findings point to high mobility of Ae. notoscriptus, highlighting challenges of localised intervention strategies. Further sampling within the same area 6 and 12 months after initial sampling showed that egg-counts were relatively consistent across time, and that spatial variation in egg-counts covaried with spatial variation in Wright's neighbourhood size (NS). As NS increases linearly with population density, egg-counts may be useful for estimating relative density in Ae. notoscriptus. The results highlight the importance of acquiring species-specific data when planning control measures.
Collapse
|
3
|
Soares IMN, Polonio JC, Zequi JAC, Golias HC. Molecular techniques for the taxonomy of Aedes Meigen, 1818 (Culicidae: Aedini): A review of studies from 2010 to 2021. Acta Trop 2022; 236:106694. [PMID: 36122762 DOI: 10.1016/j.actatropica.2022.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
The original description of Aedes Meigen in 1818, written in Latin, was very brief and included a single species, Aedes cinereus. In the last two decades the genus Aedes (Meigen, 1818) has undergone several revisions and reclassifications, with the current proposal being described by Wilkerson in 2015. However, the available keys for morphological identification are still not sufficient to differentiate cryptic species, damaged species, or those with confusing taxonomy. The current study aims to identify and describe the main taxonomic proposals and molecular methodologies available for the identification of the genus Aedes published between the years 2010 and 2021. The main molecular techniques used to identify the genus in the last 10 years, are: Multiplex PCR, DNA barcoding, nuclear and mitochondrial markers, environmental DNA, and bacterial microbiome analysis. This review highlights that there are catalogued data for only a few species of the genus Aedes, being restricted to medically important taxa such as Aedes albopictus and Aedes aegypti. The integrative taxonomy approach is a possibility to reconcile morphological and molecular data to improve species delimitation, contributing to future revisions of the genus.
Collapse
Affiliation(s)
| | - Julio Cesar Polonio
- Department of Cell Biology, Genetics and Biotechnology, State University of Maringá (UEM), Brazil
| | | | - Halison Correia Golias
- Department of Cell Biology, Genetics and Biotechnology, State University of Maringá (UEM), Brazil; Department of Humanities, Microbiology Laboratory, Federal Technological University of Paraná (UTFPR), Marcilio Dias Street, 635, Apucarana, Paraná, Brazil.
| |
Collapse
|
4
|
Metzger ME, Wekesa JW, Kluh S, Fujioka KK, Saviskas R, Arugay A, McConnell N, Nguyen K, Krueger L, Hacker GM, Hu R, Kramer VL. Detection and Establishment of Aedes notoscriptus (Diptera: Culicidae) Mosquitoes in Southern California, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:67-77. [PMID: 34617571 PMCID: PMC8755992 DOI: 10.1093/jme/tjab165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Aedes notoscriptus (Skuse), the Australian backyard mosquito, is a pestiferous daytime-biting species native to Australia and the surrounding southwestern Pacific region. It is suspected to play a role in the transmission of several arboviruses and is considered a competent vector of dog heartworm, Dirofilaria immitis (Leidy). This highly adaptable mosquito thrives in natural and artificial water-holding containers in both forested and urbanized areas, from tropical to temperate climates, and has benefitted from a close association with humans, increasing in abundance within its native range. It invaded and successfully established in New Zealand as well as in previously unoccupied temperate and arid regions of Australia. Ae. notoscriptus was discovered in Los Angeles County, CA, in 2014, marking the first time this species had been found outside the southwestern Pacific region. By the end of 2019, immature and adult mosquitoes had been collected from 364 unique locations within 44 cities spanning three southern California counties. The discovery, establishment, and rapid spread of this species in urban areas may signal the global movement and advent of a new invasive container-inhabiting species. The biting nuisance, public health, and veterinary health implications associated with the invasion of southern California by this mosquito are discussed.
Collapse
Affiliation(s)
- Marco E Metzger
- Vector-Borne Disease Section, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, 1616 Capitol Avenue, MS-7307, Sacramento, CA 95814, USA
| | - J Wakoli Wekesa
- San Gabriel Valley Mosquito and Vector Control District, 1145 North Azusa Canyon Road, West Covina, CA 91790, USA
- Current Address: East Side Mosquito Abatement District, 2000 Santa Fe Avenue, Modesto, CA 95357, USA
| | - Susanne Kluh
- Greater Los Angeles County Vector Control District, 12545 Florence Avenue, Santa Fe Springs, CA 90670, USA
| | - Kenn K Fujioka
- San Gabriel Valley Mosquito and Vector Control District, 1145 North Azusa Canyon Road, West Covina, CA 91790, USA
| | - Robert Saviskas
- Los Angeles County West Vector & Vector-Borne Disease Control District, 6750 Centinela Avenue, Culver City, CA 90230, USA
| | - Aaron Arugay
- Los Angeles County West Vector & Vector-Borne Disease Control District, 6750 Centinela Avenue, Culver City, CA 90230, USA
| | - Nathan McConnell
- County of San Diego, Department of Environmental Health, Vector Control Program, 5570 Overland Avenue Suite 102, San Diego, CA 92123, USA
| | - Kiet Nguyen
- Orange County Mosquito and Vector Control District, 13001 Garden Grove Boulevard, Garden Grove, CA 92843, USA
| | - Laura Krueger
- Orange County Mosquito and Vector Control District, 13001 Garden Grove Boulevard, Garden Grove, CA 92843, USA
| | - Gregory M Hacker
- Vector-Borne Disease Section, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, 1616 Capitol Avenue, MS-7307, Sacramento, CA 95814, USA
| | - Renjie Hu
- Vector-Borne Disease Section, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, 1616 Capitol Avenue, MS-7307, Sacramento, CA 95814, USA
| | - Vicki L Kramer
- Vector-Borne Disease Section, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, 1616 Capitol Avenue, MS-7307, Sacramento, CA 95814, USA
| |
Collapse
|
5
|
Mechai S, Bilodeau G, Lung O, Roy M, Steeves R, Gagne N, Baird D, Lapen DR, Ludwig A, Ogden NH. Mosquito Identification From Bulk Samples Using DNA Metabarcoding: a Protocol to Support Mosquito-Borne Disease Surveillance in Canada. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1686-1700. [PMID: 33822118 DOI: 10.1093/jme/tjab046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Approximately 80 species of mosquitoes (Diptera: Culicidae) have been documented in Canada. Exotic species such as Aedes albopictus (Skuse) (Diptera: Culicidae) are becoming established. Recently occurring endemic mosquito-borne diseases (MBD) in Canada including West-Nile virus (WNV) and Eastern Equine Encephalitis (EEE) are having significant public health impacts. Here we explore the use of DNA metabarcoding to identify mosquitoes from CDC light-trap collections from two locations in eastern Canada. Two primer pairs (BF2-BR2 and F230) were used to amplify regions of the cytochrome c oxidase subunit I (CO1) gene. High throughput sequencing was conducted using an Illumina MiSeq platform and GenBank-based species identification was applied using a QIIME 1.9 bioinformatics pipeline. From a site in southeastern Ontario, Canada, 26 CDC light trap collections of 72 to >300 individual mosquitoes were used to explore the capacity of DNA metabarcoding to identify and quantify captured mosquitoes. The DNA metabarcoding method identified 33 species overall while 24 species were identified by key. Using replicates from each trap, the dried biomass needed to identify the majority of species was determined to be 76 mg (equivalent to approximately 72 mosquitoes), and at least two replicates from the dried biomass would be needed to reliably detect the majority of species in collections of 144-215 mosquitoes and three replicates would be advised for collections with >215 mosquitoes. This study supports the use of DNA metabarcoding as a mosquito surveillance tool in Canada which can help identify the emergence of new mosquito-borne disease potential threats.
Collapse
Affiliation(s)
- S Mechai
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - G Bilodeau
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - O Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - M Roy
- Aquatic Animal Health Section, Fisheries & Oceans Canada, Moncton, New Brunswick, Canada
| | - R Steeves
- Aquatic Animal Health Section, Fisheries & Oceans Canada, Moncton, New Brunswick, Canada
| | - N Gagne
- Aquatic Animal Health Section, Fisheries & Oceans Canada, Moncton, New Brunswick, Canada
| | - D Baird
- Environment and Climate Change Canada, Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - D R Lapen
- Ottawa Research Development Centre, Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada
| | - A Ludwig
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - N H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
6
|
Zheng XL. Unveiling mosquito cryptic species and their reproductive isolation. INSECT MOLECULAR BIOLOGY 2020; 29:499-510. [PMID: 32741005 PMCID: PMC7754467 DOI: 10.1111/imb.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/04/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes are major vectors of many infectious pathogens or parasites. Understanding cryptic species and the speciation of disease vectors has important implications for vector management, evolution and host-pathogen and/or host-parasite interactions. Currently, mosquito cryptic species have been reported in many studies, most of which focus on the reproductive isolation of cryptic species and mainly on Anopheles gambiae sensu lato complex. Emerging species within the primary malaria vector Anopheles gambiae show different ecological preferences and significant prezygotic reproductive isolation, while Aedes mariae and Aedes zammitii show postmating reproductive isolation. However, data reporting the reproductive isolation in Culex and Aedes albopictus mosquito cryptic species is absent. The lack of systematic studies leaves many questions open, such as whether cryptic species are more common in particular habitats, latitudes or taxonomic groups; what mosquito cryptic species evolutionary processes bring about reproductive isolation in the absence of morphological differentiation? How does Wolbachia infection affect in mosquitoes' reproductive isolation? In this review, we provide a summary of recent advances in the discovery and identification of sibling or cryptic species within mosquito genera.
Collapse
Affiliation(s)
- XL. Zheng
- Department of Pathogen Biology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Abstract
Australian mosquito species significantly impact human health through nuisance biting and the transmission of endemic and exotic pathogens. Surveillance programmes designed to provide an early warning of mosquito-borne disease risk require reliable identification of mosquitoes. This study aimed to investigate the viability of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a rapid and inexpensive approach to the identification of Australian mosquitoes and was validated using a three-step taxonomic approach. A total of 300 mosquitoes representing 21 species were collected from south-eastern New South Wales and morphologically identified. The legs from the mosquitoes were removed and subjected to MALDI-TOF MS analysis. Fifty-eight mosquitoes were sequenced at the cytochrome c oxidase subunit I (cox1) gene region and genetic relationships were analysed. We create the first MALDI-TOF MS spectra database of Australian mosquito species including 19 species. We clearly demonstrate the accuracy of MALDI-TOF MS for identification of Australian mosquitoes. It is especially useful for assessing gaps in the effectiveness of DNA barcoding by differentiating closely related taxa. Indeed, cox1 DNA barcoding was not able to differentiate members of the Culex pipiens group, Cx. quinquefasciatus and Cx. pipiens molestus, but these specimens were correctly identified using MALDI-TOF MS.
Collapse
|
8
|
Duchemin JB, Mee PT, Lynch SE, Vedururu R, Trinidad L, Paradkar P. Zika vector transmission risk in temperate Australia: a vector competence study. Virol J 2017; 14:108. [PMID: 28599659 PMCID: PMC5466793 DOI: 10.1186/s12985-017-0772-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/01/2017] [Indexed: 11/23/2022] Open
Abstract
Background Zika virus is an emerging pathogen of global importance. It has been responsible for recent outbreaks in the Americas and in the Pacific region. This study assessed five different mosquito species from the temperate climatic zone in Australia and included Aedes albopictus as a potentially invasive species. Methods Mosquitoes were orally challenged by membrane feeding with Zika virus strain of Cambodia 2010 origin, belonging to the Asian clade. Virus infection and dissemination were assessed by quantitative PCR on midgut and carcass after dissection. Transmission was assessed by determination of cytopathogenic effect of saliva (CPE) on Vero cells, followed by determination of 50% tissue culture infectious dose (TCID50) for CPE positive samples. Additionally, the presence of Wolbachia endosymbiont infection was assessed by qPCR and standard PCR. Results Culex mosquitoes were found unable to present Zika virus in saliva, as demonstrated by molecular as well as virological methods. Aedes aegypti, was used as a positive control for Zika infection and showed a high level of virus infection, dissemination and transmission. Local Aedes species, Ae. notoscriptus and, to a lesser degree, Ae. camptorhynchus were found to expel virus in their saliva and contained viral nucleic acid within the midgut. Molecular assessment identified low or no dissemination for these species, possibly due to low virus loads. Ae. albopictus from Torres Strait islands origin was shown as an efficient vector. Cx quinquefasciatus was shown to harbour Wolbachia endosymbionts at high prevalence, whilst no Wolbachia was found in Cx annulirostris. The Australian Ae. albopictus population was shown to harbour Wolbachia at high frequency. Conclusions The risk of local Aedes species triggering large Zika epidemics in the southern parts of Australia is low. The potentially invasive Ae. albopictus showed high prevalence of virus in the saliva and constitutes a potential threat if this mosquito species becomes established in mainland Australia. Complete risk analysis of Zika transmission in the temperate zone would require an assessment of the impact of temperature on Zika virus replication within local and invasive mosquito species.
Collapse
Affiliation(s)
- Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Peter T Mee
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Stacey E Lynch
- BioScience Research, Agriculture Victoria, AgriBio, The Centre for AgriBioscience, 5 Ring Rd, La Trobe University Campus, Bundoora, VIC, 3083, Australia
| | - Ravikiran Vedururu
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.,School of Applied Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Lee Trinidad
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Prasad Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| |
Collapse
|
9
|
Toi CS, Webb CE, Haniotis J, Clancy J, Doggett SL. Seasonal activity, vector relationships and genetic analysis of mosquito-borne Stratford virus. PLoS One 2017; 12:e0173105. [PMID: 28253306 PMCID: PMC5333861 DOI: 10.1371/journal.pone.0173105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 02/15/2017] [Indexed: 11/18/2022] Open
Abstract
There are many gaps to be filled in our understanding of mosquito-borne viruses, their relationships with vectors and reservoir hosts, and the environmental drivers of seasonal activity. Stratford virus (STRV) belongs to the genus Flavivirus and has been isolated from mosquitoes and infected humans in Australia but little is known of its vector and reservoir host associations. A total of 43 isolates of STRV from mosquitoes collected in New South Wales between 1995 and 2013 was examined to determine the genetic diversity between virus isolates and their relationship with mosquito species. The virus was isolated from six mosquito species; Aedes aculeatus, Aedes alternans, Aedes notoscriptus, Aedes procax, Aedes vigilax, and Anopheles annulipes. While there were distinct differences in temporal and spatial activity of STRV, with peaks of activity in 2006, 2010 and 2013, a sequence homology of 95.9%-98.4% was found between isolates and the 1961 STRV prototype with 96.2%-100% identified among isolates. Temporal differences but no apparent nucleotide divergence by mosquito species or geographic location was evident. The result suggests the virus is geographically widespread in NSW (albeit only from coastal regions) and increased local STRV activity is likely to be driven by reservoir host factors and local environmental conditions influencing vector abundance. While STRV may not currently be associated with major outbreaks of human disease, with the potential for urbanisation and climate change to increase mosquito-borne disease risks, and the possibility of genomic changes which could produce pathogenic strains, understanding the drivers of STRV activity may assist the development of strategic response to public health risks posed by zoonotic flaviviruses in Australia.
Collapse
Affiliation(s)
- Cheryl S. Toi
- Department of Medical Entomology, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Cameron E. Webb
- Department of Medical Entomology, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, New South Wales, Australia
| | - John Haniotis
- Department of Medical Entomology, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - John Clancy
- Department of Medical Entomology, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen L. Doggett
- Department of Medical Entomology, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
10
|
Faull KJ, Webb C, Williams CR. Desiccation survival time for eggs of a widespread and invasive Australian mosquito species, Aedes (Finlaya) notoscriptus (Skuse). JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:55-62. [PMID: 27232125 DOI: 10.1111/jvec.12194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
The Australian native mosquito Aedes (Finlaya) notoscriptus (Skuse) is closely associated with natural and artificial water holding receptacles. Eggs are laid in habitats where they are exposed to drying conditions as water levels fluctuate. Withstanding desiccation enables survival in challenging environments and increases the potential for establishment in non-native habitats. Until now, the desiccation resistance of Ae. notoscriptus eggs has been unknown despite the historical invasive success of this important dog heartworm and arbovirus vector. Viability and mean survival times of eggs from two Ae. notoscriptus populations (metropolitan areas of Sydney, NSW and Adelaide, SA) were evaluated, with eggs stored under three dryness conditions for up to 367 days. Our results revealed that Ae. notoscriptus eggs can withstand desiccation for extended periods, under a variety of conditions, with approximately 9-13% egg viability recorded after one year. This prolonged egg survival reflects the widespread distribution of this mosquito in Australia and its history of incursions and subsequent establishment in non-native habitats. Differences in mean egg volume were recorded in addition to significantly different egg length to width ratios for the two populations, which may reflect adaptation to biotope of origin and an associated likelihood of drought and drying conditions. The results of this study suggest that the desiccation resistant eggs of Ae. notoscriptus make this species highly adaptable, increasing the risk of movement to non-endemic regions of the world.
Collapse
Affiliation(s)
- K J Faull
- Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia, 5001.
| | - C Webb
- Department of Medical Entomology, Pathology West - ICPMR Westmead and University of Sydney, Westmead Hospital, Westmead, NSW, Australia, 2145
| | - C R Williams
- Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia, 5001
| |
Collapse
|
11
|
Faull KJ, Williams CR. Differentiation of Aedes aegypti and Aedes notoscriptus (Diptera: Culicidae) eggs using scanning electron microscopy. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:273-280. [PMID: 26845557 DOI: 10.1016/j.asd.2016.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/24/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Aedes notoscriptus and Aedes aegypti are both peri-domestic, invasive container-breeding mosquitoes. While the two potential arboviral vectors are bionomically similar, their sympatric distribution in Australia is limited. In this study, analyses of Ae. aegypti and Ae. notoscriptus eggs were enabled using scanning electron microscopy. Significant variations in egg length to width ratio and outer chorionic cell field morphology between Ae. aegypti and Ae. notoscriptus enabled distinction of the two species. Intraspecific variations in cell field morphology also enabled differentiation of the separate populations of both species, highlighting regional and global variation. Our study provides a comprehensive comparative analysis of inter- and intraspecific egg morphological and morphometric variation between two invasive container-breeding mosquitoes. The results indicate a high degree of intraspecific variation in Ae. notoscriptus egg morphology when compared to the eggs of Ae. aegypti. Comparative morphological analyses of Ae. aegypti and Ae. notoscriptus egg attributes using SEM allows differentiation of the species and may be helpful in understanding egg biology in relation to biotope of origin.
Collapse
Affiliation(s)
- Katherine J Faull
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5001, Australia.
| | - Craig R Williams
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5001, Australia
| |
Collapse
|
12
|
Batovska J, Blacket MJ, Brown K, Lynch SE. Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecol Evol 2016; 6:3001-11. [PMID: 27217948 PMCID: PMC4863023 DOI: 10.1002/ece3.2095] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 01/11/2023] Open
Abstract
DNA barcoding is a modern species identification technique that can be used to distinguish morphologically similar species, and is particularly useful when using small amounts of starting material from partial specimens or from immature stages. In order to use DNA barcoding in a surveillance program, a database containing mosquito barcode sequences is required. This study obtained Cytochrome Oxidase I (COI) sequences for 113 morphologically identified specimens, representing 29 species, six tribes and 12 genera; 17 of these species have not been previously barcoded. Three of the 29 species ─ Culex palpalis, Macleaya macmillani, and an unknown species originally identified as Tripteroides atripes ─ were initially misidentified as they are difficult to separate morphologically, highlighting the utility of DNA barcoding. While most species grouped separately (reciprocally monophyletic), the Cx. pipiens subgroup could not be genetically separated using COI. The average conspecific and congeneric p‐distance was 0.8% and 7.6%, respectively. In our study, we also demonstrate the utility of DNA barcoding in distinguishing exotics from endemic mosquitoes by identifying a single intercepted Stegomyia aegypti egg at an international airport. The use of DNA barcoding dramatically reduced the identification time required compared with rearing specimens through to adults, thereby demonstrating the value of this technique in biosecurity surveillance. The DNA barcodes produced by this study have been uploaded to the ‘Mosquitoes of Australia–Victoria’ project on the Barcode of Life Database (BOLD), which will serve as a resource for the Victorian Arbovirus Disease Control Program and other national and international mosquito surveillance programs.
Collapse
Affiliation(s)
- Jana Batovska
- Department of Economic Development, Jobs, Transport and Resources (DEDJTR) BioSciences Research AgriBio Centre for AgriBioscience Bundoora Victoria 3083 Australia
| | - Mark J Blacket
- Department of Economic Development, Jobs, Transport and Resources (DEDJTR) BioSciences Research AgriBio Centre for AgriBioscience Bundoora Victoria 3083 Australia
| | - Karen Brown
- Department of Economic Development, Jobs, Transport and Resources (DEDJTR) BioSciences Research AgriBio Centre for AgriBioscience Bundoora Victoria 3083 Australia
| | - Stacey E Lynch
- Department of Economic Development, Jobs, Transport and Resources (DEDJTR) BioSciences Research AgriBio Centre for AgriBioscience Bundoora Victoria 3083 Australia
| |
Collapse
|
13
|
Jansen CC, Williams CR, van den Hurk AF. The Usual Suspects: Comparison of the Relative Roles of Potential Urban Chikungunya Virus Vectors in Australia. PLoS One 2015; 10:e0134975. [PMID: 26247366 PMCID: PMC4527740 DOI: 10.1371/journal.pone.0134975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/15/2015] [Indexed: 12/03/2022] Open
Abstract
The global re-emergence of chikungunya virus (CHIKV) over the last decade presents a serious public health risk to Australia. An increasing number of imported cases further underline the potential for local transmission to occur if local mosquitoes bite an infected traveller. Laboratory experiments have identified a number of competent Australian mosquito species, including the primary vectors of CHIKV abroad, Aedes aegypti and Aedes albopictus, and local endemic species Aedes vigilax and Aedes notoscriptus. The implication of these additional endemic species as potential vectors has generated much uncertainty amongst public health professionals regarding their actual role in CHIKV transmission in the field. Using data estimated from or documented in the literature, we parameterise a simple vectorial capacity model to evaluate the relative roles of Australian mosquito species in potential CHIKV transmission. The model takes into account a number of key biological and ecological variables which influence the role of a species in field transmission, including population density, human feeding rates, mosquito survival rates and vector competence. We confirm the relative importance of Ae. aegypti and Ae. albopictus in sustaining potential CHIKV transmission in Australia. Even at maximum estimated densities and human feeding rates, Ae. vigilax and Ae. notoscriptus are likely to play a relatively minor role in CHIKV transmission, when compared with either Ae. aegypti or Ae. albopictus. This relatively straightforward analysis has application for any region where mosquito species have been incriminated in vector competence experiments, but where their actual role in CHIKV transmission has not been established.
Collapse
Affiliation(s)
- Cassie C. Jansen
- Metro North Public Health Unit, Queensland Health, Windsor, Queensland, Australia
| | - Craig R. Williams
- Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Andrew F. van den Hurk
- Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| |
Collapse
|
14
|
Peterson AT, Campbell LP. Global potential distribution of the mosquito Aedes notoscriptus, a new alien species in the United States. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2015; 40:191-194. [PMID: 26047202 DOI: 10.1111/jvec.12151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
| | - Lindsay P Campbell
- Biodiversity Institute, University of Kansas, Lawrence, KS, U.S.A., 66045
| |
Collapse
|
15
|
White VL, Endersby NM, Chan J, Hoffmann AA, Weeks AR. Developing Exon-Primed Intron-Crossing (EPIC) markers for population genetic studies in three Aedes disease vectors. INSECT SCIENCE 2015; 22:409-423. [PMID: 24895297 DOI: 10.1111/1744-7917.12145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2014] [Indexed: 06/03/2023]
Abstract
Aedes aegypti, Aedes notoscriptus, and Aedes albopictus are important vectors of many arboviruses implicated in human disease such as dengue fever. Genetic markers applied across vector species can provide important information on population structure, gene flow, insecticide resistance, and taxonomy, however, robust microsatellite markers have proven difficult to develop in these species and mosquitoes generally. Here we consider the utility and transferability of 15 Ribosome protein (Rp) Exon-Primed Intron-Crossing (EPIC) markers for population genetic studies in these 3 Aedes species. Rp EPIC markers designed for Ae. aegypti also successfully amplified populations of the sister species, Ae. albopictus, as well as the distantly related species, Ae. notoscriptus. High SNP and good indel diversity in sequenced alleles plus support for amplification of the same regions across populations and species were additional benefits of these markers. These findings point to the general value of EPIC markers in mosquito population studies.
Collapse
Affiliation(s)
- Vanessa Linley White
- Department of Genetics, Bio21 Institute, the University of Melbourne, Victoria, 3010, Australia
| | - Nancy Margaret Endersby
- Department of Genetics, Bio21 Institute, the University of Melbourne, Victoria, 3010, Australia
| | - Janice Chan
- Department of Genetics, Bio21 Institute, the University of Melbourne, Victoria, 3010, Australia
| | - Ary Anthony Hoffmann
- Department of Genetics, Bio21 Institute, the University of Melbourne, Victoria, 3010, Australia
| | - Andrew Raymond Weeks
- Department of Genetics, Bio21 Institute, the University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
16
|
Petersen V, Devicari M, Suesdek L. High morphological and genetic variabilities of Ochlerotatus scapularis, a potential vector of filarias and arboviruses. Parasit Vectors 2015; 8:128. [PMID: 25885902 PMCID: PMC4357162 DOI: 10.1186/s13071-015-0740-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 02/13/2015] [Indexed: 11/21/2022] Open
Abstract
Background Ochlerotatus scapularis is a potential vector of filarias and arboviruses in the Neotropics. This species was once typically associated with sylvatic environments; however, cases of synanthropy and urbanization of this species have been increasingly reported in southeast Brazil. Despite the medical relevance of Oc. scapularis, its populational variability is not yet known. To our knowledge, this is the first report describing the morphological and genetic variabilities of this species. Methods Population samples were characterized using the cytochrome oxidase subunit I (COI) mitochondrial gene and wing geometrics. Adult mosquitoes were collected from five sampling sites from remnants of the Atlantic forest embedded in the urban or rural areas of southeast Brazil. Results In the 130 individuals analyzed, 46 COI haplotypes were detected. Haplotype diversity was high and ranged from 0.66 to 0.97. Six haplotypes were present in 61% of the individuals, whereas the remaining haplotypes were less frequent (39%). Wing shape was also highly polymorphic. Differentiation of populations across sampling sites according to genetic distances (Fst = −0.009 to 0.060) and morphological distances (Qst = 0.47) indicated that populations were not identical. No correlations were noted for phenetic and genetic diversities (p = 0.19) or for genetic or phenetic distances with geographical distances (p = 0.2 and p = 0.18, respectively). Conclusions Our study results suggest that Oc. scapularis has a rich genetic patrimony, even though its habitat is fragmented. Implications of such genetic richness with respect to vectorial competence, plasticity, and ability to exploit urbanized areas need to be further investigated. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0740-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vivian Petersen
- Instituto Butantan, São Paulo, Brazil. .,Biologia da Relação Patógeno-Hospedeiro-Universidade de São Paulo, São Paulo, Brazil.
| | - Mariana Devicari
- Instituto Butantan, São Paulo, Brazil. .,Biologia da Relação Patógeno-Hospedeiro-Universidade de São Paulo, São Paulo, Brazil.
| | - Lincoln Suesdek
- Instituto Butantan, São Paulo, Brazil. .,Biologia da Relação Patógeno-Hospedeiro-Universidade de São Paulo, São Paulo, Brazil. .,Programa de Pós- graduação do Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
Hardy CM, Court LN, Morgan MJ, Webb CE. The complete mitochondrial DNA genomes for two lineages of Aedes notoscriptus (Diptera: Culicidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:2024-5. [PMID: 25350735 DOI: 10.3109/19401736.2014.974171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genomes for two deeply divergent lineages of the urban adapted mosquito Aedes notoscriptus Skuse (Diptera: Culicidae) in Australia were sequenced using a combination of next generation Illumina and traditional Sanger sequencing. The 15,846 and 15,851 bp circular genomes share 95.0% nucleotide identity. They both have the full complement of 37 metazoan genes and identical gene arrangements to previously published Culicidae species with the one non-coding A + T rich control region present between rns and tRNA-Ile. All protein initiation codons are ATN apart from COX1 (TCG). Eight protein coding genes encode full TAA stop codons, one uses an incomplete TA and four use T. Typical cloverleaf structures containing DHU and TΨC stem and loops can be inferred for all 22 tRNAs.
Collapse
Affiliation(s)
- C M Hardy
- a CSIRO Land & Water Flagship , Clunies Ross Street , Canberra , ACT , Australia and
| | - L N Court
- a CSIRO Land & Water Flagship , Clunies Ross Street , Canberra , ACT , Australia and
| | - M J Morgan
- a CSIRO Land & Water Flagship , Clunies Ross Street , Canberra , ACT , Australia and
| | - C E Webb
- b Medical Entomology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney and Pathology West - ICPMR Westmead , Westmead , NSW , Australia
| |
Collapse
|