1
|
Łukaszuk E, Dziewulska D, Stenzel T. Recombinant Viruses from the Picornaviridae Family Occurring in Racing Pigeons. Viruses 2024; 16:917. [PMID: 38932208 PMCID: PMC11209253 DOI: 10.3390/v16060917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses from Picornaviridae family are known pathogens of poultry, although the information on their occurrence and pathogenicity in pigeons is scarce. In this research, efforts are made to broaden the knowledge on Megrivirus B and Pigeon picornavirus B prevalence, phylogenetic relationship with other avian picornaviruses and their possible connection with enteric disease in racing pigeons. As a result of Oxford Nanopore Sequencing, five Megrivirus and two pigeon picornavirus B-like genome sequences were recovered, among which three recombinant strains were detected. The recombinant fragments represented an average of 10.9% and 25.5% of the genome length of the Pigeon picornavirus B and Megrivirus B reference strains, respectively. The phylogenetic analysis revealed that pigeons are carriers of species-specific picornaviruses. TaqMan qPCR assays revealed 7.8% and 19.0% prevalence of Megrivirus B and 32.2% and 39.7% prevalence of Pigeon picornavirus B in the group of pigeons exhibiting signs of enteropathy and in the group of asymptomatic pigeons, respectively. In turn, digital droplet PCR showed a considerably higher number of genome copies of both viruses in sick than in asymptomatic pigeons. The results of quantitative analysis leave the role of picornaviruses in enteropathies of pigeons unclear.
Collapse
Affiliation(s)
| | | | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.Ł.); (D.D.)
| |
Collapse
|
2
|
Li Y, Zhang L, Wang L, Li J, Zhao Y, Liu F, Wang Q. Structure and function of type IV IRES in picornaviruses: a systematic review. Front Microbiol 2024; 15:1415698. [PMID: 38855772 PMCID: PMC11157119 DOI: 10.3389/fmicb.2024.1415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The Picornaviridae is a family of icosahedral viruses with single-stranded, highly diverse positive-sense RNA genomes. Virions consist of a capsid, without envelope, surrounding a core of RNA genome. A typical genome of picornavirus harbors a well-conserved and highly structured RNA element known as the internal ribosome entry site (IRES), functionally essential for viral replication and protein translation. Based on differences in their structures and mechanisms of action, picornaviral IRESs have been categorized into five types: type I, II, III, IV, and V. Compared with the type IV IRES, the others not only are structurally complicated, but also involve multiple initiation factors for triggering protein translation. The type IV IRES, often referred to as hepatitis C virus (HCV)-like IRES due to its structural resemblance to the HCV IRES, exhibits a simpler and more compact structure than those of the other four. The increasing identification of picornaviruses with the type IV IRES suggests that this IRES type seems to reveal strong retention and adaptation in terms of viral evolution. Here, we systematically reviewed structural features and biological functions of the type IV IRES in picornaviruses. A comprehensive understanding of the roles of type IV IRESs will contribute to elucidating the replication mechanism and pathogenesis of picornaviruses.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Lei Zhang
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Market Supervision Administration of Huangdao District, Qingdao, China
| | - Yanwei Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Fu H, Chen S, Zhang J, Su J, Miao Z, Huang Y, Wan C. Rapid detection of goose megrivirus using TaqMan real-time PCR technology. Poult Sci 2024; 103:103611. [PMID: 38471226 PMCID: PMC11067730 DOI: 10.1016/j.psj.2024.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to develop an efficient and accurate platform for the detection of the newly identified goose megrivirus (GoMV). To achieve this goal, we developed a TaqMan real-time PCR technology for the rapid detection and identification of GoMV. Our data showed that the established TaqMan real-time PCR assay had high sensitivity, with the lowest detection limit of 67.3 copies/μL. No positive signal can be observed from other goose origin viruses (including AIV, GPV, GoCV, GHPyV, and GoAstV), with strong specificity. The coefficients of variation of repeated intragroup and intergroup tests were all less than 1.5%, with excellent repeatability. Clinical sample investigation data from domestic Minbei White geese firstly provided evidence that GoMV can be transmitted both horizontally and vertically. In conclusion, since the TaqMan real-time PCR method has high sensitivity, specificity, and reproducibility, it can be a useful candidate tool for GoMV epidemiological investigation.
Collapse
Affiliation(s)
- Huanru Fu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyu Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinpeng Zhang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinbo Su
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongwei Miao
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
4
|
Zhang J, Fu H, Chen C, Jiang J, Lin Y, Jiang B, Lin L, Hu Q, Wan C. Rapid detection of pigeon Megrivirus using TaqMan real-time PCR technology. Poult Sci 2023; 102:103027. [PMID: 37651775 PMCID: PMC10480624 DOI: 10.1016/j.psj.2023.103027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Megriviruses have been identified from fecal samples in wild pigeons in Hong Kong (China) and Hungary. In this study, the genomic sequences of pigeon Megriviruses (PiMeVs) were downloaded from GenBank and compared. Based on the genetic comparison results, a pair of primers and TaqMan probe were designed based on the conserved sequences of the 3C gene (located in the P3 gene coding region), and a TaqMan real-time PCR method (TaqMan-qPCR) was established. The standard curve of the TaqMan-qPCR had an axial intercept of 39.74 and a slope of -3.2475 with a linear correlation (R2) of 1.00 and an efficiency of 103.2%. No cross-amplification signal was found from other pigeon viruses (such as avian influenza virus, pigeon paramyxovirus type I, pigeon torque teno virus, pigeon adenovirus, and pigeon circovirus). The limit of detection concentration was 53.6 copies/μL. The intra- and interassay results were less than 1.0% based on the reproducibility test. Furthermore, field samples investigation by the established TaqMan-qPCR method showed that positive signals can be found from racing pigeon fecal samples and embryos. Thus, our data suggested that this visible TaqMan-qPCR method is sensitive, specific, and reproducible. Moreover, we first confirmed the presence of pigeon Megrivirus infection in racing pigeon embryos, indicating that the virus may be vertically transmitted. This study provides a reference basis for further understanding the epidemiology of PiMeVs.
Collapse
Affiliation(s)
- Jinpeng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Huanru Fu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiteng Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinxiu Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yusheng Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Bin Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Lin Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qilin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Key Laboratory of Animal Genetics and Breeding/Fujian Animal Diseases Control Technology Development Centre, Fuzhou 350013, China.
| |
Collapse
|
5
|
Zhou L, Lu X, Zhao C, Zhang Y, Ning S, Zhang W. Characterization of a novel picornavirus prevalent in experimental rabbits ( Oryctolagus cuniculus). Heliyon 2023; 9:e15702. [PMID: 37159695 PMCID: PMC10163628 DOI: 10.1016/j.heliyon.2023.e15702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Here, using viral metagenomic method a novel picornavirus (named UJS-2019picorna, GenBank accession number OP821762) was discovered in fecal and blood samples of experimental rabbits (Oryctolagus cuniculus). The complete genome size of UJS-2019picorna is 7832 bp excluding the poly(A)-tail, with GC content of 44.00% and a nucleotide composition of 28.0% A, 28.0% U, 21.5% G, and 22.5% C. The viral genome has a typical picornavirus organization pattern from the 5'-3' direction: VPg-5' UTR-(L)-P1, (VP4-VP2-VP3-VP1)-P2, (2 A-2B-2C)-P3, (3 A-3B-3C-3D)-3' UTR-poly(A). The P1 region of UJS-2019picorna is related to Erbovirus with amino acid identity of 37.31%, while the P2 and P3 regions are the closest to Bopivirus with amino acid identity of 35.66%-39.53%. According to the Picornaviridae Study Group guidelines, UJS-2019picorna should be presumed to be a new genus belonging to the Picornaviridae family. Epidemiologic study revealed that this novel picornavirus was prevalent in a cohort of experimental rabbits, with prevalence rate of 23.68% (9/38) in feces and 18.4% (7/38) in blood samples. Further work is required to elucidate whether this virus is pathogenic to rabbits and whether it has influence on studies using rabbits as experimental animal.
Collapse
Affiliation(s)
- Liye Zhou
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiang Lu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunyan Zhao
- Medical School, Wuxi Taihu University, Wuxi, Jiangsu, China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Songyi Ning
- School of Medicine, Jiangsu University, Zhenjiang, China
- Corresponding author.
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
- Corresponding author.
| |
Collapse
|
6
|
Kubacki J, Qi W, Fraefel C. Differential Viral Genome Diversity of Healthy and RSS-Affected Broiler Flocks. Microorganisms 2022; 10:microorganisms10061092. [PMID: 35744610 PMCID: PMC9231120 DOI: 10.3390/microorganisms10061092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
The intestinal virus community contributes to health and disease. Runting and stunting syndrome (RSS) is associated with enteric viruses and leads to economic losses in the poultry industry. However, many viruses that potentially cause this syndrome have also been identified in healthy animals. To determine the difference in the virome of healthy and diseased broilers, samples from 11 healthy and 17 affected broiler flocks were collected at two time points and analyzed by Next-Generation Sequencing. Virus genomes of Parvoviridae, Astroviridae, Picornaviridae, Caliciviridae, Reoviridae, Adenoviridae, Coronaviridae, and Smacoviridae were identified at various days of poultry production. De novo sequence analysis revealed 288 full or partial avian virus genomes, of which 97 belonged to the novel genus Chaphamaparvovirus. This study expands the knowledge of the diversity of enteric viruses in healthy and RSS-affected broiler flocks and questions the association of some viruses with the diseases.
Collapse
Affiliation(s)
- Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence:
| | - Weihong Qi
- Functional Genomics Center Zurich, 8057 Zurich, Switzerland;
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
7
|
An Emerging Duck Egg-Reducing Syndrome Caused by a Novel Picornavirus Containing Seven Putative 2A Peptides. Viruses 2022; 14:v14050932. [PMID: 35632674 PMCID: PMC9144743 DOI: 10.3390/v14050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Since 2016, frequent outbreaks of egg-reducing syndromes caused by an unknown virus in duck farms have resulted in huge economic losses in China. The causative virus was isolated and identified as a novel species in Avihepatovirus of the picornavirus family according to the current guidelines of the International Committee on Taxonomy of Viruses (ICVT), and was named the duck egg-reducing syndrome virus (DERSV). The DERSV was most closely related to wild duck avihepatovirus-like virus (WDALV) with 64.0%, 76.8%, 77.5%, and 70.7% of amino acid identities of P1, 2C, 3C, and 3D proteins, respectively. The DERSV had a typical picornavirus-like genomic structure, but with the longest 2A region in the reported picornaviruses so far. Importantly, the clinical symptoms were successfully observed by artificially infecting ducks with DERSV, even in the contact exposed ducks, which suggested that DERSV transmitted among ducks by direct contact. The antibody levels of DERSV were correlated with the emergence of the egg-reducing syndromes in ducks in field. These results indicate that DERSV is a novel emerging picornavirus causing egg-reducing syndrome in ducks.
Collapse
|
8
|
Arhab Y, Miścicka A, Pestova TV, Hellen CUT. Horizontal gene transfer as a mechanism for the promiscuous acquisition of distinct classes of IRES by avian caliciviruses. Nucleic Acids Res 2021; 50:1052-1068. [PMID: 34928389 PMCID: PMC8789048 DOI: 10.1093/nar/gkab1243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
In contrast to members of Picornaviridae which have long 5'-untranslated regions (5'UTRs) containing internal ribosomal entry sites (IRESs) that form five distinct classes, members of Caliciviridae typically have short 5'UTRs and initiation of translation on them is mediated by interaction of the viral 5'-terminal genome-linked protein (VPg) with subunits of eIF4F rather than by an IRES. The recent description of calicivirus genomes with 500-900nt long 5'UTRs was therefore unexpected and prompted us to examine them in detail. Sequence analysis and structural modelling of the atypically long 5'UTRs of Caliciviridae sp. isolate yc-13 and six other caliciviruses suggested that they contain picornavirus-like type 2 IRESs, whereas ruddy turnstone calicivirus (RTCV) and Caliciviridae sp. isolate hwf182cal1 calicivirus contain type 4 and type 5 IRESs, respectively. The suggestion that initiation on RTCV mRNA occurs by the type 4 IRES mechanism was confirmed experimentally using in vitro reconstitution. The high sequence identity between identified calicivirus IRESs and specific picornavirus IRESs suggests a common evolutionary origin. These calicivirus IRESs occur in a single phylogenetic branch of Caliciviridae and were likely acquired by horizontal gene transfer.
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| |
Collapse
|
9
|
Hayer J, Wille M, Font A, González-Aravena M, Norder H, Malmberg M. Four novel picornaviruses detected in Magellanic Penguins (Spheniscus magellanicus) in Chile. Virology 2021; 560:116-123. [PMID: 34058706 DOI: 10.1016/j.virol.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Members of the Picornaviridae family comprise a significant burden on the poultry industry, causing diseases such as gastroenteritis and hepatitis. However, with the advent of metagenomics, a number of picornaviruses have now been revealed in apparently healthy wild birds. In this study, we identified four novel viruses belonging to the family Picornaviridae in healthy Magellanic penguins, a near threatened species. All samples were subsequently screened by RT-PCR for these new viruses, and approximately 20% of the penguins were infected with at least one of these viruses. The viruses were distantly related to members of the genera Hepatovirus, Tremovirus, Gruhelivirus and Crahelvirus. Further, they had more than 60% amino acid divergence from other picornaviruses, and therefore likely constitute novel genera. Our results demonstrate the vast undersampling of wild birds for viruses, and we expect the discovery of numerous avian viruses that are related to hepatoviruses and tremoviruses in the future.
Collapse
Affiliation(s)
- Juliette Hayer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Michelle Wille
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia; Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Alejandro Font
- nstituto Antártico Chileno, Plaza Muñoz Gamero, 1055, Punta Arenas, Chile
| | | | - Helene Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Microbiology, Gothenburg, Sweden
| | - Maja Malmberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
10
|
Near-Complete Genome Sequences of Five Siciniviruses from North America. Microbiol Resour Announc 2021; 10:10/19/e00364-21. [PMID: 33986098 PMCID: PMC8142584 DOI: 10.1128/mra.00364-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Here, we report near-complete genome sequences of Sicinivirus from U.S. poultry flocks in 2003 to 2005 and Mexico in 2019. They show highest nucleotide identity (84.5 to 85.5%) with other members of the Sicinivirus genus. These sequences update knowledge on diversity and contribute to a better understanding of the molecular epidemiology of Sicinivirus. Here, we report near-complete genome sequences of sicinivirus from U.S. poultry flocks in 2003 to 2005 and Mexico in 2019. They show highest nucleotide identity (84.5 to 85.5%) with other members of the Sicinivirus genus. These sequences update knowledge on diversity and contribute to a better understanding of the molecular epidemiology of sicinivirus.
Collapse
|
11
|
László Z, Pankovics P, Reuter G, Cságola A, Bálint Á, Albert M, Boros Á. Multiple Types of Novel Enteric Bopiviruses ( Picornaviridae) with the Possibility of Interspecies Transmission Identified from Cloven-Hoofed Domestic Livestock (Ovine, Caprine and Bovine) in Hungary. Viruses 2021; 13:v13010066. [PMID: 33418939 PMCID: PMC7825084 DOI: 10.3390/v13010066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/27/2023] Open
Abstract
Most picornaviruses of the family Picornaviridae are relatively well known, but there are certain “neglected” genera like Bopivirus, containing a single uncharacterised sequence (bopivirus A1, KM589358) with very limited background information. In this study, three novel picornaviruses provisionally called ovipi-, gopi- and bopivirus/Hun (MW298057-MW298059) from enteric samples of asymptomatic ovine, caprine and bovine respectively, were determined using RT-PCR and dye-terminator sequencing techniques. These monophyletic viruses share the same type II-like IRES, NPGP-type 2A, similar genome layout (4-3-4) and cre-localisations. Culture attempts of the study viruses, using six different cell lines, yielded no evidence of viral growth in vitro. Genomic and phylogenetic analyses show that bopivirus/Hun of bovine belongs to the species Bopivirus A, while the closely related ovine-origin ovipi- and caprine-origin gopivirus could belong to a novel species “Bopivirus B” in the genus Bopivirus. Epidemiological investigation of N = 269 faecal samples of livestock (ovine, caprine, bovine, swine and rabbit) from different farms in Hungary showed that bopiviruses were most prevalent among <12-month-old ovine, caprine and bovine, but undetectable in swine and rabbit. VP1 capsid-based phylogenetic analyses revealed the presence of multiple lineages/genotypes, including closely related ovine/caprine strains, suggesting the possibility of ovine–caprine interspecies transmission of certain bopiviruses.
Collapse
Affiliation(s)
- Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
| | - Attila Cságola
- Ceva Phylaxia Ltd., H-1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Ádám Bálint
- Department of Virology, National Food Chain Safety Office Veterinary Diagnostic Directorate, H-1143 Budapest, Hungary;
| | - Mihály Albert
- Ceva Phylaxia Ltd., H-1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
- Correspondence: ; Tel.: +36-72-536-251
| |
Collapse
|
12
|
Occurrence and Role of Selected RNA-Viruses as Potential Causative Agents of Watery Droppings in Pigeons. Pathogens 2020; 9:pathogens9121025. [PMID: 33291258 PMCID: PMC7762127 DOI: 10.3390/pathogens9121025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
The diseases with watery droppings (diarrhea and/or polyuria) can be considered some of the most severe health problems in domestic pigeons of various ages. Although they do not always lead to bird death, they can contribute to poor weight gains and hindered development of young pigeons and, potentially, to poor racing results in sports birds. The gastrointestinal tract disorders of pigeons may be of various etiology, but some of the causative agents are viral infections. This review article provides information collected from scientific reports on RNA-viruses belonging to the Astroviridae, Picornaviridae, and Coronaviridae families; the Avulavirinae subfamily; and the Rotavirus genus that might be implicated in such health problems. It presents a brief characterization, and possible interspecies transmission of these viruses. We believe that this review article will help clinical signs of infection, isolation methods, occurrence in pigeons and poultry, systemize and summarize knowledge on pigeon enteropathogenic viruses and raise awareness of the importance of disease control in pigeons.
Collapse
|
13
|
Metagenomic characterisation of avian parvoviruses and picornaviruses from Australian wild ducks. Sci Rep 2020; 10:12800. [PMID: 32733035 PMCID: PMC7393117 DOI: 10.1038/s41598-020-69557-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Ducks can shed and disseminate viruses and thus play a role in cross-species transmission. In the current study, we detected and characterised various avian parvoviruses and picornaviruses from wild Pacific black ducks, Chestnut teals, Grey teals and Wood ducks sampled at multiple time points from a single location using metagenomics. We characterised 46 different avian parvoviruses belonging to three different genera Dependoparvovirus, Aveparvovirus and Chaphamaparvovirus, and 11 different avian picornaviruses tentatively belonging to four different genera Sicinivirus, Anativirus, Megrivirus and Aalivirus. Most of these viruses were genetically different from other currently known viruses from the NCBI dataset. The study showed that the abundance and number of avian picornaviruses and parvoviruses varied considerably throughout the year, with the high number of virus reads in some of the duck samples highly suggestive of an active infection at the time of sampling. The detection and characterisation of several parvoviruses and picornaviruses from the individual duck samples also suggests co-infection, which may lead to the emergence of novel viruses through possible recombination. Therefore, as new and emerging diseases evolve, it is relevant to explore and monitor potential animal reservoirs in their natural habitat.
Collapse
|
14
|
Kaszab E, Doszpoly A, Lanave G, Verma A, Bányai K, Malik YS, Marton S. Metagenomics revealing new virus species in farm and pet animals and aquaculture. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149329 DOI: 10.1016/b978-0-12-816352-8.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Viral metagenomics is slowly taking over the traditional and widely used molecular techniques for the investigation of pathogenic viruses responsible for illness and inflicting great economic burden on the farm animal industry. Owing to the continued improvements in sequencing technologies and the dramatic reduction of per base costs of sequencing the use of next generation sequencing have been key factors in this progress. Discoveries linked to viral metagenomics are expected to be beneficial to the field of veterinary medicine starting from the development of better diagnostic assays to the design of new subunit vaccines with minimal investments. With these achievements the research has taken a giant leap even toward the better healthcare of animals and, as a result, the animal sector could be growing at an unprecedented pace.
Collapse
|
15
|
de Souza WM, Fumagalli MJ, Martin MC, de Araujo J, Orsi MA, Sanfilippo LF, Modha S, Durigon EL, Proença-Módena JL, Arns CW, Murcia PR, Figueiredo LTM. Pingu virus: A new picornavirus in penguins from Antarctica. Virus Evol 2019; 5:vez047. [PMID: 31850147 PMCID: PMC6908804 DOI: 10.1093/ve/vez047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Picornaviridae family comprises single-stranded, positive-sense RNA viruses distributed into forty-seven genera. Picornaviruses have a broad host range and geographic distribution in all continents. In this study, we applied a high-throughput sequencing approach to examine the presence of picornaviruses in penguins from King George Island, Antarctica. We discovered and characterized a novel picornavirus from cloacal swab samples of gentoo penguins (Pygoscelis papua), which we tentatively named Pingu virus. Also, using RT-PCR we detected this virus in 12.9 per cent of cloacal swabs derived from P. papua, but not in samples from adélie penguins (Pygoscelis adeliae) or chinstrap penguins (Pygoscelis antarcticus). Attempts to isolate the virus in a chicken cell line and in embryonated chicken eggs were unsuccessful. Our results expand the viral diversity, host range, and geographical distribution of the Picornaviridae.
Collapse
Affiliation(s)
- William Marciel de Souza
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| | - Marcílio Jorge Fumagalli
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| | - Matheus Cavalheiro Martin
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Jansen de Araujo
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - Maria Angela Orsi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Luiz Francisco Sanfilippo
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - José Luiz Proença-Módena
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Clarice Weis Arns
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| |
Collapse
|
16
|
Boros Á, Orlovácz K, Pankovics P, Szekeres S, Földvári G, Fahsbender E, Delwart E, Reuter G. Diverse picornaviruses are prevalent among free-living and laboratory rats (Rattus norvegicus) in Hungary and can cause disseminated infections. INFECTION GENETICS AND EVOLUTION 2019; 75:103988. [PMID: 31377399 DOI: 10.1016/j.meegid.2019.103988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
In this study, the full length genomes of three phylogenetically distant picornaviruses (family Picornaviridae) belonging to the genus Rosavirus (rat08/rRoB/HUN, MN116648), Kobuvirus (rat08/rAiA/HUN, MN116647), and Cardiovirus (rat08/rCaB/HUN, MN116646) were obtained from a single faecal sample of a free-living Norway rat (Rattus norvegicus) in Hungary using viral metagenomics and RT-PCR/Sanger sequencing. The acquired complete genomes were in silico analyzed in detail revealing the presence of a second minor open reading frame encoding an alternative Leader peptide (L*) in rat08/rCaB/HUN and a ca. 222 nt-long sequence repeat with compact secondary RNA structure in the 3' UTR of rat08/rRoB/HUN. The studied rat picornaviruses were frequently detectable by RT-PCR with relatively high viral loads ranged between 8.99E+02 and 1.29E+06 copies/ml in rat faecal samples collected from five geographically distant locations throughout Hungary. The VP1 sequence-based phylogenetic analyses show the presence of multiple, mostly location-specific lineages for all three picornaviruses. Rat rosavirus and rat cardiovirus were identified in spleen while rat cardiovirus was also detected in liver, muscle and kidney samples with variable copy numbers (6.42E+01-1.90E+05 copies/μg total RNA) suggesting extra-intestinal dissemination. Both viruses were also prevalent (70.0% and 18.2%) among two populations of laboratory rats ("Wistar-type" and "hooded-type") held in different, isolated laboratory animal units.
Collapse
Affiliation(s)
- Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs Pécs, Hungary
| | - Katalin Orlovácz
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs Pécs, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs Pécs, Hungary
| | - Sándor Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Gábor Földvári
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary; Evolutionary Systems Research Group MTA Centre for Ecological Research, Tihany, Hungary
| | | | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs Pécs, Hungary.
| |
Collapse
|
17
|
Sun D, Wang M, Wen X, Mao S, Cheng A, Jia R, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao X, Zhang S, Chen X, Liu Y, Yu Y, Zhang L. Biochemical characterization of recombinant Avihepatovirus 3C protease and its localization. Virol J 2019; 16:54. [PMID: 31036013 PMCID: PMC6489322 DOI: 10.1186/s12985-019-1155-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The picornaviral 3C protease mediates viral polyprotein maturation and multiple cleavages of host proteins to modulate viral translation and transcription. The 3C protease has been regarded as a valid target due to its structural similarity among different picornaviruses and minimal sequence similarity with host proteins; therefore, the development of potent inhibitors against the 3C protease as an antiviral drug is ongoing. Duck hepatitis A virus (DHAV) belongs to the Picornavidea family and is a major threat to the poultry industry. To date, little is known about the roles of the DHAV 3C protease plays during infection. METHODS In this study, we compared the full-length DHAV 3C protein sequence with other 3C sequences to obtain an alignment for the construction of a phylogenetic tree. Then, we expressed and purified recombinant DHAV 3C protease in the BL21 expression system using nickel-NTA affinity chromatography. The optimization of the cleavage assay conditions and the kinetic analysis for DHAV 3C protease were done by in vitro cleavage assays with a fluorogenic peptide respectively. The inhibitory activity of rupintrivir against the DHAV 3C protease was further evaluated. The localization of the 3C protease in infected and transfected cells was determined using immunofluorescence and confocal microscopy. RESULTS Under different expression conditions, the 3C protease was found to be highly expressed after induction with 1 mM IPTG at 16 °C for 10 h. We synthesized a fluorogenic peptide derived from the cleavage site of the DHAV polyprotein and evaluated the protease activity of the DHAV 3C protease for the first time. We used fluorimetric based kinetic analysis to determine kinetic parameters, and Vmax and Km values were determined to be 16.52 nmol/min and 50.78 μM, respectively. Rupintrivir was found to exhibit inhibitory activity against the DHAV 3C protease. Using polyclonal antibody and an indirect immunofluorescence microscopy assay (IFA), it was determined that the DHAV 3C protease was found in the nucleus during infection. In addition, the DHAV 3C protease can enter into the nucleus without the cooperation of viral proteins. CONCLUSIONS This is the first study to examine the activity of the DHAV 3C protease, and the activity of the DHAV 3C protease is temperature-, pH- and NaCl concentration- dependent. The DHAV 3C protease localizes throughout DHAV-infected cells and can enter into the nucleus in the absence of other viral proteins. The kinetic analysis was calculated, and the Vmax and Km values were 16.52 nmol/min and 50.78 μM, respectively, using the Lineweaver-Burk plot.
Collapse
Affiliation(s)
- Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| |
Collapse
|
18
|
Genomic Sequence of a Megrivirus Strain Identified in Laying Hens in Brazil. Microbiol Resour Announc 2019; 8:MRA01438-18. [PMID: 30701237 PMCID: PMC6346186 DOI: 10.1128/mra.01438-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/18/2018] [Indexed: 12/05/2022] Open
Abstract
A new strain of chicken megrivirus was identified in fecal samples of layer chickens in a commercial flock in Minas Gerais, Brazil. It is most closely related to the family Picornaviridae, genus Megrivirus, species Melegrivirus A, and has an overall nucleotide identity of up to 85.1% with other megrivirus strains. A new strain of chicken megrivirus was identified in fecal samples of layer chickens in a commercial flock in Minas Gerais, Brazil. It is most closely related to the family Picornaviridae, genus Megrivirus, species Melegrivirus A, and has an overall nucleotide identity of up to 85.1% with other megrivirus strains.
Collapse
|
19
|
Torre DDL, Nuñez LF, Parra SHS, Astolfi-Ferreira CS, Ferreira AJP. Detection by Rt-Pcr and Molecular Characterization of Tremovirus A Obtained from Clinical Cases of Avian Encephalomyelitis (AE) Outbreaks in Brazil. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2018-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
21
|
Pankovics P, Boros Á, Phan TG, Delwart E, Reuter G. A novel passerivirus (family Picornaviridae) in an outbreak of enteritis with high mortality in estrildid finches (Uraeginthus sp.). Arch Virol 2018; 163:1063-1071. [PMID: 29322272 DOI: 10.1007/s00705-017-3699-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/17/2017] [Indexed: 11/30/2022]
Abstract
An enteric outbreak with high mortality (34/52, 65.4%) was recorded in 2014 in home-reared estrildid finches (Estrildidae) in Hungary. A novel passerivirus was identified in a diseased violet-eared waxbill using viral metagenomics and confirmed by RT-(q)PCR. The complete genome of finch picornavirus strain waxbill/DB01/HUN/2014 (MF977321) showed the highest amino acid sequence identity of 38.9%, 61.6%, 69.6% in P1cap, 2Chel and 3CproDpol, respectively, to passerivirus A1 (GU182406). A high viral load (6.58 × 1010 genomic copies/ml) was measured in a cloacal specimen and in the tissues (spinal cord, lung, and the intestines) of two additional affected finches. In addition to intestinal symptoms (diarrhoea), the presence of extra-intestinal virus suggests a generalized infection in this fatal disease, for which the passerivirus might be a causative agent.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA.,University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary. .,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.
| |
Collapse
|
22
|
Boros Á, Pankovics P, Simmonds P, Kiss T, Phan TG, Delwart E, Reuter G. Genomic analysis of a novel picornavirus from a migratory waterfowl, greater white-fronted goose (Anser albifrons). Arch Virol 2017; 163:1087-1090. [PMID: 29288473 DOI: 10.1007/s00705-017-3696-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 11/24/2022]
Abstract
The complete genome of goose picornavirus 1 (GPV-1) strain goose/NLSZK2/HUN/2013 (MF358731) was determined by RT-PCR and next-generation sequencing from a cloacal sample of a migratory waterfowl, greater white-fronted goose (Anser albifrons) in Hungary. The genome of GPV-1 shows an L-3-3-4 organization pattern with a 5'-terminal origin of replication (ORI) region, a type-IV IRES, and an Hbox/NC-type 2A protein. This virus showed the highest overall sequence identity to the members of the genus Kobuvirus, although the phylogenetic position of GPV-1 is different in the analyzed P1, 2C and 3CD phylogenetic trees, which further increases the diversity of known avian picornaviruses.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., H-7624, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., H-7624, Pécs, Hungary
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - Tamás Kiss
- Hungarian Ornithological and Nature Conservation Society, Budapest, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA.,University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA.,University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary. .,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., H-7624, Pécs, Hungary.
| |
Collapse
|
23
|
Pankovics P, Boros Á, Mátics R, Kapusinszky B, Delwart E, Reuter G. Ljungan/Sebokele-like picornavirus in birds of prey, common kestrel (Falco tinnunculus) and red-footed falcon (F. vespertinus). INFECTION GENETICS AND EVOLUTION 2017; 55:14-19. [PMID: 28843546 DOI: 10.1016/j.meegid.2017.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/11/2023]
Abstract
Ljungan and Sebokele viruses are thought to be rodent-borne (picorna)viruses in the genus Parechovirus. Using random amplification and next generation sequencing method a novel Ljungan/Sebokele-like picornavirus was identified in birds of prey. Viral RNA was detected in total of 1 (9%) of the 11 and 2 (28.6%) of the 7 faecal samples from common kestrels and red-footed falcons in Hungary, respectively. High faecal viral RNA load (4.77×106 genomic copies/ml) measured by qPCR. The complete genome of picornavirus strain falcon/HA18_080/2014/HUN (KY645497) is 7964-nucleotide (nt) long including a 867-nt 5'end and a 101-nt 3'end (excluding the poly(A)-tail). Falcon/HA18_080/2014/HUN has type-II IRES related to hunnivirus IRES, encodes a polyprotein lacking a leader protein, a VP0 maturation cleavage site and it predicted to encode three 2A proteins (2A1NPG↓P, 2A2NPG↓P and 2A3H-Box/NC), two of them end with 'ribosome-skipping' sites (DxExNPG↓P). Sequence analyses indicated that the ORF1 (6996nt) polyprotein (2331 amino acid - aa) of falcon/HA18_080/2014/HUN shares the highest aa identity, 59% and 57%, to the corresponding polyproteins of Ljungan and Sebokele viruses. This study reports the identification and complete genome characterization of a novel Ljungan/Sebokele-like picornavirus in faeces of birds of prey which suggests that the genetic diversity and the potential host species spectrum of Ljungan/Sebokele-like viruses in genus Parechovirus are wider than previously thought.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Pécs, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Pécs, Hungary
| | - Róbert Mátics
- Department of Pathophysiology, University of Pécs Medical Center, Hungary; Hungarian Nature Research Society, (HuNaReS), Ajka, Hungary
| | - Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Pécs, Hungary.
| |
Collapse
|
24
|
Yang X, Cheng A, Wang M, Jia R, Sun K, Pan K, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao XX, Chen X. Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins. Front Microbiol 2017; 8:1373. [PMID: 28785248 PMCID: PMC5519566 DOI: 10.3389/fmicb.2017.01373] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/06/2017] [Indexed: 11/27/2022] Open
Abstract
Among the few non-structural proteins encoded by the picornaviral genome, the 2A protein is particularly special, irrespective of structure or function. During the evolution of the Picornaviridae family, the 2A protein has been highly non-conserved. We believe that the 2A protein in this family can be classified into at least five distinct types according to previous studies. These five types are (A) chymotrypsin-like 2A, (B) Parechovirus-like 2A, (C) hepatitis-A-virus-like 2A, (D) Aphthovirus-like 2A, and (E) 2A sequence of the genus Cardiovirus. We carried out a phylogenetic analysis and found that there was almost no homology between each type. Subsequently, we aligned the sequences within each type and found that the functional motifs in each type are highly conserved. These different motifs perform different functions. Therefore, in this review, we introduce the structures and functions of these five types of 2As separately. Based on the structures and functions, we provide suggestions to combat picornaviruses. The complexity and diversity of the 2A protein has caused great difficulties in functional and antiviral research. In this review, researchers can find useful information on the 2A protein and thus conduct improved antiviral research.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
25
|
Boros Á, Pankovics P, Mátics R, Adonyi Á, Bolba N, Phan TG, Delwart E, Reuter G. Genome characterization of a novel megrivirus-related avian picornavirus from a carnivorous wild bird, western marsh harrier (Circus aeruginosus). Arch Virol 2017; 162:2781-2789. [PMID: 28500443 DOI: 10.1007/s00705-017-3403-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/04/2017] [Indexed: 11/29/2022]
Abstract
In this study, the complete genome of a novel picornavirus called harrier picornavirus 1 (HaPV-1) strain harrier/MR-01/HUN/2014 (KY488458) was sequenced and analysed from a cloacal sample of a threatened, carnivorous wild bird, western marsh harrier (Circus aeruginosus). HaPV-1 was detectable from 2 of the 3 samples from harriers. HaPV-1 is phylogenetically related to megriviruses (genus Megrivirus) from domestic chicken, turkey and duck, showing a similar genome organization pattern; it also has an avian picornavirus-like "Unit A" motif in the 3' UTR. Unlike the type-IV internal ribosomal entry site (IRES) of megriviruses, HaPV-1 is predicted to contain a type-II-like IRES, suggesting modular exchange of IRES elements between picornavirus genomes.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Róbert Mátics
- Hungarian Nature Research Society (HuNaReS), Ajka, Hungary.,Department of Pathophysiology, University of Pécs Medical Center, Pécs, Hungary
| | - Ádám Adonyi
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Nóra Bolba
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA.,University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA.,University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary. .,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.
| |
Collapse
|
26
|
Pankovics P, Boros Á, Tóth Z, Phan TG, Delwart E, Reuter G. Genetic characterization of a second novel picornavirus from an amphibian host, smooth newt (Lissotriton vulgaris). Arch Virol 2016; 162:1043-1050. [PMID: 28005212 DOI: 10.1007/s00705-016-3198-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
In this study, a novel picornavirus was identified in faecal samples from smooth newts (Lissotriton vulgaris). The complete genome of picornavirus strain newt/II-5-Pilis/2014/HUN (KX463670) is 7755 nt long with type-IV IRES and has 39.6% aa sequence identity in the protein P1 to the corresponding protein of bat picornavirus (KJ641686, unassigned) and 42.7% and 53.5% aa sequence identity in the 2C and 3CD protein, respectively, to oscivirus (GU182410, genus Oscivirus). Interestingly, the L-protein of newt/II-5-Pilis/2014/HUN has conserved aa motifs that are similar to those found in phosphatase-1 catalytic (PP1C) subunit binding region (pfam10488) proteins. This second amphibian-origin picornavirus could represent a novel species and could be a founding member of a potential novel picornavirus genus.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
| | - Zoltán Tóth
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary.
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary.
| |
Collapse
|
27
|
Reuter G, Pankovics P, Boros Á. Saliviruses-the first knowledge about a newly discovered human picornavirus. Rev Med Virol 2016; 27. [PMID: 27641729 DOI: 10.1002/rmv.1904] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/08/2023]
Abstract
The salivirus, first discovered in the year 2009, is a member of the large and growing family Picornaviridae. At present, the genus Salivirus contains 1 species Salivirus A and 2 genotypes, Salivirus A1 and Salivirus A2. Salivirus has been identified in humans and chimpanzees and may cause acute gastroenteritis in humans, having been detected in 0% to 8.7% of fecal samples collected from gastroenteritis in different human populations. Salivirus is ubiquitous in wastewater of human origin and river water specimens worldwide and represents a potential indicator human RNA virus for monitoring of environmental samples. This review summarizes the current knowledge on saliviruses including discovery, taxonomy, genome structure, and genetic diversity; covers all aspects of infection including epidemiology, molecular epidemiology, clinical feature, host species, environmental characteristics, and laboratory diagnosis; and gives a summary of possible future perspectives.
Collapse
Affiliation(s)
- Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| |
Collapse
|
28
|
Asnani M, Pestova TV, Hellen CUT. PCBP2 enables the cadicivirus IRES to exploit the function of a conserved GRNA tetraloop to enhance ribosomal initiation complex formation. Nucleic Acids Res 2016; 44:9902-9917. [PMID: 27387282 PMCID: PMC5175331 DOI: 10.1093/nar/gkw609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
Abstract
The cadicivirus IRES diverges structurally from canonical Type 1 IRESs (e.g. poliovirus) but nevertheless also contains an essential GNRA tetraloop in a subdomain (d10c) that is homologous to poliovirus dIVc. In addition to canonical initiation factors, the canonical Type 1 and divergent cadicivirus IRESs require the same IRES trans-acting factor, poly(C)-binding protein 2 (PCBP2). PCBP2 has three KH domains and binds poliovirus IRES domain dIV in the vicinity of the tetraloop. How PCBP2 binds the cadicivirus IRES, and the roles of PCBP2 and the tetraloop in Type 1 IRES function are unknown. Here, directed hydroxyl radical probing showed that KH1 also binds near the cadicivirus tetraloop. KH2 and KH3 bind adjacently to an IRES subdomain (d10b) that is unrelated to dIV, with KH3 in an inverted orientation. KH3 is critical for PCBP2's binding to this IRES whereas KH1 is essential for PCBP2's function in promoting initiation. PCBP2 enforced the wild-type structure of d10c when it contained minor destabilizing substitutions, exposing the tetraloop. Strikingly, PCBP2 enhanced initiation on mutant IRESs that retained consensus GNRA tetraloops, whereas mutants with divergent sequences did not respond to PCBP2. These studies show that PCBP2 enables the IRES to exploit the GNRA tetraloop to enhance initiation.
Collapse
Affiliation(s)
- Mukta Asnani
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| |
Collapse
|
29
|
Day JM, Zsak L. Molecular Characterization of Enteric Picornaviruses in Archived Turkey and Chicken Samples from the United States. Avian Dis 2016; 60:500-5. [PMID: 27309295 DOI: 10.1637/11289-092415-resnote] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent metagenomic analyses of the enteric viromes in turkeys and chickens have revealed complex viral communities comprised of multiple viral families. Of particular significance are the novel avian picobirnaviruses (family Picobirnaviridae), multiple genera of tailed phages (family Siphoviridae), and undescribed avian enteric picornaviruses (family Picornaviridae). In addition to these largely undescribed-and therefore relatively poorly understood-poultry enteric viral families, these metagenomic analyses have also revealed the presence of well-known groups of enteric viruses such as the chicken and turkey astroviruses (family Astroviridae) and the avian rotaviruses and reoviruses (family Reoviridae). The order Picornavirales is a group of viruses in flux, particularly among the avian picornaviruses, since several new genera have been described recently based upon community analysis of enteric viromes from poultry and other avian species worldwide. Our previous investigation of the turkey enteric picornaviruses suggests the avian enteric picornaviruses may contribute to the enteric disease syndromes and performance problems often observed in turkeys in the Southeastern United States. This report describes our recent phylogenetic analysis of turkey and chicken enteric samples archived at the Southeast Poultry Research Laboratory from 2004 to present and is a first step in placing these novel avian picornaviruses within the larger Picornaviridae family.
Collapse
Affiliation(s)
- J Michael Day
- A USDA/ARS, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605
| | - Laszlo Zsak
- A USDA/ARS, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605
| |
Collapse
|
30
|
A cluster of salivirus A1 (Picornaviridae) infections in newborn babies with acute gastroenteritis in a neonatal hospital unit in Hungary. Arch Virol 2016; 161:1671-7. [PMID: 27001303 DOI: 10.1007/s00705-016-2824-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Salivirus (family Picornaviridae) may be associated with acute gastroenteritis in humans, but there have been no reports of salivirus outbreaks. Salivirus A1 infection with faecal virus concentrations of 2.1-2.6 × 10(9)/g were identified retrospectively in newborn babies, between the ages of 1.5 and 5 days, with apparent clinical symptoms of diarrhea (100 %), fever (40 %), vomiting (40 %), and loss of appetite (40 %) in a neonatal hospital unit in Hungary in July 2013. The complete genome sequence of the salivirus (including the 5'-terminal end) was determined. Salivirus mono-infection may be associated with gastroenteritis in babies who are a few days old. Salivirus testing should be done in public health laboratories in gastroenteritis outbreaks with unknown etiology.
Collapse
|
31
|
A diarrheic chicken simultaneously co-infected with multiple picornaviruses: Complete genome analysis of avian picornaviruses representing up to six genera. Virology 2016; 489:63-74. [DOI: 10.1016/j.virol.2015.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 12/23/2022]
|
32
|
Haryanto A, Ermawati R, Wati V, Irianingsih SH, Wijayanti N. Analysis of viral protein-2 encoding gene of avian encephalomyelitis virus from field specimens in Central Java region, Indonesia. Vet World 2016; 9:25-31. [PMID: 27051180 PMCID: PMC4819345 DOI: 10.14202/vetworld.2016.25-31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022] Open
Abstract
Aim: Avian encephalomyelitis (AE) is a viral disease which can infect various types of poultry, especially chicken. In Indonesia, the incidence of AE infection in chicken has been reported since 2009, the AE incidence tends to increase from year to year. The objective of this study was to analyze viral protein 2 (VP-2) encoding gene of AE virus (AEV) from various species of birds in field specimen by reverse transcription polymerase chain reaction (RT-PCR) amplification using specific nucleotides primer for confirmation of AE diagnosis. Materials and Methods: A total of 13 AEV samples are isolated from various species of poultry which are serologically diagnosed infected by AEV from some areas in central Java, Indonesia. Research stage consists of virus samples collection from field specimens, extraction of AEV RNA, amplification of VP-2 protein encoding gene by RT-PCR, separation of RT-PCR product by agarose gel electrophoresis, DNA sequencing and data analysis. Results: Amplification products of the VP-2 encoding gene of AEV by RT-PCR methods of various types of poultry from field specimens showed a positive results on sample code 499/4/12 which generated DNA fragment in the size of 619 bp. Sensitivity test of RT-PCR amplification showed that the minimum concentration of RNA template is 127.75 ng/µl. The multiple alignments of DNA sequencing product indicated that positive sample with code 499/4/12 has 92% nucleotide homology compared with AEV with accession number AV1775/07 and 85% nucleotide homology with accession number ZCHP2/0912695 from Genbank database. Analysis of VP-2 gene sequence showed that it found 46 nucleotides difference between isolate 499/4/12 compared with accession number AV1775/07 and 93 nucleotides different with accession number ZCHP2/0912695. Conclusions: Analyses of the VP-2 encoding gene of AEV with RT-PCR method from 13 samples from field specimen generated the DNA fragment in the size of 619 bp from one sample with sample code 499/4/12. The sensitivity rate of RT-PCR is to amplify the VP-2 gene of AEV until 127.75 ng/µl of RNA template. Compared to Genbank databases, isolate 499/4/12 has 85% and 92% nucleotide homology.
Collapse
Affiliation(s)
- Aris Haryanto
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ratna Ermawati
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Vera Wati
- Division of Biotechnology, Animal Disease Investigation Center Wates, Daerah Istimewa Yogyakarta Province, Indonesia
| | - Sri Handayani Irianingsih
- Division of Virology, Animal Disease Investigation Center Wates, Daerah Istimewa Yogyakarta Province, Indonesia
| | - Nastiti Wijayanti
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
33
|
Pankovics P, Boros Á, Bíró H, Horváth KB, Phan TG, Delwart E, Reuter G. Novel picornavirus in domestic rabbits (Oryctolagus cuniculus var. domestica). INFECTION GENETICS AND EVOLUTION 2015; 37:117-22. [PMID: 26588888 PMCID: PMC7172602 DOI: 10.1016/j.meegid.2015.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/20/2015] [Accepted: 11/14/2015] [Indexed: 12/12/2022]
Abstract
Picornaviruses (family Picornaviridae) are small, non-enveloped viruses with positive sense, single-stranded RNA genomes. The numbers of the novel picornavirus species and genera are continuously increasing. Picornaviruses infect numerous vertebrate species from fish to mammals, but have not been identified in a member of the Lagomorpha order (pikas, hares and rabbits). In this study, a novel picornavirus was identified in 16 (28.6%) out of 56 faecal samples collected from clinically healthy rabbits (Oryctolagus cuniculus var. domestica) in two (one commercial and one family farms) of four rabbit farms in Hungary. The 8364 nucleotide (2486 amino acid) long complete genome sequence of strain Rabbit01/2013/HUN (KT325852) has typical picornavirus genome organization with type-V IRES at the 5'UTR, encodes a leader (L) and a single 2A(H-box/NC) proteins, contains a hepatitis-A-virus-like cis-acting replication element (CRE) in the 2A, but it does not contain the sequence forming a "barbell-like" secondary structure in the 3'UTR. Rabbit01/2013/HUN has 52.9%, 52% and 57.2% amino acid identity to corresponding proteins of species Aichivirus A (genus Kobuvirus): to murine Kobuvirus (JF755427) in P1, to canine Kobuvirus (JN387133) in P2 and to feline Kobuvirus (KF831027) in P3, respectively. The sequence and phylogenetic analysis indicated that Rabbit01/2013/HUN represents a novel picornavirus species possibly in genus Kobuvirus. This is the first report of detection of picornavirus in rabbit. Further study is needed to clarify whether this novel picornavirus plays a part in any diseases in domestic or wild rabbits.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Katalin Barbara Horváth
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.
| |
Collapse
|
34
|
Reuter G, Boros Á, Tóth Z, Gia Phan T, Delwart E, Pankovics P. A highly divergent picornavirus in an amphibian, the smooth newt (Lissotriton vulgaris). J Gen Virol 2015; 96:2607-2613. [PMID: 26018961 DOI: 10.1099/vir.0.000198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetically highly divergent picornavirus (Newt/2013/HUN, KP770140) was detected using viral metagenomics in faecal samples of free-living smooth newts (Lissotriton vulgaris). Newt picornavirus was identified by reverse transcription-polymerase chain reaction (RT-PCR) in six (25 %) of the 24 samples originating from individuals caught in two out of the six investigated natural ponds in Hungary. The first picornavirus in amphibians expands the host range of members of the Picornaviridae, and opens a new research field in picornavirus evolution in lower vertebrates. Newt picornavirus represents a novel species in a novel genus within the family Picornaviridae, provisionally named genus Ampivirus (amphibian picornavirus).
Collapse
Affiliation(s)
- Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,University of California, San Francisco, CA, USA.,Blood Systems Research Institute, San Francisco, CA, USA
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Zoltán Tóth
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Hungarian Academy of Science, Budapest, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA.,University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA.,University of California, San Francisco, CA, USA
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| |
Collapse
|
35
|
Asnani M, Kumar P, Hellen CUT. Widespread distribution and structural diversity of Type IV IRESs in members of Picornaviridae. Virology 2015; 478:61-74. [PMID: 25726971 DOI: 10.1016/j.virol.2015.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 01/13/2023]
Abstract
Picornavirus genomes contain internal ribosomal entry sites (IRESs) that promote end-independent translation initiation. Five structural classes of picornavirus IRES have been identified, but numerous IRESs remain unclassified. Here, previously unrecognized Type IV IRESs were identified in members of three proposed picornavirus genera (Limnipivirus, Pasivirus, Rafivirus) and four recognized genera (Kobuvirus, Megrivirus, Sapelovirus, Parechovirus). These IRESs are ~230-420 nucleotides long, reflecting heterogeneity outside a common structural core. Closer analysis yielded insights into evolutionary processes that have shaped contemporary IRESs. The presence of related IRESs in diverse genera supports the hypothesis that they are heritable genetic elements that spread by horizontal gene transfer. Recombination likely also accounts for the exchange of some peripheral subdomains, suggesting that IRES evolution involves incremental addition of elements to a pre-existing core. Nucleotide conservation is concentrated in ribosome-binding sites, and at the junction of helical domains, likely to ensure orientation of subdomains in an active conformation.
Collapse
Affiliation(s)
- Mukta Asnani
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Parimal Kumar
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
36
|
Kempf BJ, Barton DJ. Picornavirus RNA polyadenylation by 3D(pol), the viral RNA-dependent RNA polymerase. Virus Res 2015; 206:3-11. [PMID: 25559071 PMCID: PMC4801031 DOI: 10.1016/j.virusres.2014.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/24/2014] [Indexed: 11/06/2022]
Abstract
Picornaviral RdRPs are responsible for the polyadenylation of viral RNA. Reiterative transcription mechanisms occur during replication of poly(A) tails. Conserved RdRP structures influence the size of poly(A) tails. Common features of picornavirus RdRPs and telomerase reverse transcriptase. Poly(A) tails are a telomere of picornavirus RNA genomes.
Poly(A) tails are functionally important features of all picornavirus RNA genomes. Some viruses have genomes with relatively short poly(A) tails (encephalomyocarditis virus) whereas others have genomes with longer poly(A) tails (polioviruses and rhinoviruses). Here we review the polyadenylation of picornavirus RNA as it relates to the structure and function of 3Dpol. Poliovirus 3Dpol uses template-dependent reiterative transcription mechanisms as it replicates the poly(A) tails of viral RNA (Steil et al., 2010). These mechanisms are analogous to those involved in the polyadenylation of vesicular stomatitis virus and influenza virus mRNAs. 3Dpol residues intimately associated with viral RNA templates and products regulate the size of poly(A) tails in viral RNA (Kempf et al., 2013). Consistent with their ancient evolutionary origins, picornavirus 3Dpol and telomerase reverse transcriptase (TERT) share structural and functional features. Structurally, both 3Dpol and TERT assume a “right-hand” conformation with thumb, palm and fingers domains encircling templates and products. Functionally, both 3Dpol and TERT use template-dependent reiterative transcription mechanisms to synthesize repetitive sequences: poly(A) tails in the case of picornavirus RNA genomes and DNA telomeres in the case of eukaryotic chromosomes. Thus, picornaviruses and their eukaryotic hosts (humans and animals) maintain the 3′ ends of their respective genomes via evolutionarily related mechanisms.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|