1
|
Bonnet PL, Hoffmann CV, Le Nan N, Bellamy L, Hoarau G, Flori P, Demar M, Argy N, Morio F, Le Gal S, Nevez G. Atovaquone exposure and Pneumocystis jirovecii cytochrome b mutations: French data and review of the literature. Med Mycol 2023; 61:myad095. [PMID: 37656874 DOI: 10.1093/mmy/myad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
Pneumocystis jirovecii is a transmissible fungus responsible for severe pneumonia (Pneumocystis pneumonia [PCP]) in immunocompromised patients. Missense mutations due to atovaquone selective pressure have been identified on cytochrome b (CYB) gene of P. jirovecii. It was recently shown that atovaquone prophylaxis can lead to the selection of specific P. jirovecii CYB mutants potentially resistant to atovaquone among organ transplant recipients. In this context, our objectives were to provide data on P. jirovecii CYB mutants and the putative selective pressure exerted by atovaquone on P. jirovecii organisms in France. A total of 123 patients (124 P. jirovecii specimens) from four metropolitan hospitals and two overseas hospitals were retrospectively enrolled. Fourteen patients had prior exposure to atovaquone, whereas 109 patients did not at the time of P. jirovecii detection. A 638 base-pair fragment of the CYB gene of P. jirovecii was amplified and sequenced. A total of 10 single nucleotide polymorphisms (SNPs) were identified. Both missense mutations C431T (Ala144Val) and C823T (Leu275Phe), located at the Qo active site of the enzyme, were significantly associated with prior atovaquone exposure, these mutations being conversely incidental in the absence of prior atovaquone exposure (P < 0.001). Considering that the aforementioned hospitals may be representative of the national territory, these findings suggest that the overall presence of P. jirovecii CYB mutants remains low in France.
Collapse
Affiliation(s)
- Pierre L Bonnet
- Laboratory of Parasitology and Mycology, Brest University Hospital, 29609 Brest, France
- Fungal Respiratory Infections Research Unit (FRI), University of Angers, University of Western Brittany, 29238 Brest, France
| | - Claire V Hoffmann
- Fungal Respiratory Infections Research Unit (FRI), University of Angers, University of Western Brittany, 29238 Brest, France
| | - Nathan Le Nan
- Fungal Respiratory Infections Research Unit (FRI), University of Angers, University of Western Brittany, 29238 Brest, France
| | - Lorenn Bellamy
- Clinical Data Center, Brest University Hospital, 29609 Brest, France
| | - Gautier Hoarau
- Ophthalmology Department, OPHTARA Network, Bicêtre Paris Saclay University Hospital, AP-HP, 94276 Le Kremlin-Bicêtre, France
| | - Pierre Flori
- Laboratory of Infectious Agents, Parasitology Section, GIMAP, Faculty of Medicine, 42055 Saint-Etienne, France
| | - Magalie Demar
- University Hospital Laboratory of Parasitology-Mycology, Cayenne Hospital Center, 97306 Cayenne, French Guiana
| | - Nicolas Argy
- IRD, MERIT, University of Paris Cité, 75006 Paris, France
| | - Florent Morio
- Laboratory of Parasitology and Medical Mycology, Nantes University Hospital, 44000 Nantes, France
| | - Solène Le Gal
- Laboratory of Parasitology and Mycology, Brest University Hospital, 29609 Brest, France
- Fungal Respiratory Infections Research Unit (FRI), University of Angers, University of Western Brittany, 29238 Brest, France
| | - Gilles Nevez
- Laboratory of Parasitology and Mycology, Brest University Hospital, 29609 Brest, France
- Fungal Respiratory Infections Research Unit (FRI), University of Angers, University of Western Brittany, 29238 Brest, France
| |
Collapse
|
2
|
Friaza V, de Armas Y, Capó V, Morilla R, Plascencia-Hernández A, Pérez-Gómez HR, Iglesias E, Fonte L, de la Horra C, Calderón EJ. Multilocus Genotyping of Pneumocystis jirovecii from Deceased Cuban AIDS Patients Using Formalin-Fixed and Paraffin-Embedded Tissues. J Fungi (Basel) 2021; 7:jof7121042. [PMID: 34947024 PMCID: PMC8706017 DOI: 10.3390/jof7121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
The results of the genotypic characterization of Pneumocystis jirovecii are described in lung tissue samples from 41 Cubans who died of AIDS with pneumocystosis between 1995 and 2008. Histological sections of the lung preserved as formalin-fixed and paraffin-embedded tissue were examined. PCR amplification and nucleotide sequencing of the two mitochondrial genes (large and small) of the pathogen allowed verification of a predominance of genotype 3 (85T/248C) of the large mitochondrial gene and genotype 3 (160A/196T) of the small mitochondrial gene over a period of 14 years (1995–2008). These results suggest that the 85T/248C//160A/196T genotype circulates with the highest frequency (81.3%) among AIDS patients in Cuba. Multilocus analysis indicates a limited circulation of pathogen genotypes on the island with the existence of a clonal genotype with an epidemic structure. Furthermore, it appears that circulating strains of P. jirovecii have not developed mutations related to sulfonamide resistance. Taken together, the data in this study revealed important elements about pneumocystosis in Cuban patients dying of AIDS and the usefulness of formalin-fixed and paraffin-embedded samples to carry out molecular epidemiology studies of P. jirovecii.
Collapse
Affiliation(s)
- Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (V.F.); (R.M.); (E.J.C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Yaxsier de Armas
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, 11400 Havana, Cuba;
- Pathology Department, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, 11400 Havana, Cuba;
| | - Virginia Capó
- Pathology Department, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, 11400 Havana, Cuba;
| | - Rubén Morilla
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (V.F.); (R.M.); (E.J.C.)
| | - Arturo Plascencia-Hernández
- Centro Universitario de Ciencias para la Salud, Universidad de Guadalajara, 44100 Guadalajara, Mexico; (A.P.-H.); (H.R.P.-G.)
| | - Héctor R. Pérez-Gómez
- Centro Universitario de Ciencias para la Salud, Universidad de Guadalajara, 44100 Guadalajara, Mexico; (A.P.-H.); (H.R.P.-G.)
| | - Enrique Iglesias
- Centro de Ingeniería Genética y Biotecnología, Departamento de Vacunas, 10600 Havana, Cuba;
| | - Luis Fonte
- Parasitology Department, Institute of Tropical Medicine “Pedro Kourí”, 11400 Havana, Cuba;
| | - Carmen de la Horra
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (V.F.); (R.M.); (E.J.C.)
- Correspondence:
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (V.F.); (R.M.); (E.J.C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
3
|
de la Horra C, Friaza V, Morilla R, Delgado J, Medrano FJ, Miller RF, de Armas Y, Calderón EJ. Update on Dihydropteroate Synthase (DHPS) Mutations in Pneumocystis jirovecii. J Fungi (Basel) 2021; 7:jof7100856. [PMID: 34682277 PMCID: PMC8540849 DOI: 10.3390/jof7100856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022] Open
Abstract
A Pneumocystis jirovecii is one of the most important microorganisms that cause pneumonia in immunosupressed individuals. The guideline for treatment and prophylaxis of Pneumocystis pneumonia (PcP) is the use of a combination of sulfa drug-containing trimethroprim and sulfamethoxazole. In the absence of a reliable method to culture Pneumocystis, molecular techniques have been developed to detect mutations in the dihydropteroate synthase gene, the target of sulfa drugs, where mutations are related to sulfa resistance in other microorganisms. The presence of dihydropteroate synthase (DHPS) mutations has been described at codon 55 and 57 and found almost around the world. In the current work, we analyzed the most common methods to identify these mutations, their geographical distribution around the world, and their clinical implications. In addition, we describe new emerging DHPS mutations. Other aspects, such as the possibility of transmitting Pneumocystis mutated organisms between susceptible patients is also described, as well as a brief summary of approaches to study these mutations in a heterologous expression system.
Collapse
Affiliation(s)
- Carmen de la Horra
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
| | - Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence: (V.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| | - Rubén Morilla
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Departamento de Enfermería, Universidad de Sevilla, 41009 Seville, Spain
| | - Juan Delgado
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
| | - Francisco J. Medrano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Robert F. Miller
- Institute for Global Health, University College London, London WC1E 6JB, UK;
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Yaxsier de Armas
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba;
- Pathology Department, Hospital Center of Institute of Tropical Medicine “Pedro Kourí,” Havana 11400, Cuba
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Correspondence: (V.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| |
Collapse
|
4
|
Bonnet P, Le Gal S, Calderon E, Delhaes L, Quinio D, Robert-Gangneux F, Ramel S, Nevez G. Pneumocystis jirovecii in Patients With Cystic Fibrosis: A Review. Front Cell Infect Microbiol 2020; 10:571253. [PMID: 33117730 PMCID: PMC7553083 DOI: 10.3389/fcimb.2020.571253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pneumocystis pneumonia (PCP) remains the most frequent AIDS-defining illness in developed countries. This infection also occurs in non-AIDS immunosuppressed patients, e.g., those who have undergone an organ transplantation. Moreover, mild Pneumocystis jirovecii infections related to low pulmonary fungal burden, frequently designated as pulmonary colonization, occurs in patients with chronic pulmonary diseases, e.g., cystic fibrosis (CF). Indeed, this autosomal recessive disorder alters mucociliary clearance leading to bacterial and fungal colonization of the airways. This mini-review compiles and discusses available information on P. jirovecii and CF. It highlights significant differences in the prevalence of P. jirovecii pulmonary colonization in European and Brazilian CF patients. It also describes the microbiota associated with P. jirovecii in CF patients colonized by P. jirovecii. Furthermore, we have described P. jirovecii genomic diversity in colonized CF patients. In addition of pulmonary colonization, it appears that PCP can occur in CF patients specifically after lung transplantation, thus requiring preventive strategies. In other respects, Pneumocystis primary infection is a worldwide phenomenon occurring in non-immunosuppressed infants within their first months. The primary infection is mostly asymptomatic but it can also present as a benign self-limiting infection. It probably occurs in the same manner in CF infants. Nonetheless, two cases of severe Pneumocystis primary infection mimicking PCP in CF infants have been reported, the genetic disease appearing in these circumstances as a risk factor of PCP while the host-pathogen interaction in older children and adults with pulmonary colonization remains to be clarified.
Collapse
Affiliation(s)
- Pierre Bonnet
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France
| | - Solène Le Gal
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France.,Groupe d'Etude des Interactions Hôte-Pathogène (ER, GEIHP), Université d'Angers, Université de Brest, Brest, France
| | - Enrique Calderon
- CIBER de Epidemiologia y Salud Publica and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Laurence Delhaes
- Laboratory of Parasitology and Mycology, Bordeaux University Hospital, Bordeaux, France Inserm U1045 - University of Bordeaux, Bordeaux, France
| | - Dorothée Quinio
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France
| | - Florence Robert-Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement Travail), UMR_S 1085, Rennes, France
| | - Sophie Ramel
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Roscoff, France
| | - Gilles Nevez
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France.,Groupe d'Etude des Interactions Hôte-Pathogène (ER, GEIHP), Université d'Angers, Université de Brest, Brest, France
| |
Collapse
|
5
|
Le Gal S, Hoarau G, Bertolotti A, Negri S, Le Nan N, Bouchara JP, Papon N, Blanchet D, Demar M, Nevez G. Pneumocystis jirovecii Diversity in Réunion, an Overseas French Island in Indian Ocean. Front Microbiol 2020; 11:127. [PMID: 32117149 PMCID: PMC7019000 DOI: 10.3389/fmicb.2020.00127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Data on Pneumocystis jirovecii characteristics from the overseas French territories are still scarce whereas numerous data on P. jirovecii genotypes are available for metropolitan France. The main objective of the present study was to identify P. jirovecii multilocus genotypes in patients living in Réunion and to compare them with those identified using the same method in metropolitan France and in French Guiana. Archival P. jirovecii specimens from immunosuppressed patients, 16 living in Réunion (a French island of the Indian ocean), six living in French Guiana (a South-American French territory), and 24 living in Brest (Brittany, metropolitan France) were examined at the large subunit rRNA (mtLSUrRNA) genes, cytochrome b (CYB), and superoxide dismutase (SOD) genes using PCR assays and direct sequencing. A total of 23 multi-locus genotypes (MLG) were identified combining mtLSUrRNA, CYB, and SOD alleles, i.e., six in Reunionese patients, three in Guianese patients, and 15 in Brest patients. Only one MLG (mtLSU1-CYB1-SOD2) was shared by Reunionese and Guianese patients (one patient from each region) whereas none of the 22 remaining MLG were shared by the 3 patient groups. A total of eight MLG were newly identified, three in Réunion and five in Brest. These results that were obtained through a retrospective investigation of a relatively low number of P. jirovecii specimens, provides original and first data on genetic diversity of P. jirovecii in Réunion island. The results suggest that P. jirovecii organisms from Réunion present specific characteristics compared to other P. jirovecii organisms from metropolitan France and French Guiana.
Collapse
Affiliation(s)
- Solène Le Gal
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France.,Laboratory of Mycology and Parasitology, CHRU de Brest, Brest, France
| | - Gautier Hoarau
- Department of Microbiology, CHU La Réunion, Saint Pierre, France
| | | | - Steven Negri
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France
| | - Nathan Le Nan
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France
| | - Jean-Philippe Bouchara
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France
| | - Nicolas Papon
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France
| | - Denis Blanchet
- Laboratory of Mycology and Parasitology, Andrée Rosemon Hospital, Cayenne, French Guiana.,Equipe EA3593 - Ecosystèmes Amazoniens et Pathologie Tropicale, Université de Guyane, Cayenne, French Guiana
| | - Magalie Demar
- Laboratory of Mycology and Parasitology, Andrée Rosemon Hospital, Cayenne, French Guiana.,Equipe EA3593 - Ecosystèmes Amazoniens et Pathologie Tropicale, Université de Guyane, Cayenne, French Guiana
| | - Gilles Nevez
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France.,Laboratory of Mycology and Parasitology, CHRU de Brest, Brest, France
| |
Collapse
|
6
|
Dellière S, Gits-Muselli M, Bretagne S, Alanio A. Outbreak-Causing Fungi: Pneumocystis jirovecii. Mycopathologia 2019; 185:783-800. [PMID: 31782069 DOI: 10.1007/s11046-019-00408-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
Pneumocystis jirovecii pneumonia (PCP) is an important cause of morbidity in immunocompromised patients, with a higher mortality in non-HIV than in HIV patients. P. jirovecii is one of the rare transmissible pathogenic fungi and the only one that depends fully on the host to survive and proliferate. Transmissibility among humans is one of the main specificities of P. jirovecii. Hence, the description of multiple outbreaks raises questions regarding preventive care management of the disease, especially in the non-HIV population. Indeed, chemoprophylaxis is well codified in HIV patients but there is a trend for modifications of the recommendations in the non-HIV population. In this review, we aim to discuss the mode of transmission of P. jirovecii, identify published outbreaks of PCP and describe molecular tools available to study these outbreaks. Finally, we discuss public health and infection control implications of PCP outbreaks in hospital setting for in- and outpatients.
Collapse
Affiliation(s)
- Sarah Dellière
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
- Molecular Mycology Unit, CNRS UMR2000, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Maud Gits-Muselli
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
- Molecular Mycology Unit, CNRS UMR2000, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Stéphane Bretagne
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
- Molecular Mycology Unit, CNRS UMR2000, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
- National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Institut Pasteur, Paris, France
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France.
- Molecular Mycology Unit, CNRS UMR2000, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
- National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Institut Pasteur, Paris, France.
| |
Collapse
|
7
|
Ma L, Cissé OH, Kovacs JA. A Molecular Window into the Biology and Epidemiology of Pneumocystis spp. Clin Microbiol Rev 2018; 31:e00009-18. [PMID: 29899010 PMCID: PMC6056843 DOI: 10.1128/cmr.00009-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Charpentier E, Garnaud C, Wintenberger C, Bailly S, Murat JB, Rendu J, Pavese P, Drouet T, Augier C, Malvezzi P, Thiébaut-Bertrand A, Mallaret MR, Epaulard O, Cornet M, Larrat S, Maubon D. Added Value of Next-Generation Sequencing for Multilocus Sequence Typing Analysis of a Pneumocystis jirovecii Pneumonia Outbreak1. Emerg Infect Dis 2018; 23:1237-1245. [PMID: 28726611 PMCID: PMC5547796 DOI: 10.3201/eid2308.161295] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pneumocystis jirovecii is a major threat for immunocompromised patients, and clusters of pneumocystis pneumonia (PCP) have been increasingly described in transplant units during the past decade. Exploring an outbreak transmission network requires complementary spatiotemporal and strain-typing approaches. We analyzed a PCP outbreak and demonstrated the added value of next-generation sequencing (NGS) for the multilocus sequence typing (MLST) study of P. jirovecii strains. Thirty-two PCP patients were included. Among the 12 solid organ transplant patients, 5 shared a major and unique genotype that was also found as a minor strain in a sixth patient. A transmission map analysis strengthened the suspicion of nosocomial acquisition of this strain for the 6 patients. NGS-MLST enables accurate determination of subpopulation, which allowed excluding other patients from the transmission network. NGS-MLST genotyping approach was essential to deciphering this outbreak. This innovative approach brings new insights for future epidemiologic studies on this uncultivable opportunistic fungus.
Collapse
|
9
|
Nevez G, Le Gal S, Noel N, Wynckel A, Huguenin A, Le Govic Y, Pougnet L, Virmaux M, Toubas D, Bajolet O. Investigation of nosocomial pneumocystis infections: usefulness of longitudinal screening of epidemic and post-epidemic pneumocystis genotypes. J Hosp Infect 2017; 99:332-345. [PMID: 28943270 DOI: 10.1016/j.jhin.2017.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Twenty-five patients, of whom 22 were renal transplant recipients, developed Pneumocystis jirovecii infections at the nephrology department of Reims University Hospital (France) from September 2008 to October 2009, whereas only four sporadic cases had been diagnosed in this department over the 14 previous years. AIM This outbreak was investigated by analysing patient encounters and P. jirovecii types. METHODS A transmission map was drawn up. P. jirovecii typing at DHPS, ITS and mtLSU rRNA sequences was performed in the patients of the cluster (18 patients with Pneumocystis pneumonia (PCP) and seven colonized patients), 10 unlinked control patients (six PCP patients and four colonized patients), as well as 23 other patients diagnosed with P. jirovecii (nine PCP patients and 14 colonized patients) in the same department over a three-year post-epidemic period. FINDINGS Eleven encounters between patients harbouring the same types were observed. Three PCP patients and one colonized patient were considered as possible index cases. The most frequent types in the cluster group and the control group were identical. However, their frequency was significantly higher in the first than in the second group (P < 0.01). Identical types were also identified in the post-epidemic group, suggesting a second outbreak due to the same strain, contemporary to a disruption in prevention measures. CONCLUSIONS These results provide additional data on the role of both PCP and colonized patients as infectious sources. Longitudinal screening of P. jirovecii types in infected patients, including colonized patients, is required in the investigation of the fungus's circulation within hospitals.
Collapse
Affiliation(s)
- G Nevez
- Université de Bretagne Loire, GEIHP EA 3142, Brest, France; Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France.
| | - S Le Gal
- Université de Bretagne Loire, GEIHP EA 3142, Brest, France; Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France
| | - N Noel
- Department of Nephrology, Reims University Hospital, Reims, France
| | - A Wynckel
- Department of Nephrology, Reims University Hospital, Reims, France
| | - A Huguenin
- Laboratory of Parasitology and Mycology, Reims University Hospital, Reims, France
| | - Y Le Govic
- Université de Bretagne Loire, GEIHP EA 3142, Angers, France
| | - L Pougnet
- Université de Bretagne Loire, GEIHP EA 3142, Brest, France
| | - M Virmaux
- Université de Bretagne Loire, GEIHP EA 3142, Brest, France
| | - D Toubas
- Laboratory of Parasitology and Mycology, Reims University Hospital, Reims, France; Université de Reims Champagne-Ardenne, Equipe MéDIAN, Biophotonique et Technologies pour la Santé, Reims, France
| | - O Bajolet
- Université de Reims Champagne-Ardenne, EA 7887, Reims, France; Equipe Opérationnelle d'Hygiène, Reims University Hospital, Reims, France
| |
Collapse
|
10
|
Nevez G, Robert-Gangneux F, Pougnet L, Virmaux M, Belleguic C, Deneuville E, Rault G, Chevrier S, Ramel S, Le Bihan J, Guillaud-Saumur T, Calderon E, Le Govic Y, Gangneux JP, Le Gal S. Pneumocystis jirovecii and Cystic Fibrosis in Brittany, France. Mycopathologia 2017; 183:81-87. [DOI: 10.1007/s11046-017-0172-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/27/2017] [Indexed: 11/30/2022]
|
11
|
Le Gal S, Robert-Gangneux F, Pépino Y, Belaz S, Damiani C, Guéguen P, Pitous M, Virmaux M, Lissillour E, Pougnet L, Guillaud-Saumur T, Toubas D, Valot S, Hennequin C, Morio F, Hasseine L, Bouchara JP, Totet A, Nevez G. A misleading false-negative result of Pneumocystis real-time PCR assay due to a rare punctual mutation: A French multicenter study. Med Mycol 2016; 55:180-184. [PMID: 27489302 DOI: 10.1093/mmy/myw051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/05/2016] [Accepted: 06/18/2016] [Indexed: 11/13/2022] Open
Abstract
This article describes a previously unreported mutation at position 210 (C210T) of the mitochondrial large subunit ribosomal RNA (mtLSUrRNA) gene of Pneumocystis jirovecii, which led to a false-negative result of a real-time polymerase chain reaction (PCR) assay. Since the aforementioned real-time PCR assay is widely used in France, a French multicenter study was conducted to estimate the mutation frequency and its potential impact on the routine diagnosis of Pneumocystis pneumonia (PCP). Through analysis of data obtained from eight centers, the mutation frequency was estimated at 0.28%. This low frequency should not call into question the routine use of this PCR assay. Nonetheless, the occurrence of the false-negative PCR result provides arguments for maintaining microscopic techniques combined to PCR assays to achieve PCP diagnosis.
Collapse
Affiliation(s)
- Solène Le Gal
- University of Brest, GEIHP EA 3142, Brest, France .,Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France
| | - Florence Robert-Gangneux
- University of Rennes 1, INSERM U1085, Rennes, France.,Laboratory of Parasitology and Mycology, Rennes University Hospital, Rennes, France
| | - Yann Pépino
- University of Brest, GEIHP EA 3142, Brest, France
| | - Sorya Belaz
- University of Rennes 1, INSERM U1085, Rennes, France.,Laboratory of Parasitology and Mycology, Rennes University Hospital, Rennes, France
| | - Céline Damiani
- University of Picardy-Jules Verne, EA 4285 UMR-I 01 INERIS, Amiens, France.,Department of Parasitology and Mycology, Amiens University Hospital, Amiens, France
| | - Paul Guéguen
- Laboratory of Molecular Genetics and Histocompatibility, Brest University Hospital, Brest, France.,University of Brest, INSERM 1078, Molecular Genetics and Epidemiological Genetics, SFR 148, Brest, France
| | | | | | | | | | | | - Dominique Toubas
- Parasitology and Mycology laboratory, Reims University Hospital, Reims, France
| | - Stéphane Valot
- Parasitology and Mycology laboratory, Dijon University Hospital, Dijon, France
| | - Christophe Hennequin
- Parasitology and Mycology laboratory, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris, France
| | - Florent Morio
- Parasitology and Mycology laboratory, Nantes University Hospital, Nantes, France
| | - Lilia Hasseine
- Parasitology and Mycology laboratory, Nice University Hospital, Nice, France
| | | | - Anne Totet
- University of Picardy-Jules Verne, EA 4285 UMR-I 01 INERIS, Amiens, France.,Department of Parasitology and Mycology, Amiens University Hospital, Amiens, France
| | - Gilles Nevez
- University of Brest, GEIHP EA 3142, Brest, France .,Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France
| |
Collapse
|
12
|
Epidemiological Outbreaks of Pneumocystis jirovecii Pneumonia Are Not Limited to Kidney Transplant Recipients: Genotyping Confirms Common Source of Transmission in a Liver Transplantation Unit. J Clin Microbiol 2016; 54:1314-20. [PMID: 26935726 DOI: 10.1128/jcm.00133-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022] Open
Abstract
Over a 5-month period, four liver transplant patients at a single hospital were diagnosed with Pneumocystis jirovecii pneumonia (PCP). This unusually high incidence was investigated using molecular genotyping. Bronchoalveolar lavage fluids (BALF) obtained from the four liver recipients diagnosed with PCP were processed for multilocus sequence typing (MLST) at three loci (SOD, mt26s, and CYB). Twenty-four other BALF samples, which were positive for P. jirovecii and collected from 24 epidemiologically unrelated patients with clinical signs of PCP, were studied in parallel by use of the same method. Pneumocystis jirovecii isolates from the four liver recipients all had the same genotype, which was different from those of the isolates from all the epidemiologically unrelated individuals studied. These findings supported the hypothesis of a common source of contamination or even cross-transmission of a single P. jirovecii clone between the four liver recipients. Hospitalization mapping showed several possible encounters between these four patients, including outpatient consultations on one particular date when they all possibly met. This study demonstrates the value of molecular genotyping of P. jirovecii isolated from clinical samples for epidemiological investigation of PCP outbreaks. It is also the first description of a common source of exposure to a single P. jirovecii clone between liver transplant recipients and highlights the importance of prophylaxis in such a population.
Collapse
|