1
|
Gérard C, Trochard C, Hervé MR, Hamel H, Gay M, Barbier M, Trancart T, Barreau T. Communities of metazoan parasites in seven sympatric skate species (Elasmobranchii, Rajidae) from the English Channel and Celtic Sea differing in conservation status. JOURNAL OF FISH BIOLOGY 2024; 105:975-987. [PMID: 38937946 DOI: 10.1111/jfb.15845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Elasmobranch populations are in steep decline mainly due to overfishing bycatch, but parasites may accelerate the collapse of vulnerable and/or highly parasitized species. We therefore studied metazoan parasites of Rajidae from the northeast Atlantic: vulnerable Leucoraja fullonica, near-threatened Raja brachyura, Raja clavata, Raja microocellata and Raja undulata, and least-concerned Raja montagui and Leucoraja naevus. Overall prevalence varied from 19% for R. montagui to 100% for L. fullonica. Parasite communities differed between skate species, and prevalence and abundance were higher for L. fullonica, R. microocellata, and R. undulata. We recorded 11 parasite taxa in the study: three nematodes, six cestodes, one monogenean, and one myxosporean. Whatever the skate species, the parasite component community comprised at least two nematode taxa among Phocanema spp., Proleptus sp. and Anisakis simplex. DNA-sequencing revealed that Phocanema azarasi and Phocanema krabbei both occurred in R. microocellata and R. undulata. Phocanema spp. was first recorded in L. fullonica, L. naevus, R. microocellata, R. montagui, and R. undulata, as Proleptus sp. in L. fullonica, and A. simplex in L. fullonica and R. clavata, Rockacestus sp. and Nybelinia sp. in R. undulata, and gill-myxosporeans on L. fullonica, L. naevus, R. microocellata, and R. undulata. The occurrence of 16 new host-parasite associations suggests potential environmental changes. Information provided by trophically transmitted helminths confirmed an opportunistic skate diet based on crustaceans and fish. We discuss results in terms of host fitness loss, bioindicator role of parasites, and anisakiasis risk. We recommend incorporating parasitology in research to improve elasmobranch conservation.
Collapse
Affiliation(s)
- Claudia Gérard
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)-UMR 6553, University of Rennes, Rennes, France
| | | | - Maxime R Hervé
- IGEPP, INRAE, Institut Agro, University of Rennes, Rennes, France
| | - Héloïse Hamel
- UMR BOREA, Muséum National d'Histoire Naturelle, Service des Stations Marines, Station Marine de Dinard (CRESCO), Dinard, France
| | - Mélanie Gay
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Michel Barbier
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Thomas Trancart
- UMR BOREA, Muséum National d'Histoire Naturelle, Service des Stations Marines, Station Marine de Dinard (CRESCO), Dinard, France
| | - Thomas Barreau
- UMR BOREA, Muséum National d'Histoire Naturelle, Service des Stations Marines, Station Marine de Dinard (CRESCO), Dinard, France
| |
Collapse
|
2
|
Logvinenko AD, Gordeev II, Ekimova IA, Sokolov SG. Helminths of three species of White Sea fishes. Parasitol Res 2023; 123:39. [PMID: 38095734 DOI: 10.1007/s00436-023-08017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023]
Abstract
Parasitic fauna of the White Sea cod, Gadus morhua marisalbi; the navaga, Eleginus nawaga; and the shorthorn sculpin, Myoxocephalus scorpius, in the White Sea was repeatedly studied, but no large-scale parasitological surveys have been made in the recent three decades. To fill this gap, we conducted a survey of the helminths of these three fish species at the White Sea Biological Station (Karelia, Russia) of the Lomonosov Moscow State University in August 2021. The navaga (50 specimens studied) was found to be infected with 13 species of helminths; the White Sea cod (50 specimens), with 12 species; and the shorthorn sculpin (21 specimens), with 13 species. Plerocercoids of Diphyllobothrium schistochilus and third-stage juveniles of Pseudoterranova bulbosa were recorded in the White Sea for the first time. The helminth infracommunities of the navaga and the White Sea cod were closer in structure to each other than to those of the shorthorn sculpin. In general, the levels of helminth infection of the White Sea cod, the navaga, and shorthorn sculpin have been consistently high over 85 years of observations in the White Sea, but long-term trends in the abundance of some helminth species were multidirectional.
Collapse
Affiliation(s)
- Andrey D Logvinenko
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Ilya I Gordeev
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia.
- Pacific Salmon Department, Russian Federal Research Institute of Fisheries and Oceanography, Okruzhnoy Pr. 19, Moscow, 105187, Russia.
| | - Irina A Ekimova
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Sergey G Sokolov
- Center of Parasitology of the Severtsov Institute of Ecology and Evolution of RAS, Leninskiy Pros. 33, Moscow, 119071, Russia
| |
Collapse
|
3
|
Gu XH, Guo N, Chen HX, Sitko J, Li LW, Guo BQ, Li L. Mitogenomic phylogenies suggest the resurrection of the subfamily Porrocaecinae and provide insights into the systematics of the superfamily Ascaridoidea (Nematoda: Ascaridomorpha), with the description of a new species of Porrocaecum. Parasit Vectors 2023; 16:275. [PMID: 37563590 PMCID: PMC10416420 DOI: 10.1186/s13071-023-05889-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The family Toxocaridae is a group of zooparasitic nematodes of veterinary, medical and economic significance. However, the evolutionary relationship of Porrocaecum and Toxocara, both genera currently classified in Toxocaridae, and the monophyly of the Toxocaridae remain under debate. Moreover, the validity of the subgenus Laymanicaecum in the genus Porrocaecum is open to question. Due to the scarcity of an available genetic database, molecular identification of Porrocaecum nematodes is still in its infancy. METHODS A number of Porrocaecum nematodes collected from the Eurasian marsh harrier Circus aeruginosus (Linnaeus) (Falconiformes: Accipitridae) in the Czech Republic were identified using integrated morphological methods (light and scanning electron microscopy) and molecular techniques (sequencing and analyzing the nuclear 18S, 28S and ITS regions). The complete mitochondrial genomes of the collected nematode specimens and of Porrocaecum (Laymanicaecum) reticulatum (Linstow, 1899) were sequenced and annotated for the first time. Phylogenetic analyses of ascaridoid nematodes based on the amino acid sequences of 12 protein-coding genes of mitochondrial genomes were performed using maximum likelihood and Bayesian inference. RESULTS A new species of Porrocaecum, named P. moraveci n. sp., is described based on the morphological and genetic evidence. The mitogenomes of P. moraveci n. sp. and P. reticulatum both contain 36 genes and are 14,517 and 14,210 bp in length, respectively. Comparative mitogenomics revealed that P. moraveci n. sp. represents the first known species with three non-coding regions and that P. reticulatum has the lowest overall A + T content in the mitogenomes of ascaridoid nematodes tested to date. Phylogenetic analyses showed the representatives of Toxocara clustered together with species of the family Ascarididae rather than with Porrocaecum and that P. moraveci n. sp. is a sister to P. reticulatum. CONCLUSIONS The characterization of the complete mitochondrial genomes of P. moraveci n. sp. and P. reticulatum is reported for the first time. Mitogenomic phylogeny analyses indicated that the family Toxocaridae is non-monophyletic and that the genera Porrocaecum and Toxocara do not have an affinity. The validity of the subgenus Laymanicaecum in Porrocaecum was also rejected. Our results suggest that: (i) Toxocaridae should be degraded to a subfamily of the Ascarididae that includes only the genus Toxocara; and (ii) the subfamily Porrocaecinae should be resurrected to include only the genus Porrocaecum. The present study enriches the database of ascaridoid mitogenomes and provides a new insight into the systematics of the superfamily Ascaridoidea.
Collapse
Affiliation(s)
- Xiao-Hong Gu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Ning Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Hui-Xia Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Jiljí Sitko
- Muzeum Komenského V Přerově, 750 02, Přerově, Czech Republic
| | - Lin-Wei Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Bing-Qian Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Liang Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China.
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China.
| |
Collapse
|
4
|
The Complete Mitogenome of Toxocara vitulorum: Novel In-Sights into the Phylogenetics in Toxocaridae. Animals (Basel) 2022; 12:ani12243546. [PMID: 36552470 PMCID: PMC9774135 DOI: 10.3390/ani12243546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Toxocara vitulorum (Ascaridida: Nematoda) is one of the most common intestinal nematodes of cattle and buffalos and, therefore, represents a serious threat to their populations worldwide. Despite its significance in veterinary health the epidemiology, population genetics, and molecular ecology of this nematode remain poorly understood. The mitogenome can yield a foundation for studying these areas and assist in the surveillance and control of T. vitulorum. Herein, the first whole mitogenome of T. vitulorum was sequenced utilizing Illumina technology and characterized with bioinformatic pipeline analyses. The entire genome of T. vitulorum was 15,045 bp in length and contained 12 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs). The gene arrangement (GA) of T. vitulorum was similar to those of other Toxocara species under GA3. The whole genome showed significant levels of AT and GC skew. Comparative mitogenomics including sequence identities, Ka/Ks, and sliding window analysis, indicated a purifying selection of 12 PCGs with cox1 and nad6 having the lowest and highest evolutionary rate, respectively. Whole amino acid sequence-based phylogenetic analysis supported a novel sister-species relationship of T. vitulorum with the congeneric species Toxocara canis, Toxocara cati, and Toxocara malaysiensis in the family Toxocaridae. Further, 12 (PCGs) single gene-based phylogenies suggested that nad4 and nad6 genes shared same topological trees with that of the whole genome, suggesting that these genes were suitable as novel genetic markers for phylogenetic and evolutionary studies of Ascaridida species. This complete mitogenome of T. vitulorum refined phylogenetic relationships in Toxocaridae and provided the resource of markers for population genetics, systematics, and epidemiology of this bovine nematode.
Collapse
|
5
|
Han L, Yang Y, Li H, Zhou X, Zhou M, Liu T, Lu Y, Wang Q, Yang S, Shi M, Li X, Du S, Guan C, Zhang Y, Guo W, Wang J, Chai H, Lan T, Liu H, Liu Q, Sun H, Hou Z. Gene rearrangements in the mitochondrial genome of ten ascaris species and phylogenetic implications for Ascaridoidea and Heterakoidea families. Int J Biol Macromol 2022; 221:1394-1403. [PMID: 36116597 DOI: 10.1016/j.ijbiomac.2022.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022]
Abstract
The Ascaridoidea family and Heterakoidea family are the most common and typical representative of large parasites. Although our understanding of these parasites' diversity has expanded by analyses of some mitochondrial genes, there is limited information on these species' evolutionary rates. Here we determined ten complete mitogenome sequences of five subfamilies of Ascaridoidea and one subfamily of Heterakoidea. The phylogenetic tree divided the Ascaridoidea into six monophyletic major clades, and the divergence time of Heterakoidea family and Ascaridoidea family can be placed during the early Carboniferous Period (300-360 Mya). The reconstruction of the ancestral state showed that the gene orders of all species in Ascaridoidea were conserved, and the Heterakoidea had obvious genome rearrangement. The conserved blocks between them were divided into five and the main types are tandem-duplication/random loss (TDRL). These results will help to better understand the gene rearrangements and evolutionary position of ascaris species.
Collapse
Affiliation(s)
- Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin 150040, China
| | - Yuling Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Tianlu Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangcheng Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyun Li
- Harbin Northern Forest Zoo, Harbin 150040, China
| | - Shan Du
- Inner Mongolia Agriculture University, Hohhot 010000, China
| | - Chunyu Guan
- Harbin Northern Forest Zoo, Harbin 150040, China
| | - Yong Zhang
- Center for Animal Disease Control and Prevention of Ordos, Inner Mongolia, Ordos 017000, China
| | - Wei Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150040, China
| | - Jiangang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Hongliang Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Wildlife Conservation, China State Forestry Administration, Harbin 150040, China
| | - Tianming Lan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; BGI Life Science Joint Research Center, Northeast Forestry University, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; BGI Life Science Joint Research Center, Northeast Forestry University, China
| | - Quan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Heting Sun
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang, China.
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Wildlife Conservation, China State Forestry Administration, Harbin 150040, China.
| |
Collapse
|
6
|
Liu Q, Wang Q, Jiang J, Ma JY, Zhu XQ, Gong QL. Prevalence of Anisakid Nematodes in Fish in China: A Systematic Review and Meta-Analysis. Front Vet Sci 2022; 9:792346. [PMID: 35265693 PMCID: PMC8899408 DOI: 10.3389/fvets.2022.792346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Anisakidosis, caused by anisakid larvae, is an important fish-borne zoonosis. This study aimed to summarize the prevalence of anisakid infection in fish in China. A systematic review and meta-analysis were performed using five bibliographic databases (PubMed, CNKI, ScienceDirect, WanFang, and VIP Chinese Journal Databases). A total of 40 articles related to anisakid infection in fish in China were finally included. Anisakid nematodes were prevalent in a wide range of fish species, and the overall pooled prevalence of anisakid nematodes in fish in China was 45.5%. Fresh fish had the highest prevalence rate (58.1%). The highest prevalence rate was observed in Eastern China (55.3%), and fish from East China Sea showed the highest prevalence of anisakid nematodes (76.8%). Subgroup analysis by sampling year suggested that the infection rate was higher during the years 2001–2011 (51.0%) than the other periods. Analysis of study quality revealed that the middle-quality studies reported the highest prevalence (59.9%). Compared with other seasons, winter had the highest prevalence (81.8%). The detection rate of anisakid nematodes in muscle was lower (7.8%, 95% CI: 0.0–37.6) than in other fish organs. Our findings suggested that anisakid infection was still common among fish in China. We recommend avoiding eating raw or undercooked fish. Region, site of infection, fish status and quality level were the main risk factors, and a continuous monitoring of anisakid infection in fish in China is needed.
Collapse
Affiliation(s)
- Qing Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Qi Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Jing Jiang
- College of Life Science, Changchun Sci-Tech University, Changchun, China
- *Correspondence: Jing Jiang
| | - Jun-Yang Ma
- Marine College, Shandong University, Jinan, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qing-Long Gong
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Qing-Long Gong
| |
Collapse
|
7
|
Zhou CY, Ma J, Tang QW, Zhu XQ, Xu QM. The mitogenome of Ophidascaris wangi isolated from snakes in China. Parasitol Res 2021; 120:1677-1686. [PMID: 33754190 DOI: 10.1007/s00436-021-07069-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
Abstract
Different species of the genus Ophidascaris (Baylis, 1921; Nematoda: Ascaridida, Ascaridoidea) are intestinal parasites of various snake species. More than 30 Ophidascaris species have been reported worldwide; however, few molecular genetic studies have been conducted on this genus. We sequenced the complete mitogenome of Ophidascaris wangi parasitizing two snake species of the family Colubridae, i.e., Elaphe carinata (Günther, 1864) and Dinodon rufozonatum. The mitogenome sequence of O. wangi was approximately 14,660 base pairs (bp) long and encoded 36 genes, including 12 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, and 22 transfer RNA genes. Gene arrangement, genome content, and transcription direction were in line with those in Toxascaris leonina (Linstow, 1902; Ascaridida: Ascarididae). Phylogenetics of O. wangi and other ascaridoids were reconstructed based on the concatenated amino acid sequences of 12 PCGs, and on nucleotide sequences of 12 PCGs and two rRNA genes. Phylogenetic analyses were performed using maximum likelihood and Bayesian inference methods, and the results suggested that O. wangi constitutes a sister clade of Ascaris, Parascaris, Baylisascaris, and Toxascaris within the family Ascarididae, which is a sister clade of Toxocaridae. The mitogenome sequence of O. wangi obtained from the present study will be useful for future identification of the nematode worms in the genus Ophidascaris and will increase the understanding of population genetics, molecular epidemiology, and phylogenetics of ascaridoid nematodes in snakes.
Collapse
Affiliation(s)
- Cheng-Yan Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Qi-Wu Tang
- Hunan Biological Electromechanical Vocational Technical College, Changsha, Hunan Province, 410126, People's Republic of China
| | - Xing-Quan Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Qian-Ming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, People's Republic of China
| |
Collapse
|
8
|
Liu GH, Sun MM, Elsheikha HM, Fu YT, Sugiyama H, Ando K, Sohn WM, Zhu XQ, Yao C. Human gnathostomiasis: a neglected food-borne zoonosis. Parasit Vectors 2020; 13:616. [PMID: 33298141 PMCID: PMC7724840 DOI: 10.1186/s13071-020-04494-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human gnathostomiasis is a food-borne zoonosis. Its etiological agents are the third-stage larvae of Gnathostoma spp. Human gnathostomiasis is often reported in developing countries, but it is also an emerging disease in developed countries in non-endemic areas. The recent surge in cases of human gnathostomiasis is mainly due to the increasing consumption of raw freshwater fish, amphibians, and reptiles. METHODS This article reviews the literature on Gnathostoma spp. and the disease that these parasites cause in humans. We review the literature on the life cycle and pathogenesis of these parasites, the clinical features, epidemiology, diagnosis, treatment, control, and new molecular findings on human gnathostomiasis, and social-ecological factors related to the transmission of this disease. CONCLUSIONS The information presented provides an impetus for studying the parasite biology and host immunity. It is urgently needed to develop a quick and sensitive diagnosis and to develop an effective regimen for the management and control of human gnathostomiasis.
Collapse
Affiliation(s)
- Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan People’s Republic of China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu People’s Republic of China
| | - Miao-Miao Sun
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu People’s Republic of China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan People’s Republic of China
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
| | - Katsuhiko Ando
- Department of Medical Zoology, Mie University School of Medicine, Mie, 514-8507 Japan
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727 Korea
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801 People’s Republic of China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St Kitts and Nevis
| |
Collapse
|
9
|
Al-Hoshani N, Al-Quraishy S, Dkhil MA, Baiomy AA, Abdel-Gaber R. First record of third-stage Terranova larval type II (Nematoda, Anisakidae) in the common ponyfish Leiognathus equulus Forsskål. Microb Pathog 2020; 149:104597. [PMID: 33127534 DOI: 10.1016/j.micpath.2020.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
The current study was carried out to investigate the natural occurrence of nematode parasites that infect the common ponyfish Leiognathus equulus from Jeddah, Saudi Arabia. Third-stage nematode larvae were found to be encysted in the peritoneum of the fish studied, with the prevalence of infection being 25%. Light microscopy revealed that this parasite belongs to the Anisakidae family within the genus Terranova by having all the generic characteristic features. Based on the intestinal caecum ratio to the length of the ventriculus being 2:1, the excretory pore with ventral location below the boring tooth, the body ended with a conical tail; the larvae found in the present study were identified as Terranova larval type. To validate its taxonomic position within Anisakidae, this Terranova species' morphological features were combined with the ITS-1 gene's molecular analysis. It demonstrated sequence similarities 94.38-76.57% with taxa of Anisakidae. A preliminary genetic comparison between the present parasite and other ascaridoids placed it as a putative sister taxon to the previously described Terranova species. The first record of the current anisakid larvae in the common ponyfish with a unique genetic sequence for the partial sequence of the ITS-1 gene was observed in this study. Its taxonomic position was confirmed in Anisakidae.
Collapse
Affiliation(s)
- Nawal Al-Hoshani
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Dkhil
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed A Baiomy
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Rewaida Abdel-Gaber
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| |
Collapse
|
10
|
D’Amelio S, Lombardo F, Pizzarelli A, Bellini I, Cavallero S. Advances in Omic Studies Drive Discoveries in the Biology of Anisakid Nematodes. Genes (Basel) 2020; 11:E801. [PMID: 32679891 PMCID: PMC7397233 DOI: 10.3390/genes11070801] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/28/2023] Open
Abstract
Advancements in technologies employed in high-throughput next-generation sequencing (NGS) methods are supporting the spread of studies that, combined with advances in computational biology and bioinformatics, have greatly accelerated discoveries within basic and biomedical research for many parasitic diseases. Here, we review the most updated "omic" studies performed on anisakid nematodes, a family of marine parasites that are causative agents of the fish-borne zoonosis known as anisakiasis or anisakidosis. Few deposited data on Anisakis genomes are so far available, and this still hinders the deep and highly accurate characterization of biological aspects of interest, even as several transcriptomic and proteomic studies are becoming available. These have been aimed at discovering and characterizing molecules specific to peculiar developmental parasitic stages or tissues, as well as transcripts with pathogenic potential as toxins and allergens, with a broad relevance for a better understanding of host-pathogen relationships and for the development of reliable diagnostic tools.
Collapse
Affiliation(s)
| | | | | | | | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (S.D.); (F.L.); (A.P.); (I.B.)
| |
Collapse
|
11
|
Zhang Q, Meng M, Huang C, Feng S, Liu J, Tang Y, Fan Y, Yuan G, Han S, Luo J, Zhao B, He H. Identification and genetic characterization of Contracaecum sp. (Nematoda Anisakidae) from China. Integr Zool 2020; 16:929-938. [PMID: 32652769 DOI: 10.1111/1749-4877.12465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Contracaecum species are economically important fish-borne larval nematodes with zoonotic significance. In June 2019, more than one hundred piscivorous birds were died in its habitats close to the Wild Duck Lake, located in Yanqing, northwest of Beijing, China. Post-mortem examination of Black Night Herons (Nycticorax) revealed the presence of numerous anisakid nematodes in the proventriculus. Recovered nematodes were identified as Contracaecum sp. based on morphological description. Phylogenetic analysis of the mitochondrial (mt) genome and the ITS gene showed that sequences of Contracaecum sp. Beijing isolates were grouped into a new individual cluster. Furthermore, the parasite was successfully isolated from fresh dead birds, feces of piscivorous birds, and fish and prevalence ranged from 8.0% to 81.8%. Consequently, our study demonstrated the Contracaecum sp. infections in different sources from China, which might constitute a threat to wildlife, aquaculture, and public health. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng Meng
- College of Wildlife Resources, Northeast Forestry University, Haerbin, Heilongjiang, China.,China Wildlife Conservation Association, Beijing, China
| | - Chengmei Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shengyong Feng
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yan Tang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yu Fan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baohua Zhao
- Hebei Normal University, Shijiazhuang, Hebei, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Alt KG, Kochmann J, Klimpel S, Cunze S. Improving species distribution models of zoonotic marine parasites. Sci Rep 2019; 9:9851. [PMID: 31285445 PMCID: PMC6614473 DOI: 10.1038/s41598-019-46127-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/19/2019] [Indexed: 02/05/2023] Open
Abstract
Environmental niche modelling is an acclaimed method for estimating species' present or future distributions. However, in marine environments the assembly of representative data from reliable and unbiased occurrences is challenging. Here, we aimed to model the environmental niche and distribution of marine, parasitic nematodes from the Pseudoterranova decipiens complex using the software Maxent. The distribution of these potentially zoonotic species is of interest, because they infect the muscle tissue of host species targeted by fisheries. To achieve the best possible model, we used two different approaches. The land distance (LD) model was based on abiotic data, whereas the definitive host distance (DHD) model included species-specific biotic data. To assess whether DHD is a suitable descriptor for Pseudoterranova spp., the niches of the parasites and their respective definitive hosts were analysed using ecospat. The performance of LD and DHD was compared based on the variables' contribution to the model. The DHD-model clearly outperformed the LD-model. While the LD-model gave an estimate of the parasites' niches, it only showed the potential distribution. The DHD-model produced an estimate of the species' realised distribution and indicated that biotic variables can help to improve the modelling of data-poor, marine species.
Collapse
Affiliation(s)
- Katharina G Alt
- Goethe-University, Institute for Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung; Max-von-Laue-Str. 13, D-60438, Frankfurt/Main, Germany.
| | - Judith Kochmann
- Goethe-University, Institute for Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung; Max-von-Laue-Str. 13, D-60438, Frankfurt/Main, Germany
| | - Sven Klimpel
- Goethe-University, Institute for Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung; Max-von-Laue-Str. 13, D-60438, Frankfurt/Main, Germany
| | - Sarah Cunze
- Goethe-University, Institute for Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung; Max-von-Laue-Str. 13, D-60438, Frankfurt/Main, Germany
| |
Collapse
|
13
|
Li L, Lü L, Nadler SA, Gibson DI, Zhang LP, Chen HX, Zhao WT, Guo YN. Molecular Phylogeny and Dating Reveal a Terrestrial Origin in the Early Carboniferous for Ascaridoid Nematodes. Syst Biol 2018. [DOI: 10.1093/sysbio/syy018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Liang Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, P. R. China
| | - Liang Lü
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, P. R. China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Rd., Chaoyang District, Beijing 100101, China
| | - Steven A Nadler
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
| | - David I Gibson
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Lu-Ping Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, P. R. China
| | - Hui-Xia Chen
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, P. R. China
| | - Wen-Ting Zhao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, P. R. China
| | - Yan-Ning Guo
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|
14
|
Characterization of the complete mitochondrial genome of Ortleppascaris sinensis (Nematoda: Heterocheilidae) and comparative mitogenomic analysis of eighteen Ascaridida nematodes. J Helminthol 2017. [PMID: 28637530 DOI: 10.1017/s0022149x17000542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ortleppascaris sinensis (Nematoda: Ascaridida) is a dominant intestinal nematode of the captive Chinese alligator. However, the epidemiology, molecular ecology and population genetics of this parasite remain largely unexplored. In this study, the complete mitochondrial (mt) genome sequence of O. sinensis was first determined using a polymerase chain reaction (PCR)-based primer-walking strategy, and this is also the first sequencing of the complete mitochondrial genome of a member of the genus Ortleppascaris. The circular mitochondrial genome (13,828 bp) of O. sinensis contained 12 protein-coding, 22 transfer RNA and 2 ribosomal RNA genes, but lacked the ATP synthetase subunit 8 gene. Finally, phylogenetic analysis of mtDNAs indicated that the genus Ortleppascaris should be attributed to the family Heterocheilidae. It is necessary to sequence more mtNDAs of Ortleppascaris nematodes in the future to test and confirm our conclusion. The complete mitochondrial genome sequence of O. sinensis reported here should contribute to molecular diagnosis, epidemiological investigations and ecological studies of O. sinensis and other related Ascaridida nematodes.
Collapse
|
15
|
Liu GH, Nadler SA, Liu SS, Podolska M, D'Amelio S, Shao R, Gasser RB, Zhu XQ. Mitochondrial Phylogenomics yields Strongly Supported Hypotheses for Ascaridomorph Nematodes. Sci Rep 2016; 6:39248. [PMID: 27982084 PMCID: PMC5159812 DOI: 10.1038/srep39248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/10/2016] [Indexed: 12/03/2022] Open
Abstract
Ascaridomorph nematodes threaten the health of humans and other animals worldwide. Despite their medical, veterinary and economic importance, the identification of species lineages and establishing their phylogenetic relationships have proved difficult in some cases. Many working hypotheses regarding the phylogeny of ascaridomorphs have been based on single-locus data, most typically nuclear ribosomal RNA. Such single-locus hypotheses lack independent corroboration, and for nuclear rRNA typically lack resolution for deep relationships. As an alternative approach, we analyzed the mitochondrial (mt) genomes of anisakids (~14 kb) from different fish hosts in multiple countries, in combination with those of other ascaridomorphs available in the GenBank database. The circular mt genomes range from 13,948-14,019 bp in size and encode 12 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNA genes. Our analysis showed that the Pseudoterranova decipiens complex consists of at least six cryptic species. In contrast, the hypothesis that Contracaecum ogmorhini represents a complex of cryptic species is not supported by mt genome data. Our analysis recovered several fundamental and uncontroversial ascaridomorph clades, including the monophyly of superfamilies and families, except for Ascaridiidae, which was consistent with the results based on nuclear rRNA analysis. In conclusion, mt genome analysis provided new insights into the phylogeny and taxonomy of ascaridomorph nematodes.
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P. R. China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, P. R. China
| | - Steven A Nadler
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
| | - Shan-Shan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P. R. China
| | - Magdalena Podolska
- National Marine Fisheries Research Institute, Kollataja 1, 81-332 Gdynia, Poland
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Renfu Shao
- Genecology Research Centre, University of the Sunshine Coast, Queensland 4558, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P. R. China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, P. R. China
| |
Collapse
|
16
|
Effects of anisakid nematodes Anisakis simplex (s.l.), Pseudoterranova decipiens (s.l.) and Contracaecum osculatum (s.l.) on fish and consumer health. Food Waterborne Parasitol 2016. [DOI: 10.1016/j.fawpar.2016.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Sun MM, Ma J, Sugiyama H, Ando K, Li WW, Xu QM, Liu GH, Zhu XQ. The complete mitochondrial genomes of Gnathostoma doloresi from China and Japan. Parasitol Res 2016; 115:4013-20. [PMID: 27301404 DOI: 10.1007/s00436-016-5171-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/07/2016] [Indexed: 11/29/2022]
Abstract
Gnathostoma doloresi is one of the neglected pathogens causing gnathostomiasis. Although this zoonotic parasite leads to significant socioeconomic concerns globally, little is known of its genetics and systematics. In the present study, we sequenced and characterized the complete mitochondrial (mt) genomes of G. doloresi isolates from China and Japan. The lengths of the mt genomes of the G. doloresi China and Japan isolates are 13,809 and 13,812 bp, respectively. Both mt genomes encode 36 genes, including 12 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. The gene order, transcription direction, and genome content are identical with its congener G. spinigerum. Phylogenetic analyses based on concatenated amino acid sequences of 12 PCGs by Bayesian inference (BI) indicated that G. doloresi are closely related to G. spinigerum. Our data provide an invaluable resource for studying the molecular epidemiology, phylogenetics, and population genetics of Gnathostoma spp. and should have implications for further studies of the diagnosis, prevention, and control of gnathostomiasis in humans and animals.
Collapse
Affiliation(s)
- Miao-Miao Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Katsuhiko Ando
- Department of Medical Zoology, Mie University School of Medicine, Mie, 514-8507, Japan
| | - Wen-Wen Li
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Qian-Ming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China.
| | - Xing-Quan Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, China. .,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China.
| |
Collapse
|