1
|
Gupta H, Sharma S, Gilyazova I, Satyamoorthy K. Molecular tools are crucial for malaria elimination. Mol Biol Rep 2024; 51:555. [PMID: 38642192 DOI: 10.1007/s11033-024-09496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
The eradication of Plasmodium parasites, responsible for malaria, is a daunting global public health task. It requires a comprehensive approach that addresses symptomatic, asymptomatic, and submicroscopic cases. Overcoming this challenge relies on harnessing the power of molecular diagnostic tools, as traditional methods like microscopy and rapid diagnostic tests fall short in detecting low parasitaemia, contributing to the persistence of malaria transmission. By precisely identifying patients of all types and effectively characterizing malaria parasites, molecular tools may emerge as indispensable allies in the pursuit of malaria elimination. Furthermore, molecular tools can also provide valuable insights into parasite diversity, drug resistance patterns, and transmission dynamics, aiding in the implementation of targeted interventions and surveillance strategies. In this review, we explore the significance of molecular tools in the pursuit of malaria elimination, shedding light on their key contributions and potential impact on public health.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Sonal Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, 450054, Russia
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, 580009, Karnataka, India
| |
Collapse
|
2
|
Matrevi SA, Adams T, Tandoh KZ, Opoku-Agyeman P, Bruku S, Ennuson NA, Apau-Danso PK, Fiagbedzi E, Avornyo M, Myers CJ, Futagbi J, Hagan OC, Abuaku B, Koram KA, Awandare G, Quashie NB, Duah-Quashie NO. Putative molecular markers of Plasmodium falciparum resistance to antimalarial drugs in malaria parasites from Ghana. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1279835. [PMID: 38456076 PMCID: PMC10910922 DOI: 10.3389/fepid.2024.1279835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Introduction Antimalarial drugs including artemisinin-based combination therapy (ACT) regimens and sulphadoxine-pyrimethamine (SP) are used in Ghana for malaria therapeutics and prophylaxis respectively. The genetic basis of Plasmodium falciparum development of drug resistance involves single nucleotide polymorphisms in genes encoding proteins for multiple cellular and metabolic processes. The prevalence of single nucleotide polymorphisms in nine P. falciparum genes linked to ACT and SP resistance in the malaria parasite population was determined. Methods Archived filter paper blood blot samples from patients aged 9 years and below with uncomplicated malaria reporting at 10 sentinel sites located in three ecological zones for the Malaria Therapeutic Efficacy Studies were used. The samples used were collected from 2007-2018 malaria transmission seasons and mutations in the genes were detected using PCR and Sanger sequencing. Results In all 1,142 samples were used for the study. For falcipain-2 gene (pffp2), Sanger sequencing was successful for 872 samples and were further analysed. The prevalence of the mutants was 45% (392/872) with pffp2 markers V51I and S59F occurring in 15.0% (128/872) and 3.0% (26/872) of the samples respectively. Prevalence of other P. falciparum gene mutations: coronin (pfcoronin) was 44.8% (37/90); cysteine desulfurase (pfnfs) was 73.9% (68/92); apicoplast ribosomal protein S10 (pfarps10) was 36.8% (35/95); ferredoxin (pffd) was 8.8% (8/91); multidrug resistance protein-1 (pfmrp1) was 95.2.0% (80/84); multidrug resistance protein-2 (pfmrp2) was 91.4% (32/35); dihydrofolate reductase (pfdhfr) was 99.0% (84/85); dihydropteroate synthase (pfdhps) was 72% (68/95). Discussion The observation of numerous mutations in these genes of interest in the Ghanaian isolates, some of which have been implicated in delayed parasite clearance is of great interest. The presence of these genotypes may account for the decline in the efficacies of ACT regimens being used to treat uncomplicated malaria in the country. The need for continuous monitoring of these genetic markers to give first-hand information on parasite susceptibility to antimalarial drugs to inform policy makers and stakeholders in malaria elimination in the country is further discussed.
Collapse
Affiliation(s)
- Sena Adzoa Matrevi
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Tryphena Adams
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kwesi Zandoh Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Philip Opoku-Agyeman
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Selassie Bruku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nana Aba Ennuson
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Paa Kwesi Apau-Danso
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Emmanuel Fiagbedzi
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Mary Avornyo
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Charles James Myers
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Joy Futagbi
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Oheneba Charles Hagan
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Benjamin Abuaku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kwadwo Ansah Koram
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Neils Ben Quashie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Nancy Odurowah Duah-Quashie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Hubbard A, Hemming-Schroeder E, Machani MG, Afrane Y, Yan G, Lo E, Janies D. Implementing landscape genetics in molecular epidemiology to determine drivers of vector-borne disease: A malaria case study. Mol Ecol 2023; 32:1848-1859. [PMID: 36645165 PMCID: PMC10694861 DOI: 10.1111/mec.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
This study employs landscape genetics to investigate the environmental drivers of a deadly vector-borne disease, malaria caused by Plasmodium falciparum, in a more spatially comprehensive manner than any previous work. With 1804 samples from 44 sites collected in western Kenya in 2012 and 2013, we performed resistance surface analysis to show that Lake Victoria acts as a barrier to transmission between areas north and south of the Winam Gulf. In addition, Mantel correlograms clearly showed significant correlations between genetic and geographic distance over short distances (less than 70 km). In both cases, we used an identity-by-state measure of relatedness tailored to find highly related individual parasites in order to focus on recent gene flow that is more relevant to disease transmission. To supplement these results, we performed conventional population genetics analyses, including Bayesian clustering methods and spatial ordination techniques. These analyses revealed some differentiation on the basis of geography and elevation and a cluster of genetic similarity in the lowlands north of the Winam Gulf of Lake Victoria. Taken as a whole, these results indicate low overall genetic differentiation in the Lake Victoria region, but with some separation of parasite populations north and south of the Winam Gulf that is explained by the presence of the lake as a geographic barrier to gene flow. We recommend similar landscape genetics analyses in future molecular epidemiology studies of vector-borne diseases to extend and contextualize the results of traditional population genetics.
Collapse
Affiliation(s)
- Alfred Hubbard
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina, Charlotte, USA
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Elizabeth Hemming-Schroeder
- Department of Microbiology, Center for Vector-borne Infectious Diseases (CVID), Colorado State University, Fort Collins, Colorado, USA
| | | | - Yaw Afrane
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, California, USA
| | - Eugenia Lo
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina, Charlotte, USA
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
4
|
Gupta Y, Sharma N, Singh S, Romero JG, Rajendran V, Mogire RM, Kashif M, Beach J, Jeske W, Poonam, Ogutu BR, Kanzok SM, Akala HM, Legac J, Rosenthal PJ, Rademacher DJ, Durvasula R, Singh AP, Rathi B, Kempaiah P. The Multistage Antimalarial Compound Calxinin Perturbates P. falciparum Ca 2+ Homeostasis by Targeting a Unique Ion Channel. Pharmaceutics 2022; 14:1371. [PMID: 35890267 PMCID: PMC9319510 DOI: 10.3390/pharmaceutics14071371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Malaria elimination urgently needs novel antimalarial therapies that transcend resistance, toxicity, and high costs. Our multicentric international collaborative team focuses on developing multistage antimalarials that exhibit novel mechanisms of action. Here, we describe the design, synthesis, and evaluation of a novel multistage antimalarial compound, 'Calxinin'. A compound that consists of hydroxyethylamine (HEA) and trifluoromethyl-benzyl-piperazine. Calxinin exhibits potent inhibitory activity in the nanomolar range against the asexual blood stages of drug-sensitive (3D7), multidrug-resistant (Dd2), artemisinin-resistant (IPC4912), and fresh Kenyan field isolated Plasmodium falciparum strains. Calxinin treatment resulted in diminished maturation of parasite sexual precursor cells (gametocytes) accompanied by distorted parasite morphology. Further, in vitro liver-stage testing with a mouse model showed reduced parasite load at an IC50 of 79 nM. A single dose (10 mg/kg) of Calxinin resulted in a 30% reduction in parasitemia in mice infected with a chloroquine-resistant strain of the rodent parasite P. berghei. The ex vivo ookinete inhibitory concentration within mosquito gut IC50 was 150 nM. Cellular in vitro toxicity assays in the primary and immortalized human cell lines did not show cytotoxicity. A computational protein target identification pipeline identified a putative P. falciparum membrane protein (Pf3D7_1313500) involved in parasite calcium (Ca2+) homeostasis as a potential Calxinin target. This highly conserved protein is related to the family of transient receptor potential cation channels (TRP-ML). Target validation experiments showed that exposure of parasitized RBCs (pRBCs) to Calxinin induces a rapid release of intracellular Ca2+ from pRBCs; leaving de-calcinated parasites trapped in RBCs. Overall, we demonstrated that Calxinin is a promising antimalarial lead compound with a novel mechanism of action and with potential therapeutic, prophylactic, and transmission-blocking properties against parasites resistant to current antimalarials.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
| | - Snigdha Singh
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
| | - Jesus G. Romero
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
- School of Biology, Institute of Experimental Biology, Central University of Venezuela, Caracas 1040, Venezuela
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India;
| | - Reagan M. Mogire
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India; (M.K.); (A.P.S.)
| | - Jordan Beach
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
| | - Walter Jeske
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, New Delhi 110021, India;
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110007, India
| | - Bernhards R. Ogutu
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Hoseah M. Akala
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Jennifer Legac
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (J.L.); (P.J.R.)
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (J.L.); (P.J.R.)
| | - David J. Rademacher
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
- Core Imaging Facility and Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ravi Durvasula
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| | - Agam P. Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India; (M.K.); (A.P.S.)
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110007, India
| | - Prakasha Kempaiah
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| |
Collapse
|
5
|
Amoah LE, Abukari Z, Dawson-Amoah ME, Dieng CC, Lo E, Afrane YA. Population structure and diversity of Plasmodium falciparum in children with asymptomatic malaria living in different ecological zones of Ghana. BMC Infect Dis 2021; 21:439. [PMID: 33985447 PMCID: PMC8120845 DOI: 10.1186/s12879-021-06120-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic diversity in Plasmodium falciparum populations can be used to describe the resilience and spatial distribution of the parasite in the midst of intensified intervention efforts. This study used microsatellite analysis to evaluate the genetic diversity and population dynamics of P. falciparum parasites circulating in three ecological zones of Ghana. METHODS A total of 1168 afebrile children aged between 3 to 13 years were recruited from five (5) Primary schools in 3 different ecological zones (Sahel (Tamale and Kumbungu), Forest (Konongo) and Coastal (Ada and Dodowa)) of Ghana. Asymptomatic malaria parasite carriage was determined using microscopy and PCR, whilst fragment analysis of 6 microsatellite loci was used to determine the diversity and population structure of P. falciparum parasites. RESULTS Out of the 1168 samples examined, 16.1 and 39.5% tested positive for P. falciparum by microscopy and nested PCR respectively. The genetic diversity of parasites in the 3 ecological zones was generally high, with an average heterozygosity (He) of 0.804, 0.787 and 0.608 the rainy (peak) season for the Sahel, Forest and Coastal zones respectively. The mean He for the dry (off-peak) season were 0.562, 0.693 and 0.610 for the Sahel, Forest and Coastal zones respectively. Parasites from the Forest zone were more closely related to those from the Sahel than from the Coastal zone, despite the Coastal zone being closer in physical distance to the Forest zone. The fixation indexes among study sites ranged from 0.049 to 0.112 during the rainy season and 0.112 to 0.348 during the dry season. CONCLUSION A large asymptomatic parasite reservoir was found in the school children during both rainy and dry seasons, especially those in the Forest and Sahel savannah zones where parasites were also found to be related compared to those from the Coastal zone. Further studies are recommended to understand why despite the roll out of several malaria interventions in Ghana, high transmission still persist.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Zakaria Abukari
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Maame Esi Dawson-Amoah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Cheikh Cambel Dieng
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
6
|
Briggs J, Kuchta A, Murphy M, Tessema S, Arinaitwe E, Rek J, Chen A, Nankabirwa JI, Drakeley C, Smith D, Bousema T, Kamya M, Rodriguez-Barraquer I, Staedke S, Dorsey G, Rosenthal PJ, Greenhouse B. Within-household clustering of genetically related Plasmodium falciparum infections in a moderate transmission area of Uganda. Malar J 2021; 20:68. [PMID: 33531029 PMCID: PMC8042884 DOI: 10.1186/s12936-021-03603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Evaluation of genetic relatedness of malaria parasites is a useful tool for understanding transmission patterns, but patterns are not easily detectable in areas with moderate to high malaria transmission. To evaluate the feasibility of detecting genetic relatedness in a moderate malaria transmission setting, relatedness of Plasmodium falciparum infections was measured in cohort participants from randomly selected households in the Kihihi sub-county of Uganda (annual entomological inoculation rate of 27 infectious bites per person). METHODS All infections detected via microscopy or Plasmodium-specific loop mediated isothermal amplification from passive and active case detection during August 2011-March 2012 were genotyped at 26 microsatellite loci, providing data for 349 samples from 230 participants living in 80 households. Pairwise genetic relatedness was calculated using identity by state (IBS). RESULTS As expected, genetic diversity was high (mean heterozygosity [He] = 0.73), and the majority (76.5 %) of samples were polyclonal. Despite the high genetic diversity, fine-scale population structure was detectable, with significant spatiotemporal clustering of highly related infections. Although the difference in malaria incidence between households at higher (mean 1127 metres) versus lower elevation (mean 1015 metres) was modest (1.4 malaria cases per person-year vs. 1.9 per person-year, respectively), there was a significant difference in multiplicity of infection (2.2 vs. 2.6, p = 0.008) and, more strikingly, a higher proportion of highly related infections within households (6.3 % vs. 0.9 %, p = 0.0005) at higher elevation compared to lower elevation. CONCLUSIONS Genetic data from a relatively small number of diverse, multiallelic loci reflected fine scale patterns of malaria transmission. Given the increasing interest in applying genetic data to augment malaria surveillance, this study provides evidence that genetic data can be used to inform transmission patterns at local spatial scales even in moderate transmission areas.
Collapse
Affiliation(s)
- Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Alison Kuchta
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Max Murphy
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sofonias Tessema
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Anna Chen
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - David Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, WA, USA
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Sarah Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Touray AO, Mobegi VA, Wamunyokoli F, Herren JK. Diversity and Multiplicity of P. falciparum infections among asymptomatic school children in Mbita, Western Kenya. Sci Rep 2020; 10:5924. [PMID: 32246127 PMCID: PMC7125209 DOI: 10.1038/s41598-020-62819-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
Multiplicity of infection (MOI) and genetic diversity of P. falciparum infections are important surrogate indicators for assessing malaria transmission intensity in different regions of endemicity. Determination of MOI and diversity of P. falciparum among asymptomatic carriers will enhance our understanding of parasite biology and transmission to mosquito vectors. This study examined the MOI and genetic diversity of P. falciparum parasite populations circulating in Mbita, a region characterized as one of the malaria hotspots in Kenya. The genetic diversity and multiplicity of P. falciparum infections in 95 asymptomatic school children (age 5–15 yrs.) residing in Mbita, western Kenya were assessed using 10 polymorphic microsatellite markers. An average of 79.69% (Range: 54.84–95.74%) of the isolates analysed in this study were polyclonal infections as detected in at least one locus. A high mean MOI of 3.39 (Range: 2.24–4.72) and expected heterozygosity (He) of 0.81 (Range: 0.57–0.95) was reported in the study population. The analysed samples were extensively polyclonal infections leading to circulation of highly genetically diverse parasite populations in the study area. These findings correlated with the expectations of high malaria transmission intensity despite scaling up malaria interventions in the area thereby indicating the need for a robust malaria interventions particularly against asymptomatic carriers in order to attain elimination in the region.
Collapse
Affiliation(s)
- Abdoulie O Touray
- Department of Molecular Biology and Biotechnology, Institute of Basic Sciences, Technology and Innovation, Pan African University (PAUSTI), Nairobi, Kenya. .,International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.
| | - Victor A Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya.
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
8
|
Nelson CS, Sumner KM, Freedman E, Saelens JW, Obala AA, Mangeni JN, Taylor SM, O'Meara WP. High-resolution micro-epidemiology of parasite spatial and temporal dynamics in a high malaria transmission setting in Kenya. Nat Commun 2019; 10:5615. [PMID: 31819062 PMCID: PMC6901486 DOI: 10.1038/s41467-019-13578-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023] Open
Abstract
Novel interventions that leverage the heterogeneity of parasite transmission are needed to achieve malaria elimination. To better understand spatial and temporal dynamics of transmission, we applied amplicon next-generation sequencing of two polymorphic gene regions (csp and ama1) to a cohort identified via reactive case detection in a high-transmission setting in western Kenya. From April 2013 to July 2014, we enrolled 442 symptomatic children with malaria, 442 matched controls, and all household members of both groups. Here, we evaluate genetic similarity between infected individuals using three indices: sharing of parasite haplotypes on binary and proportional scales and the L1 norm. Symptomatic children more commonly share haplotypes with their own household members. Furthermore, we observe robust temporal structuring of parasite genetic similarity and identify the unique molecular signature of an outbreak. These findings of both micro- and macro-scale organization of parasite populations might be harnessed to inform next-generation malaria control measures. Here, Nelson et al. use amplicon next-generation sequencing of two P. falciparum polymorphic gene regions to investigate the genetic similarity of parasite populations across time and space in a pediatric cohort in Kenya. They identify both micro- and macro-scale structuring of malaria parasites in this high-transmission setting, which could inform future intervention strategies.
Collapse
Affiliation(s)
- Cody S Nelson
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA.
| | - Kelsey M Sumner
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth Freedman
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joseph W Saelens
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Andrew A Obala
- School of Medicine, Moi University College of Health Sciences, Eldoret, Kenya
| | - Judith N Mangeni
- School of Nursing, Moi University College of Health Sciences, Eldoret, Kenya
| | - Steve M Taylor
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Wendy P O'Meara
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Abukari Z, Okonu R, Nyarko SB, Lo AC, Dieng CC, Salifu SP, Gyan BA, Lo E, Amoah LE. The Diversity, Multiplicity of Infection and Population Structure of P. falciparum Parasites Circulating in Asymptomatic Carriers Living in High and Low Malaria Transmission Settings of Ghana. Genes (Basel) 2019; 10:genes10060434. [PMID: 31181699 PMCID: PMC6628376 DOI: 10.3390/genes10060434] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. This study utilized 12 polymorphic microsatellite (MS) markers and the Msp2 marker to examine diversity, multiplicity of infection (MOI) as well as the population structure of parasites circulating in two sites separated by about 92 km and with varying malaria transmission intensities within the Greater Accra Region of Ghana. Methods: The diversity and MOI of P. falciparum parasites in 160 non-symptomatic volunteers living in Obom (high malaria transmission intensity) and Asutsuare (low malaria transmission intensity) aged between 8 and 60 years was determined using Msp2 genotyping and microsatellite analysis. Results: The prevalence of asymptomatic P. falciparum carriers as well as the parasite density of infections was significantly higher in Obom than in Asutsuare. Samples from Asutsuare and Obom were 100% and 65% clonal, respectively, by Msp2 genotyping but decreased to 50% and 5%, respectively, when determined by MS analysis. The genetic composition of parasites from Obom and Asutsuare were highly distinct, with parasites from Obom being more diverse than those from Asutsuare. Conclusion: Plasmodium falciparum parasites circulating in Obom are genetically more diverse and distinct from those circulating in Asutsuare. The MOI in samples from both Obom and Asutsuare increased when assessed by MS analysis relative to MSP2 genotyping. The TA40 and TA87 loci are useful markers for estimating MOI in high and low parasite prevalence settings.
Collapse
Affiliation(s)
- Zakaria Abukari
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Ruth Okonu
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Samuel B Nyarko
- School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Aminata C Lo
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Department of Parasitology, University Cheikh Anta Diop, Dakar, Senegal.
| | - Cheikh C Dieng
- Department of Biological Sciences, University of North Carolina at Charlotte, NC 28223, USA.
| | - Samson P Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Ben A Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, NC 28223, USA.
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.
| |
Collapse
|
10
|
Nderu D, Kimani F, Karanja E, Thiong'o K, Akinyi M, Too E, Chege W, Nambati E, Wangai LN, Meyer CG, Velavan TP. Genetic diversity and population structure of Plasmodium falciparum in Kenyan-Ugandan border areas. Trop Med Int Health 2019; 24:647-656. [PMID: 30816614 DOI: 10.1111/tmi.13223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kenya has, in the last decade, made tremendous progress in the fight against malaria. Nevertheless, continued surveillance of the genetic diversity and population structure of Plasmodium falciparum is required to refine malaria control and to adapt and improve elimination strategies. Twelve neutral microsatellite loci were genotyped in 201 P. falciparum isolates obtained from the Kenyan-Ugandan border (Busia) and from two inland malaria-endemic sites situated in western (Nyando) and coastal (Msambweni) Kenya. Analyses were done to assess the genetic diversity (allelic richness and expected heterozygosity, [He ]), multilocus linkage disequilibrium ( I S A ) and population structure. A similarly high degree of genetic diversity was observed among the three parasite populations surveyed (mean He = 0.76; P > 0.05). Except in Msambweni, random association of microsatellite loci was observed, indicating high parasite out-breeding. Low to moderate genetic structure (FST = 0.022-0.076; P < 0.0001) was observed with only 5% variance in allele frequencies observed among the populations. This study shows that the genetic diversity of P. falciparum populations at the Kenyan-Ugandan border is comparable to the parasite populations from inland Kenya. In addition, high genetic diversity, panmixia and weak population structure in this study highlight the fitness of Kenyan P. falciparum populations to successfully withstand malaria control interventions.
Collapse
Affiliation(s)
- David Nderu
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,School of Health Sciences, Kirinyaga University, Kerugoya, Kenya
| | - Francis Kimani
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Evaline Karanja
- Department of Biochemistry and Biotechnology, School of Biological and Life Sciences, Technical University of Kenya, Nairobi, Kenya
| | - Kelvin Thiong'o
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Maureen Akinyi
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Edwin Too
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - William Chege
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Eva Nambati
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Laura N Wangai
- School of Health Sciences, Kirinyaga University, Kerugoya, Kenya
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Centre for Medical Research, Hanoi, Vietnam.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Centre for Medical Research, Hanoi, Vietnam.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam.,Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
| |
Collapse
|
11
|
Blanton RE. Population Genetics and Molecular Epidemiology of Eukaryotes. Microbiol Spectr 2018; 6:10.1128/microbiolspec.AME-0002-2018. [PMID: 30387414 PMCID: PMC6217834 DOI: 10.1128/microbiolspec.ame-0002-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 01/16/2023] Open
Abstract
Molecular epidemiology uses the distribution and organization of a pathogen's DNA to understand the distribution and determinants of disease. Since the biology of DNA for eukaryotic pathogens differs substantially from that of bacteria, the analytic approach to their molecular epidemiology can also differ. While many of the genotyping techniques presented earlier in this series, "Advances in Molecular Epidemiology of Infectious Diseases," can be applied to eukaryotes, the output must be interpreted in the light of how DNA is distributed from one generation to the next. In some cases, parasite populations can be evaluated in ways reminiscent of bacteria. They differ, however, when analyzed as sexually reproducing organisms, where all individuals are unique but the genetic composition of the population does not change unless a limited set of events occurs. It is these events (migration, mutation, nonrandom mating, selection, and genetic drift) that are of interest. At a given time, not all of them are likely to be equally important, so the list can easily be narrowed down to understand the driving forces behind the population as it is now and even what it will look like in the future. The main population characteristics measured to assess these events are differentiation and diversity, interpreted in the light of what is known about the population from observation. The population genetics of eukaryotes is important for planning and evaluation of control measures, surveillance, outbreak investigation, and monitoring of the development and spread of drug resistance. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Ronald E Blanton
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
12
|
Muiruri P, Juma DW, Ingasia LA, Chebon LJ, Opot B, Ngalah BS, Cheruiyot J, Andagalu B, Akala HM, Nyambati VCS, Ng'ang'a JK, Kamau E. Selective sweeps and genetic lineages of Plasmodium falciparum multi-drug resistance (pfmdr1) gene in Kenya. Malar J 2018; 17:398. [PMID: 30376843 PMCID: PMC6208105 DOI: 10.1186/s12936-018-2534-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND There are concerns that resistance to artemisinin-based combination therapy might emerge in Kenya and sub-Saharan Africa (SSA) in the same pattern as was with chloroquine and sulfadoxine-pyrimethamine. Single nucleotide polymorphisms (SNPs) in critical alleles of pfmdr1 gene have been associated with resistance to artemisinin and its partner drugs. Microsatellite analysis of loci flanking genes associated with anti-malarial drug resistance has been used in defining the geographic origins, dissemination of resistant parasites and identifying regions in the genome that have been under selection. METHODS This study set out to investigate evidence of selective sweep and genetic lineages in pfmdr1 genotypes associated with the use of artemether-lumefantrine (AL), as the first-line treatment in Kenya. Parasites (n = 252) from different regions in Kenya were assayed for SNPs at codons 86, 184 and 1246 and typed for 7 neutral microsatellites and 13 microsatellites loci flanking (± 99 kb) pfmdr1 in Plasmodium falciparum infections. RESULTS The data showed differential site and region specific prevalence of SNPs associated with drug resistance in the pfmdr1 gene. The prevalence of pfmdr1 N86, 184F, and D1246 in western Kenya (Kisumu, Kericho and Kisii) compared to the coast of Kenya (Malindi) was 92.9% vs. 66.7%, 53.5% vs. to 24.2% and 96% vs. to 87.9%, respectively. The NFD haplotype which is consistent with AL selection was at 51% in western Kenya compared to 25% in coastal Kenya. CONCLUSION Selection pressures were observed to be different in different regions of Kenya, especially the western region compared to the coastal region. The data showed independent genetic lineages for all the pfmdr1 alleles. The evidence of soft sweeps in pfmdr1 observed varied in direction from one region to another. This is challenging for malaria control programs in SSA which clearly indicate effective malaria control policies should be based on the region and not at a country wide level.
Collapse
Affiliation(s)
- Peninah Muiruri
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Denis W Juma
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Luicer A Ingasia
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Lorna J Chebon
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Benjamin Opot
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Bidii S Ngalah
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Jelagat Cheruiyot
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Ben Andagalu
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Hoseah M Akala
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Venny C S Nyambati
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Joseph K Ng'ang'a
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Edwin Kamau
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya.
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA.
| |
Collapse
|
13
|
de Laurent ZR, Chebon LJ, Ingasia LA, Akala HM, Andagalu B, Ochola-Oyier LI, Kamau E. Polymorphisms in the K13 Gene in Plasmodium falciparum from Different Malaria Transmission Areas of Kenya. Am J Trop Med Hyg 2018; 98:1360-1366. [PMID: 29582728 DOI: 10.4269/ajtmh.17-0505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The development of artemisinin (ART)-resistant parasites in Southeast Asia (SEA) threatens malaria control globally. Mutations in the Kelch 13 (K13)-propeller domain have been useful in identifying ART resistance in SEA. ART combination therapy (ACT) remains highly efficacious in the treatment of uncomplicated malaria in Sub-Saharan Africa (SSA). However, it is crucial that the efficacy of ACT is closely monitored. Toward this effort, this study profiled the prevalence of K13 nonsynonymous mutations in different malaria ecological zones of Kenya and in different time periods, before (pre) and after (post) the introduction of ACT as the first-line treatment of malaria. Nineteen nonsynonymous mutations were present in the pre-ACT samples (N = 64) compared with 22 in the post-ACT samples (N = 251). Eight of these mutations were present in both pre- and post-ACT parasites. Interestingly, seven of the shared single-nucleotide polymorphisms were at higher frequencies in the pre-ACT than the post-ACT parasites. The A578S mutation reported in SSA and the V568G mutation reported in SEA were found in both pre- and post-ACT parasites, with their frequencies declining post-ACT. D584Y and R539K mutations were found only in post-ACT parasites; changes in these codons have also been reported in SEA with different amino acids. The N585K mutation described for the first time in this study was present only in post-ACT parasites, and it was the most prevalent mutation at a frequency of 5.2%. This study showed the type, prevalence, and frequency of K13 mutations that varied based on the malaria ecological zones and also between the pre- and post-ACT time periods.
Collapse
Affiliation(s)
- Zaydah R de Laurent
- Center for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya.,Kenya Medical Research Institute/United States Army Medical Research Directorate-Kenya, Kisumu, Kenya
| | - Lorna J Chebon
- Kenya Medical Research Institute/United States Army Medical Research Directorate-Kenya, Kisumu, Kenya
| | - Luicer A Ingasia
- Kenya Medical Research Institute/United States Army Medical Research Directorate-Kenya, Kisumu, Kenya
| | - Hoseah M Akala
- Kenya Medical Research Institute/United States Army Medical Research Directorate-Kenya, Kisumu, Kenya
| | - Ben Andagalu
- Kenya Medical Research Institute/United States Army Medical Research Directorate-Kenya, Kisumu, Kenya
| | - Lynette Isabella Ochola-Oyier
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Center for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Edwin Kamau
- Kenya Medical Research Institute/United States Army Medical Research Directorate-Kenya, Kisumu, Kenya.,Walter Reed National Military Medical Center (WRNMMC), Bethesda, Maryland
| |
Collapse
|
14
|
Yin F, Liu Z, Liu J, Liu A, Salih DA, Li Y, Liu G, Luo J, Guan G, Yin H. Population Genetic Analysis of Theileria annulata from Six Geographical Regions in China, Determined on the Basis of Micro- and Mini-satellite Markers. Front Genet 2018. [PMID: 29515624 PMCID: PMC5826064 DOI: 10.3389/fgene.2018.00050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Theileria annulata, a tick-borne apicomplexan protozoan, causes a lymphoproliferative disease of cattle with high prevalence in tropical and sub-tropical regions. Understanding the genetic diversity and structure of local populations will provide more fundamental knowledge for the population genetics and epidemics of protozoa. In this study, 78 samples of T. annulata collected from cattle/yaks representing 6 different geographic populations in China were genotyped using eight micro- and mini-satellite markers. High genetic variation within population, moderate genetic differentiation, and high level of diversity co-occurring with significant linkage disequilibrium were observed, which indicates there is gene flow between these populations in spite of the existence of reproductive and geographical barriers among populations. Furthermore, some degree of genetic differentiation was also found between samples from China and Oman. These findings provide a first glimpse of the genetic diversity of the T. annulata populations in China, and might contribute to the knowledge of distribution, dynamics, and epidemiology of T. annulata populations and optimize the management strategies for control.
Collapse
Affiliation(s)
- Fangyuan Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | | | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
15
|
Omedo I, Mogeni P, Rockett K, Kamau A, Hubbart C, Jeffreys A, Ochola-Oyier LI, de Villiers EP, Gitonga CW, Noor AM, Snow RW, Kwiatkowski D, Bejon P. Geographic-genetic analysis of Plasmodium falciparum parasite populations from surveys of primary school children in Western Kenya. Wellcome Open Res 2017; 2:29. [PMID: 28944299 PMCID: PMC5527688 DOI: 10.12688/wellcomeopenres.11228.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 12/30/2022] Open
Abstract
Background. Malaria control, and finally malaria elimination, requires the identification and targeting of residual foci or hotspots of transmission. However, the level of parasite mixing within and between geographical locations is likely to impact the effectiveness and durability of control interventions and thus should be taken into consideration when developing control programs. Methods. In order to determine the geographic-genetic patterns of
Plasmodium falciparum parasite populations at a sub-national level in Kenya, we used the Sequenom platform to genotype 111 genome-wide distributed single nucleotide polymorphic (SNP) positions in 2486 isolates collected from children in 95 primary schools in western Kenya. We analysed these parasite genotypes for genetic structure using principal component analysis and assessed local and global clustering using statistical measures of spatial autocorrelation. We further examined the region for spatial barriers to parasite movement as well as directionality in the patterns of parasite movement. Results. We found no evidence of population structure and little evidence of spatial autocorrelation of parasite genotypes (correlation coefficients <0.03 among parasite pairs in distance classes of 1km, 2km and 5km; p value<0.01). An analysis of the geographical distribution of allele frequencies showed weak evidence of variation in distribution of alleles, with clusters representing a higher than expected number of samples with the major allele being identified for 5 SNPs. Furthermore, we found no evidence of the existence of spatial barriers to parasite movement within the region, but observed directional movement of parasites among schools in two separate sections of the region studied. Conclusions. Our findings illustrate a pattern of high parasite mixing within the study region. If this mixing is due to rapid gene flow, then “one-off” targeted interventions may not be currently effective at the sub-national scale in Western Kenya, due to the high parasite movement that is likely to lead to re-introduction of infection from surrounding regions. However repeated targeted interventions may reduce transmission in the surrounding regions.
Collapse
Affiliation(s)
- Irene Omedo
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Polycarp Mogeni
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Kirk Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Alice Kamau
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Anna Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | - Etienne P de Villiers
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Public Health, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ, UK
| | - Caroline W Gitonga
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Abdisalan M Noor
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ, UK.,Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Robert W Snow
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ, UK.,Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Dominic Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Clinical Vaccinology and Tropical Medicine, Oxford, OX3 7LJ, UK
| |
Collapse
|
16
|
Omedo I, Mogeni P, Rockett K, Kamau A, Hubbart C, Jeffreys A, Ochola-Oyier LI, de Villiers EP, Gitonga CW, Noor AM, Snow RW, Kwiatkowski D, Bejon P. Geographic-genetic analysis of Plasmodium falciparum parasite populations from surveys of primary school children in Western Kenya. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.11228.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background. Malaria control, and finally malaria elimination, requires the identification and targeting of residual foci or hotspots of transmission. However, the level of parasite mixing within and between geographical locations is likely to impact the effectiveness and durability of control interventions and thus should be taken into consideration when developing control programs. Methods. In order to determine the geographic-genetic patterns of Plasmodium falciparum parasite populations at a sub-national level in Kenya, we used the Sequenom platform to genotype 111 genome-wide distributed single nucleotide polymorphic (SNP) positions in 2486 isolates collected from children in 95 primary schools in western Kenya. We analysed these parasite genotypes for genetic structure using principal component analysis and assessed local and global clustering using statistical measures of spatial autocorrelation. We further examined the region for spatial barriers to parasite movement as well as directionality in the patterns of parasite movement. Results. We found no evidence of population structure and little evidence of spatial autocorrelation of parasite genotypes (correlation coefficients <0.03 among parasite pairs in distance classes of 1km, 2km and 5km; p value<0.01). An analysis of the geographical distribution of allele frequencies showed weak evidence of variation in distribution of alleles, with clusters representing a higher than expected number of samples with the major allele being identified for 5 SNPs. Furthermore, we found no evidence of the existence of spatial barriers to parasite movement within the region, but observed directional movement of parasites among schools in two separate sections of the region studied. Conclusions. Our findings illustrate a pattern of high parasite mixing within the study region. If this mixing is due to rapid gene flow, then “one-off” targeted interventions may not be currently effective at the sub-national scale in Western Kenya, due to the high parasite movement that is likely to lead to re-introduction of infection from surrounding regions. However repeated targeted interventions may reduce transmission in the surrounding regions.
Collapse
|
17
|
Salgueiro P, Vicente JL, Figueiredo RC, Pinto J. Genetic diversity and population structure of Plasmodium falciparum over space and time in an African archipelago. INFECTION GENETICS AND EVOLUTION 2016; 43:252-60. [DOI: 10.1016/j.meegid.2016.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|
18
|
Kar NP, Chauhan K, Nanda N, Kumar A, Carlton JM, Das A. Comparative assessment on the prevalence of mutations in the Plasmodium falciparum drug-resistant genes in two different ecotypes of Odisha state, India. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2016; 41:47-55. [PMID: 26988711 PMCID: PMC4868809 DOI: 10.1016/j.meegid.2016.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 01/14/2023]
Abstract
Considering malaria as a local and focal disease, epidemiological understanding of different ecotypes of malaria can help in devising novel control measures. One of the major hurdles in malaria control lies on the evolution and dispersal of the drug-resistant malaria parasite, Plasmodium falciparum. We herewith present data on genetic variation at the Single Nucleotide Polymorphism (SNP) level in four different genes of P. falciparum (Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps) that confer resistance to different antimalarials in two different eco-epidemiological settings, i.e. Hilly-Forest (HF) and Riverine-Plain (RP), in a high malaria endemic district of Odisha state, India. Greater frequency of antimalarial resistance conferring SNPs and haplotypes was observed in all four genes in P. falciparum, and Pfdhps was the most variable gene among the four. No significant genetic differentiation could be observed in isolates from HF and RP ecotypes. Twelve novel, hitherto unreported nucleotide mutations could be observed in the Pfmdr1 and Pfdhps genes. While the Pfdhps gene presented highest haplotype diversity, the Pfcrt gene displayed the highest nucleotide diversity. When the data on all the four genes were complied, the isolates from HF ecotype were found to harbour higher average nucleotide diversity than those coming from RP ecotype. High and positive Tajima's D values were obtained for the Pfcrt and Pfdhfr genes in isolates from both the HF and RP ecotypes, with statistically significant deviation from neutrality in the RP ecotype. Different patterns of Linkage Disequilibrium (LD) among SNPs located in different drug-resistant genes were found in the isolates collected from HF and RP ecotypes. Whereas in the HF ecotype, SNPs in the Pfmdr1 and Pfdhfr were significantly associated, in the RP ecotype, SNPs located in Pfcrt were associated with Pfmdr1, Pfdhfr and Pfdhps. These findings provide a baseline understanding on how different micro eco-epidemiological settings influence evolution and spread of different drug resistance alleles. Our findings further suggest that drug resistance to chloroquine and sulfadoxine-pyrimethamine is approaching fixation level, which requires urgent attention of malaria control programme in India.
Collapse
Affiliation(s)
- Narayani Prasad Kar
- National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi-110077, India
| | - Kshipra Chauhan
- National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi-110077, India
| | - Nutan Nanda
- National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi-110077, India
| | - Ashwani Kumar
- National Institute of Malaria Research, DHS Building, Campal, Panaji, Field Unit, Goa-403001, India
| | - Jane M. Carlton
- Department of Biology, New York University, 12 Waverly Place, New York, NY 10009, U.S.A
| | - Aparup Das
- National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi-110077, India
| |
Collapse
|