1
|
Yamaji R, Zhang W, Kamata A, Adlhoch C, Swayne DE, Pereyaslov D, Wang D, Neumann G, Pavade G, Barr IG, Peiris M, Webby RJ, Fouchier RAM, Von Dobschütz S, Fabrizio T, Shu Y, Samaan M. Pandemic risk characterisation of zoonotic influenza A viruses using the Tool for Influenza Pandemic Risk Assessment (TIPRA). THE LANCET. MICROBE 2024:100973. [PMID: 39396528 DOI: 10.1016/j.lanmic.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
A systematic risk assessment approach is essential for evaluating the relative risk of influenza A viruses (IAVs) with pandemic potential. To achieve this, the Tool for Influenza Pandemic Risk Assessment (TIPRA) was developed under the Global Influenza Programme of WHO. Since its release in 2016 and update in 2020, TIPRA has been used to assess the pandemic risk of 11 zoonotic IAVs across ten evaluation rounds. Notably, A(H7N9), A(H9N2), and A(H5) clade 2.3.4.4 viruses were re-evaluated owing to changes in epidemiological characteristics or virus properties. A(H7N9) viruses had the highest relative risk at the time of assessment, highlighting the importance of continuous monitoring and reassessment as changes in epidemiological trends within animal and human populations can alter risk profiles. The knowledge gaps identified throughout the ten risk assessments should help to guide the efficient use of resources for future research, including surveillance. The TIPRA tool reflects the One Health approach and has proven crucial for closely monitoring virus dynamics in both human and non-human populations to enhance preparedness for potential IAV pandemics.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Wenqing Zhang
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Akiko Kamata
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Solna, Sweden
| | | | - Dmitriy Pereyaslov
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China CDC, Changping District, Beijing, China
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Sophie Von Dobschütz
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy; Emerging Diseases and Zoonoses Unit, Department for Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Thomas Fabrizio
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuelong Shu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Magdi Samaan
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
2
|
Shalaby S, Awadin W, Manzoor R, Karam R, Mohamadin M, Salem S, El-Shaieb A. Pathological and phylogenetic characteristics of fowl AOAV-1 and H5 isolated from naturally infected Meleagris Gallopavo. BMC Vet Res 2024; 20:216. [PMID: 38773480 PMCID: PMC11107055 DOI: 10.1186/s12917-024-04029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND In this study, we investigated the prevalence of respiratory viruses in four Hybrid Converter Turkey (Meleagris gallopavo) farms in Egypt. The infected birds displayed severe respiratory signs, accompanied by high mortality rates, suggesting viral infections. Five representative samples from each farm were pooled and tested for H5 & H9 subtypes of avian influenza viruses (AIVs), Avian Orthoavulavirus-1 (AOAV-1), and turkey rhinotracheitis (TRT) using real-time RT-PCR and conventional RT-PCR. Representative tissue samples from positive cases were subjected to histopathology and immunohistochemistry (IHC). RESULTS The PCR techniques confirmed the presence of AOAV-1 and H5 AIV genes, while none of the tested samples were positive for H9 or TRT. Microscopic examination of tissue samples revealed congestion and hemorrhage in the lungs, liver, and intestines with leukocytic infiltration. IHC revealed viral antigens in the lungs, liver, and intestines. Phylogenetic analysis revealed that H5 HA belonged to 2.3.4.4b H5 sublineage and AOAV-1 belonged to VII 1.1 genotype. CONCLUSIONS The study highlights the need for proper monitoring of hybrid converter breeds for viral diseases, and the importance of vaccination programs to prevent unnecessary losses. To our knowledge, this is the first study that reports the isolation of AOAV-1 and H5Nx viruses from Hybrid Converter Turkeys in Egypt.
Collapse
Affiliation(s)
- Shady Shalaby
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt.
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt.
| | - Rashid Manzoor
- Veterinary Science Program, Faculty of Health Sciences, Higher Colleges of Technology, P.O. Box 7946, Sharjah City, UAE.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt
| | - Mahmoud Mohamadin
- Veterinary Science Program, Faculty of Health Sciences, Higher Colleges of Technology, P.O. Box 7946, Sharjah City, UAE
| | - Sanaa Salem
- Department of Pathology, Zagazig Branch, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), P.O. Box 44516, Zagazig City, Egypt
| | - Ahmed El-Shaieb
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura City, 35516, Egypt
- Faculty of Veterinary Medicine, Egyptian Chinese University, Ain Shams City, 4541312, Egypt
| |
Collapse
|
3
|
Wibawa H, Wibowo PE, Supriyadi A, Lestari L, Silaban J, Fuadi AA, Fiqri AJ, Handayani RW, Irianingsih SH, Fahmia Z, Mulyawan H, Idris S, Zainuddin N. Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b in Domestic Ducks, Indonesia, 2022. Emerg Infect Dis 2024; 30:586-590. [PMID: 38407163 PMCID: PMC10902521 DOI: 10.3201/eid3003.230973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b viruses were isolated from domestic ducks in South Kalimantan, Indonesia, during April 2022. The viruses were genetically similar to those detected in East Asia during 2021-2022. Molecular surveillance of wild birds is needed to detect potential pandemic threats from avian influenza virus.
Collapse
|
4
|
Kim JY, Jeong S, Kim DW, Lee DW, Lee DH, Kim D, Kwon JH. Genomic epidemiology of highly pathogenic avian influenza A (H5N1) virus in wild birds in South Korea during 2021-2022: Changes in viral epidemic patterns. Virus Evol 2024; 10:veae014. [PMID: 38455682 PMCID: PMC10919474 DOI: 10.1093/ve/veae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Clade 2.3.4.4b highly pathogenic avian influenza A (HPAI) viruses have been detected in wild birds worldwide, causing recurrent outbreaks since 2016. During the winter of 2021-2022, we detected one H5N8 and forty-three H5N1 clade 2.3.4.4b HPAI viruses from wild birds in South Korea. Phylogenetic analysis revealed that HA gene of H5N1 viruses was divided into two genetically distinct groups (N1.G1 and N1.G2). Bayesian phylodynamic analysis demonstrated that wild birds play a vital role in viral transmission and long-term maintenance. We identified five genotypes (N1.G1.1, N1.G2, N1.G2.1, N1.G2.2, and N1.G2.2.1) having distinct gene segment constellations most probably produced by reassortments with low-pathogenic avian influenza viruses. Our results suggest that clade 2.3.4.4b persists in wild birds for a long time, causing continuous outbreaks, compared with previous clades of H5 HPAI viruses. Our study emphasizes the need for enhancing control measures in response to the changing viral epidemiology.
Collapse
Affiliation(s)
- Ji-Yun Kim
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Sol Jeong
- Wildlife Disease Research Team, National Institute of Wildlife Disease Control and Prevention (NIWDC), Ministry of Environment, 1, Songam-gil, Gwangju 62407, Republic of Korea
| | - Da-Won Kim
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Dong-Wook Lee
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Seoul 05029, Republic of Korea
| | - Daehun Kim
- Wildlife Disease Research Team, National Institute of Wildlife Disease Control and Prevention (NIWDC), Ministry of Environment, 1, Songam-gil, Gwangju 62407, Republic of Korea
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
El-Shemy AA, Amer MM, Hassan HM, Elaish M. Epidemiological distribution of respiratory viral pathogens in marketable vaccinated broiler chickens in five governorates in the Nile Delta, Egypt, from January 2022 to October 2022. Vet World 2024; 17:303-312. [PMID: 38595666 PMCID: PMC11000479 DOI: 10.14202/vetworld.2024.303-312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Respiratory viral infections significantly negatively impact animal welfare and have significant financial implications in the poultry industry. This study aimed to determine the frequency of the most economically relevant respiratory viruses that circulated in Egyptian chicken flocks in 2022. Materials and Methods Chickens from 359 broiler flocks in five different Egyptian governorates in the Nile Delta (Beheira, Gharbia, Giza, Monufiya, and Qalyoubia) at marketing time (33-38 days of age) were used in this study. Combined oropharyngeal and cloacal swabs and tissue samples were collected from clinically diseased or freshly dead birds suffering from respiratory disease. Avian influenza (AI)-H5, AI-H9, Newcastle disease (ND), and infectious bronchitis virus (IBV) were analyzed by reverse transcriptase polymerase chain reaction. Results Of the 359 flocks examined, 293 tested positive, whereas 66 were completely negative for the four viruses evaluated, with the highest positive results in Beheira. Out of 293 positive flocks, 211 were positive for a single virus, with Beheira having the highest rate, followed by Qalyoubia, Giza, and Monufiya. ND virus (NDV) was found to be the highest across all governorates, followed by IBV, AI-H9, and AI-H5. A double infection was detected in 73 flocks with either H9 or ND, or both H9 and IB could coinfect each other. The most common viral coinfections were H9 + IB, ND + IB, and ND + H9. Giza had the highest prevalence of ND + H9, H9 + IB, and ND + IB coinfection in the governorates, followed by Monufiya and Beheira. Only six out of 359 flocks were tribally infected with ND + H9 + IB in Giza, Monufiya, and Beheira governorates. On the basis of the number of flocks and the month of the year, July had the lowest number of flocks (23), while September and October had the highest number (48 flocks). Positive flock numbers were highest in October and lowest in January. Conclusion From January to October 2022, prevalent respiratory viral infections (H5N1, NDV, H9N2, and IBV) were detected in broiler chickens across the Delta area governorate, according to the findings of the present study. In addition, IBV and H9, either alone or in combination, significantly contributed to the respiratory infection observed in broiler chickens. Regardless of the type and origin of the vaccine used, it is not possible to protect broiler chickens from the development of the infection and the subsequent dissemination of the virus into the poultry environment. In the presence of face-infectious field virus mutations, poultry vaccinations must be regularly reviewed and updated, and poultry farms must take further biosecurity measures.
Collapse
Affiliation(s)
- Ahmed Ali El-Shemy
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed Mahrous Amer
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, P.O. Code 12211, Giza, Egypt
| | - Heba M. Hassan
- Agriculture Research Center, Animal Health Research Institute, Dokki, PO. Box 246, Giza 12618, Egypt
| | - Mohamed Elaish
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, P.O. Code 12211, Giza, Egypt
| |
Collapse
|
6
|
Hegazy AM, Hassanin O, Hemele MAM, Momenah MA, Al-Saeed FA, Shakak AO, El-Tarabily KA, El-Saadony MT, Tolba HMN. Evaluation of the immuno-stimulatory effect of aqueous neem (Azadirachta indica) leaf extract against highly pathogenic avian influenza (H5N8) in experimental chickens. Poult Sci 2023; 102:103043. [PMID: 37741118 PMCID: PMC10520533 DOI: 10.1016/j.psj.2023.103043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/25/2023] Open
Abstract
The recently detected clade 2.3.4.4 of the highly pathogenic avian influenza (HPAI) H5N8 virus in poultry encouraged us to study the efficacy of the 6 most extensively used saleable H5 poultry vaccinations (bivalent [AI + ND], Re-5 H5N1, H5N1, H5N3, monovalent AI, monovalent ND) with or without aqueous 8% neem (Azadirachta indica) leaf extract as an immunostimulant. One hundred thirty birds were randomly divided into 7 groups. Groups 1, 2, 3, 4, 5, and 6 were divided into 2 subgroups (G1a, G2a, G3a, G4a, G5a, G6a) and (G1b, G2b, G3b, G4b, G5b, G6b) with 10 birds each. Subgroups (G1a, G2a, G3a, G4a, G5a, G6a) received the (bivalent [AI + ND], Re-H5N1, H5N1, H5N3, monovalent AI, monovalent ND) vaccines, while subgroups (G1b, G2b, G3b, G4b, G5b, G6b) received the same previous vaccination but treated with neem leaf extract administrated 2 d before and after vaccination, and G7 with 10 birds was kept unvaccinated as positive control group. Clinical signs of the challenged group showed conjunctivitis, closed eyes, cyanosis in comb and wattle, ocular discharge, and greenish diarrhea, while postmortem lesions showed congested trachea and lung, hemorrhage on the shank, proventriculus, and pancreas; gelatinous fluid submandibular, congestion of all organs (septicemia), mottled spleen. The clinical signs and lesions were mild in neem leaf extract treated with bivalent vaccine and Re-H5N1 while moderate in monovalent vaccine and H5N3 with or without neem leaf extract treated and reached severe in the group immunized with H5N1 with or without neem leaf extract treatment. The protection levels in the bivalent vaccine (AI + ND), Re-5 H5N1, and H5N3 treated with neem leaf extract, were 80%, 80%, and 60%, respectively, while bivalent vaccine (AI + ND), Re-5 H5N1 and H5N3 without treatment were 60%, 60%, and 40%, respectively. The virus shedding was prevented in groups vaccinated with bivalent vaccine and Re-H5N1 vaccine treated with neem leaf extract, while decreased in the group vaccinated with H5N3 with neem leaf extract and Re-H5N1 without neem leaf extract compared with H5N3, H5N1, and monovalent vaccine. The immunological response after vaccination was stronger in the bivalent vaccine group than in the other commercial vaccine groups treated with neem leaf extract, with geometric mean titer (GMTs) of 315.2 and 207.9 at the third and fourth weeks, respectively. The use of immunostimulant antiviral medicinal plants, such as neem, completely protected chicken flocks against HPAI (H5N8) and prevented AI virus shedding, leading us to the conclusion that the use of bivalent vaccines induces a higher immune response than other different commercial vaccines.
Collapse
Affiliation(s)
- Ahmed M Hegazy
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ola Hassanin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mai A M Hemele
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Amani Osman Shakak
- Faculty of Medical Laboratory Sciences, University of Shendi, Shendi 142, Sudan; Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hala M N Tolba
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
7
|
Azab AA, Yehia N, Makhareta M, Samir M, Shoukry A, Elhalem Mohamed AA, Alhag SK, Alwabli AS, El-Saadony MT, El-Tarabily KA, Soliman MA. Evaluation of inactivated avian influenza virus and Newcastle disease virus bivalent vaccination program against newly circulated H5N8 and NDV strains. Poult Sci 2023; 102:102952. [PMID: 37634266 PMCID: PMC10475511 DOI: 10.1016/j.psj.2023.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Avian influenza virus (AIV) and Newcastle disease virus (NDV) are respiratory illness syndromes that have recently been detected in vaccinated flocks and are causing major financial losses in the chicken farming industry. The objective was to evaluate the efficacy of Valley Vac H5Plus NDVg7 vaccine in protecting chickens against the H5N8 and NDV strains that have recently been circulating in comparison with the efficacy of the commercially available bivalent H5+ND7 vaccine. In contrast to the H5+ND7 vaccine, which was made of genetically distinct H5N8/2018 clade 2.3.4.4b genotype group (G5), H9N2/2016, H5N1/2017, and genetically comparable NDV genotype VII 1.1/2019 of the recently circulating challenge viruses, the Valley Vac H5Plus NDVg7 vaccine consisted of the recently isolated (RG HPAI H5N1 AIV/2015 Clade 2.2.1.2, RG HPAIV H5N8/2020 Clade 2.3.4.4b genotype group 6 (G6), and NDV genotype VII 1.1/2012) which were genetically similar to challenged strains. To determine the effectiveness of the Valley Vac H5Plus NDVg7 vaccine, a total of 70-day-old commercial chicks were divided into 7 groups of 10 birds each. Groups (G1 and G4) received Valley Vac H5Plus NDVg7 vaccine. Groups (G2 and G5) groups received commercial H5+ND7 vaccine. While groups (G3 and G6) were kept nonvaccinated, and group (G7) was kept as a nonchallenged and nonvaccinated. After 3-wk post vaccination (WPV), groups G1, G2, and G3 were challenged with A/Duck/ Egypt/SMG4/2019(H5N8) genotype G6. On the other hand, groups G4, G5, G6 were challenged with NDV/EGYPT/18629F/2018 genotype VII 1.1 with an intranasal injection of 0.1 mL. Antibody titer was calculated at the first 3 wk after vaccination, and the viral shedding titer was calculated at 3-, 5-, and 7-days post challenge. Mortality and morbidity rates were monitored daily during the experiment, and for the first 10 d after the challenge, to provide an estimate of the protection rate. The results showed that a single dosage of 0.5 mL per bird of Valley Vac H5Plus NDVg7 vaccine provides 80% protection against both H5N8 and NDV, compared to the bivalent H5+ND7 vaccine, which provided 20 and 80% protection against H5N8 and NDV, respectively. In addition, 0.5 mL per bird of Valley Vac H5Plus NDVg7 vaccine produced a greater immune response against both viruses than commercial vaccination at 1 to 3 WPV with a significant difference at 1 WPV for H5N8 and a comparatively higher immune response for NDV. Furthermore, it reduced virus shedding of H5N8 on the third, fifth, seventh, and tenth days lower than H5+ND7 vaccine with a significant difference on the third day for H5N8 and relatively lower than bivalent H5+ND7 vaccine for NDV with a significant difference on the fifth day. The Valley vaccinated group demonstrated more tissue intactness compared to the commercially vaccinated group against the H5N8 challenge, however the bivalent commercially vaccinated group showed the similar level of tissue integrity against NDV. In conclusion, Valley Vac H5Plus NDVg7 that contains the genetically similar strain to recently circulating challenged virus (H5N8 genotype G6) provided better protection with greater immune response and decreased the amount of virus shed against H5N8 genotype G6 and showed less histopathological alteration than the commercial bivalent H5+ND7 vaccine that contain genetically distinct (H5N8 genotype G5). However the Valley Vac H5Plus NDVg7 provided the same protection with relatively high immune response and relatively decreased the amount of virus shed and showed equal tissue integrity than the commercial bivalent H5+ND7 vaccine against NDV genotype VII 1.1 that contain the same genotype of NDV genotype VII 1.1.
Collapse
Affiliation(s)
- Ahmed A Azab
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mohamed Makhareta
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center, Abassia 131, Cairo, Egypt
| | - Mahmoud Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Abdelrahman Shoukry
- Egyptian Company for Biological and Pharmaceutical Industry, Vaccine Valley, 6 October City, Egypt
| | - Ahmed Abd Elhalem Mohamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Sadeq K Alhag
- Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser 61913, Saudi Arabia
| | - Afaf S Alwabli
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Mohamed A Soliman
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| |
Collapse
|
8
|
El-Shall NA, Abd El Naby WSH, Hussein EGS, Yonis AE, Sedeik ME. Pathogenicity of H5N8 avian influenza virus in chickens and in duck breeds and the role of MX1 and IFN-α in infection outcome and transmission to contact birds. Comp Immunol Microbiol Infect Dis 2023; 100:102039. [PMID: 37591150 DOI: 10.1016/j.cimid.2023.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
This study examined the pathogenicity, immunogenicity, and transmission potential of the H5N8 HPAI clade 2.3.4.4b virus in three breeds of ducks and in broiler chickens. Chickens, Muscovy, Pekin, and Mallard ducks (n = 10) received a dose of 6 log10 EID50 of HPAIV H5N8 directly. Nine contact chickens were introduced to each group on the day of infection. All infected chickens died, with MDT of 7.6 days. Muscovy and Pekin ducks died by 11.1% and 10%, respectively, with MDTs of 7 and 6 days. No Mallards died but showed more severe clinical disease than Pekin ducks. Mallards had the highest MX1 gene expression in the lung and spleen and IFN-α in the spleen. MX1 expression levels were lower in the spleen and lung of Pekin ducks, in the spleen of chickens and in the lung of Muscovy ducks than in noninfected controls. However, viral shedding was higher in ducks than in chickens and was highest in Mallards. 66.7% of chickens placed in contact with infected chickens died and 77.8% of in-contact chickens to infected three duck breeds died. In conclusion, there was a diversity in sensitivity and immunogenicity for HPAIV H5N8 among duck breeds, resulting in diverse infection outcomes and transmissibility to contacts. This study provides duck/chicken interface models for HPAIV transmission to poultry.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| | - Walaa S H Abd El Naby
- Genetics and Genetic Engineering in the Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Eid G S Hussein
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Damanhour Branch, Animal Health Research Institute, Agriculture Research Center, Egypt
| | - Ahlam E Yonis
- Biotechnology Department, Reference Laboratory for Veterinary Quality Control on Poultry Production ( RLQP), Damanhour branch, Animal health research institute (AHRI), Agriculture Research Center (ARC), Damanhour, 22511, Egypt
| | - Mahmoud E Sedeik
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| |
Collapse
|
9
|
Rafique S, Rashid F, Mushtaq S, Ali A, Li M, Luo S, Xie L, Xie Z. Global review of the H5N8 avian influenza virus subtype. Front Microbiol 2023; 14:1200681. [PMID: 37333639 PMCID: PMC10272346 DOI: 10.3389/fmicb.2023.1200681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Orthomyxoviruses are negative-sense, RNA viruses with segmented genomes that are highly unstable due to reassortment. The highly pathogenic avian influenza (HPAI) subtype H5N8 emerged in wild birds in China. Since its emergence, it has posed a significant threat to poultry and human health. Poultry meat is considered an inexpensive source of protein, but due to outbreaks of HPAI H5N8 from migratory birds in commercial flocks, the poultry meat industry has been facing severe financial crises. This review focuses on occasional epidemics that have damaged food security and poultry production across Europe, Eurasia, the Middle East, Africa, and America. HPAI H5N8 viral sequences have been retrieved from GISAID and analyzed. Virulent HPAI H5N8 belongs to clade 2.3.4.4b, Gs/GD lineage, and has been a threat to the poultry industry and the public in several countries since its first introduction. Continent-wide outbreaks have revealed that this virus is spreading globally. Thus, continuous sero- and viro-surveillance both in commercial and wild birds, and strict biosecurity reduces the risk of the HPAI virus appearing. Furthermore, homologous vaccination practices in commercial poultry need to be introduced to overcome the introduction of emergent strains. This review clearly indicates that HPAI H5N8 is a continuous threat to poultry and people and that further regional epidemiological studies are needed.
Collapse
Affiliation(s)
- Saba Rafique
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd, Rawalpindi, Pakistan
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Sajda Mushtaq
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd, Rawalpindi, Pakistan
| | - Akbar Ali
- Poultry Research Institute, Rawalpindi, Pakistan
| | - Meng Li
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
10
|
Chadha A, Dara R, Pearl DL, Sharif S, Poljak Z. Predictive analysis for pathogenicity classification of H5Nx avian influenza strains using machine learning techniques. Prev Vet Med 2023; 216:105924. [PMID: 37224663 DOI: 10.1016/j.prevetmed.2023.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 03/17/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Over the past decades, avian influenza (AI) outbreaks have been reported across different parts of the globe, resulting in large-scale economic and livestock loss and, in some cases raising concerns about their zoonotic potential. The virulence and pathogenicity of H5Nx (e.g., H5N1, H5N2) AI strains for poultry could be inferred through various approaches, and it has been frequently performed by detecting certain pathogenicity markers in their haemagglutinin (HA) gene. The utilization of predictive modeling methods represents a possible approach to exploring this genotypic-phenotypic relationship for assisting experts in determining the pathogenicity of circulating AI viruses. Therefore, the main objective of this study was to evaluate the predictive performance of different machine learning (ML) techniques for in-silico prediction of pathogenicity of H5Nx viruses in poultry, using complete genetic sequences of the HA gene. We annotated 2137 H5Nx HA gene sequences based on the presence of the polybasic HA cleavage site (HACS) with 46.33% and 53.67% of sequences previously identified as highly pathogenic (HP) and low pathogenic (LP), respectively. We compared the performance of different ML classifiers (e.g., logistic regression (LR) with the lasso and ridge regularization, random forest (RF), K-nearest neighbor (KNN), Naïve Bayes (NB), support vector machine (SVM), and convolutional neural network (CNN)) for pathogenicity classification of raw H5Nx nucleotide and protein sequences using a 10-fold cross-validation technique. We found that different ML techniques can be successfully used for the pathogenicity classification of H5 sequences with ∼99% classification accuracy. Our results indicate that for pathogenicity classification of (1) aligned deoxyribonucleic acid (DNA) and protein sequences, with NB classifier had the lowest accuracies of 98.41% (+/-0.89) and 98.31% (+/-1.06), respectively; (2) aligned DNA and protein sequences, with LR (L1/L2), KNN, SVM (radial basis function (RBF)) and CNN classifiers had the highest accuracies of 99.20% (+/-0.54) and 99.20% (+/-0.38), respectively; (3) unaligned DNA and protein sequences, with CNN's achieved accuracies of 98.54% (+/-0.68) and 99.20% (+/-0.50), respectively. ML methods show potential for regular classification of H5Nx virus pathogenicity for poultry species, particularly when sequences containing regular markers were frequently present in the training dataset.
Collapse
Affiliation(s)
- Akshay Chadha
- School of Computer Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Rozita Dara
- School of Computer Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - David L Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
11
|
Yehia N, Rabie N, Adel A, Mossad Z, Nagshabandi MK, Alharbi MT, El-Saadony MT, El-Tarabily KA, Erfan A. Differential replication characteristic of reassortant avian influenza A viruses H5N8 clade 2.3.4.4b in Madin Darby Canine kidney cell. Poult Sci 2023. [DOI: 10.1016/j.psj.2023.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
12
|
Setta A, Yehia N, Shakak AO, Al-Quwaie DA, Al- Otaibi AM, El-Saadony MT, El-Tarabily KA, Salem H. Molecular detection of highly pathogenic avian influenza H5N8 in commercial broiler chicken farms from 2019 to 2022. Poult Sci 2023; 102:102639. [PMID: 37104901 PMCID: PMC10165147 DOI: 10.1016/j.psj.2023.102639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) is a serious viral infection that causes massive economic losses in poultry. The current study investigated the HPAI virus prevalence in commercial broiler chicken flocks from 2019 to 2022. Organ samples, including trachea, cecal tonsils, spleen, brain, as well as tracheal and cloacal swabs, were harvested from 111 problematic broiler chicken flocks that suffered from variable mortalities accompanied with respiratory signs (103 H5-vaccinated and 8 nonvaccinated flocks) in Egypt during the observation duration. Molecular tools were used to analyze the samples, including real-time reverse transcription-polymerase chain reaction (rRT-PCR) and sequence analysis of some PCR positive strains. The results indicated that 24 flocks were positive for HPAI H5N8, representing 21.6%, with 22.3% (23/103) prevalence and 12.5% (1/8) detection in vaccinated and nonvaccinated flocks, respectively, and they were almost detected in the autumn and winter seasons. Phylogenetic evaluation of the hemagglutinin (HA) gene showed that the 6 Egyptian strains were clustered in clade 2.3.4.4b and allocated into 2 groups (I and II). The samples recovered in 2019 were clustered in new subgroup A, and samples recovered in 2020 to 2022 were clustered in new subgroup B with 10 nucleotide mutations (R72S, A83D, T140A). In conclusion, HPAI H5N8 is a serious threat even in vaccinated birds; to control such problems, periodic molecular monitoring with vaccine efficacy evaluation and the use of preventive strategies are recommended.
Collapse
|
13
|
Yang XY, Gong QL, Li YJ, Ata EB, Hu MJ, Sun YY, Xue ZY, Yang YS, Sun XP, Shi CW, Yang GL, Huang HB, Jiang YL, Wang JZ, Cao X, Wang N, Zeng Y, Yang WT, Wang CF. The global prevalence of highly pathogenic avian influenza A (H5N8) infection in birds: A systematic review and meta-analysis. Microb Pathog 2023; 176:106001. [PMID: 36682670 DOI: 10.1016/j.micpath.2023.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The zoonotic pathogen avian influenza A H5N8 causes enormous economic losses in the poultry industry and poses a serious threat to the public health. Here, we report the first systematic review and meta-analysis of the worldwide prevalence of birds. We filtered 45 eligible articles from seven databases. A random-effects model was used to analyze the prevalence of H5N8 in birds. The pooled prevalence of H5N8 in birds was 1.6%. In the regions, Africa has the highest prevalence (8.0%). Based on the source, village (8.3%) was the highest. In the sample type, the highest prevalence was organs (79.7%). In seasons, the highest prevalence was autumn (28.1%). The largest prevalence in the sampling time was during 2019 or later (7.0%). Furthermore, geographical factors also were associated with the prevalence. Therefore, we recommend site-specific prevention and control tools for this strain in birds and enhance the surveillance to reduce the spread of H5N8.
Collapse
Affiliation(s)
- Xue-Yao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Qing-Long Gong
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Jin Li
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Dep., Vet. Res. Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Man-Jie Hu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yong-Yang Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Zhi-Yang Xue
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Ying-Shi Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xue-Pan Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Nan Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
14
|
Yehia N, Salem HM, Mahmmod Y, Said D, Samir M, Mawgod SA, Sorour HK, AbdelRahman MAA, Selim S, Saad AM, El-Saadony MT, El-Meihy RM, Abd El-Hack ME, El-Tarabily KA, Zanaty AM. Common viral and bacterial avian respiratory infections: an updated review. Poult Sci 2023; 102:102553. [PMID: 36965253 PMCID: PMC10064437 DOI: 10.1016/j.psj.2023.102553] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Many pathogens that cause chronic diseases in birds use the respiratory tract as a primary route of infection, and respiratory disorders are the main leading source of financial losses in the poultry business. Respiratory infections are a serious problem facing the poultry sector, causing severe economic losses. Avian influenza virus, Newcastle disease virus, infectious bronchitis virus, and avian pneumovirus are particularly serious viral respiratory pathogens. Mycoplasma gallisepticum, Staphylococcus, Bordetella avium, Pasteurella multocida, Riemerella anatipestifer, Chlamydophila psittaci, and Escherichia coli have been identified as the most serious bacterial respiratory pathogens in poultry. This review gives an updated summary, incorporating the latest data, about the evidence for the circulation of widespread, economically important poultry respiratory pathogens, with special reference to possible methods for the control and prevention of these pathogens.
Collapse
Affiliation(s)
- Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates
| | - Dalia Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mahmoud Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Sara Abdel Mawgod
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Hend K Sorour
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mona A A AbdelRahman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Rasha M El-Meihy
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch 6150, Western Australia, Australia.
| | - Ali M Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| |
Collapse
|
15
|
Calle-Hernández DM, Hoyos-Salazar V, Bonilla-Aldana DK. Prevalence of the H5N8 influenza virus in birds: Systematic review with meta-analysis. Travel Med Infect Dis 2023; 51:102490. [PMID: 36336273 DOI: 10.1016/j.tmaid.2022.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Avian influenza viruses are members of the Orthomyxoviridae family, considered highly pathogenic (HPAI). They result from genetic variations from their low virulence predecessors. HPAI is a global problem. Large outbreaks of HAPI have significant health and economic impacts. OBJECTIVE The objective of this study was to assess the prevalence of the H5N8 Influenza virus in birds, as well as to assess its variability according to the countries and years. METHODS A systematic review of the literature was carried out in six databases (Web of Sciences, Scopus, PubMed, SciELO, Lilacs and Google Scholar) to evaluate the proportion of birds infected with the H5N8 Influenza virus, by molecular and immunological techniques. A meta-analysis was performed using a random-effects model to calculate the pooled prevalence, 95% confidence intervals (95%CI). A 2-tailed 5% alpha level was used for hypothesis testing. Measures of heterogeneity were estimated and reported, including the Cochrane Q statistic, the I2 index, and the tau-squared test. In addition, bird species performed subgroup analyzes. RESULTS 152 data groups were analyzed, a combined prevalence of 1.6% (95% CI 1.3-1.9%) was found for molecular studies, and the ELISA study yielded a seroprevalence of 66.7%; those results of molecular detection varied by year, from 0.2% in 2014 to 52.6% in 2020 and 96.9% in 2015. CONCLUSION The combined prevalence was substantial because large outbreaks have caused severe economic repercussions. In addition, it is considered a serious concern for public health due to its possible zoonotic activity.
Collapse
Affiliation(s)
- Dayana M Calle-Hernández
- Faculty of Veterinary Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia; Institución Universitaria Vision de las Americas, Pereira, Risaralda, Colombia
| | - Valentina Hoyos-Salazar
- Faculty of Veterinary Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia; Institución Universitaria Vision de las Americas, Pereira, Risaralda, Colombia
| | | |
Collapse
|
16
|
Abotaleb MM, Mourad A, Fouad E, Abdo W, Nassif SA. Pathogenicity and pathogenesis of a recent highly pathogenic avian influenza subtype H5N8 in mule ducklings in Egypt. Vet World 2023; 16:59-67. [PMID: 36855343 PMCID: PMC9967731 DOI: 10.14202/vetworld.2023.59-67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/14/2022] [Indexed: 01/11/2023] Open
Abstract
Background and Aim In late 2017, an H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, was isolated from domestic ducks in Egypt, which was associated with high morbidity and low mortality. The pathogenicity increased due to the continuous circulation of virus in ducks. Thus, this study aimed to monitor the pathogenesis and pathogenicity of new H5N8 Avian influenza (AI) virus in mule ducklings. Materials and Methods The lethal dose 50 (LD50) for this new local HPAI H5N8 isolate was calculated. Twenty ducklings were inoculated with 0.1 mL of dilution containing 10 LD50 HPAI per duck. The clinical signs and mortalities were recorded until 30 days post-infection (DPI) to confirm viral pathogenesis. Reverse transcription polymerase chain reaction was used to detect viral shedding from collected cloacal swabs after 3rd, 5th, 7th, 10th, 14th, 21st, and 30th DPI. The main histopathological lesions associated with the presence of HPAI virus were also recorded on the 3rd and 14th DPI. Results The result showed that the LD50 of the new HPAI H5N8 was 104 log10. Clinical signs were observed after 2nd DPI, but it was clinically severe on 3rd, 4th, and 5th DPI in the form of respiratory and gastric disorders, forming 90% of all diseased ducklings, whereas 30% of the infected ducks only showed nervous signs. The mortality rate peaked on 4th and 5th DPI with a cumulative mortality rate of 60% for the inoculated ducks, whereas no mortality was recorded after 6th DPI. Dead ducks showed typical postmortem lesions of AI disease. Necrosis and ecchymotic or petechial hemorrhages on the heart, pancreas, liver, and spleen were observed, whereas the lung showed pneumonia. With regard to viral shedding, infected ducklings shed the virus from its gut until 7th DPI, but the number of duck shedders gradually decreased until 14th DPI after viral shedding. The histopathological findings indicated that the spleen and thymus showed necrosis and hemorrhages, whereas the brain showed multifocal malacic foci and spread meningitis. Moreover, the lung had intrabronchial hyaline degeneration and fibrinous pneumonia on 3rd DPI. Furthermore, the liver showed multifocal necrotic foci and subcapsular hemorrhage, whereas the kidney showed remarkable tubular degeneration, mostly within the collecting tubules. Furthermore, the heart showed marked myocardiolysis of the cardiac muscle fibers. On 14th DPI, all histopathological lesions of the examined organs were restored to normal. Conclusion The currently circulating HPAI H5N8 virus strain has high virulence, particularly for imported mule ducks that originated from non-vaccinated breeder ducks. Therefore, vaccination and quarantine measures must be applied on imported 1-day-old mule ducklings. Moreover, the pathogenesis must be reviewed and monitored for updating circulating AI strains caused by the continuous and rapid evolution of AI viruses.
Collapse
Affiliation(s)
- Mahmoud M. Abotaleb
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center (ARC), Cairo, Egypt,Corresponding author: Mahmoud M. Abotaleb, e-mail: Co-authors: AM: , EF: , WS: , SAN:
| | - Ahlam Mourad
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center (ARC), Cairo, Egypt
| | - Esraa Fouad
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center (ARC), Cairo, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, Egypt
| | - Samir A. Nassif
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center (ARC), Cairo, Egypt
| |
Collapse
|
17
|
Yang Q, Xue X, Zhang Z, Wu MJ, Ji J, Wang W, Yin H, Li S, Dai H, Duan B, Liu Q, Song J. Clade 2.3.4.4b H5N8 Subtype Avian Influenza Viruses Were Identified from the Common Crane Wintering in Yunnan Province, China. Viruses 2022; 15:38. [PMID: 36680078 PMCID: PMC9863098 DOI: 10.3390/v15010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The seasonal migration of wild aquatic birds plays a critical role in the maintenance, transmission, and incursion of the avian influenza virus (AIV). AIV surveillance was performed during 2020-2021 in two national nature reserves with abundant wild bird resources in Yunnan, China. Four H5N8 AIVs isolates from the common crane were identified by next-generation sequencing. Phylogenetic analysis demonstrated that all eight gene segments of these H5N8 AIVs belonged to clade 2.3.4.4b high-pathogenic AIV (HPAIV) and shared high nucleotide sequence similarity with the strains isolated in Hubei, China, and Siberia, Russia, in 2020-2021. The H5N8 HPAIVs from common cranes were characterized by both human and avian dual-receptor specificity in the hemagglutinin (HA) protein. Moreover, possessing the substitutions contributes to overcoming transmission barriers of mammalian hosts in polymerase basic 2 (PB2), polymerase basic protein 1 (PB1), and polymerase acid (PA), and exhibiting the long stalk in the neck region of the neuraminidase (NA) protein contributes to adaptation in wild birds. Monitoring AIVs in migratory birds, at stopover sites and in their primary habitats, i.e., breeding or wintering grounds, could provide insight into potential zoonosis caused by AIVs.
Collapse
Affiliation(s)
- Qinhong Yang
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Xiaoyan Xue
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Zhenxing Zhang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Academy of Animal Husbandry and Veterinary, 6 Qinglongshan, Kunming 650224, China
| | - Ming J. Wu
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Jia Ji
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Wei Wang
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Hongbin Yin
- Animal Disease Inspection and Supervision Institution of Yunnan Province, 118 Gulou Road, Kunming 650051, China
| | - Suhua Li
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Hongyang Dai
- The Management Bureau of Huize Black—Necked Crane National Nature Reserve, 744 Tongbao Road, Qujing 654200, China
| | - Bofang Duan
- Yunnan Center for Animal Disease Control and Prevention, 95 Jinhei Road, Kunming 650034, China
| | - Qiang Liu
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, China
| | - Jianling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Academy of Animal Husbandry and Veterinary, 6 Qinglongshan, Kunming 650224, China
| |
Collapse
|
18
|
Sultan S, Eldamarany NMI, Abdelazeem MW, Fahmy HA. Active Surveillance and Genetic Characterization of Prevalent Velogenic Newcastle Disease and Highly Pathogenic Avian Influenza H5N8 Viruses Among Migratory Wild Birds in Southern Egypt During 2015-2018. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:280-294. [PMID: 35948740 DOI: 10.1007/s12560-022-09532-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
A total of 1007 samples (910 fecal droplets and 97 cloacal swabs) were collected from 14 species of migratory wild birds in most wetlands during 3 successive migration seasons from September to March (2015-2018) in Southern Egypt. The samples were propagated in embryonated chicken eggs and positive allantoic fluids by hemagglutination test were tested for Newcastle disease virus (NDV) and avian influenza virus (AIV) prevalence using RT-PCR and specific primers targeting the NDV fusion (F) and AIV matrix genes. Further subtyping of the AIV hemagglutinin (HA) and neuraminidase (NA) was conducted, and representative isolates were selected and sequenced for full F gene of NDVs and HA and NA genes of the AIV. Overall isolation rate of hemagglutinating viruses was 5.56% (56/1007), from them 5.36% (3/56) AIV, 85.71% (48/56) NDV and 8.93% (5/56) co-infection of NDV and AIV was detected. The sequences analysis of full F genes of 10 NDV isolates revealed that they have multi-basic amino acid motifs 111E/GRRQKR/F117 as velogenic strains with nucleotides and amino acids similarities of 96-100%. In addition, they phylogenetically clustered into groups and subgroups within genotype VII.1.1 and sub-genotype VIIj with a close relation to NDVs isolated from chickens in Egypt. The AIV H5N8 subtype was in clade 2.3.4.4b with a highly pathogenic nature and close relation to Egyptian domesticated H5N8 viruses rather than those from wild birds. The current data showed the contribution of migratory birds to the continuous circulation of virulent NDV and AIV H5N8 among domesticated chickens in Southern Egypt.
Collapse
Affiliation(s)
- Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | | | - Mohmed Wael Abdelazeem
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Hanan Ali Fahmy
- Biotechnology Department, Animal Health Research Institute, Dokki, Giza, Egypt
| |
Collapse
|
19
|
Molecular Epidemiology and Evolutionary Analysis of Avian Influenza A(H5) Viruses Circulating in Egypt, 2019–2021. Viruses 2022; 14:v14081758. [PMID: 36016379 PMCID: PMC9415572 DOI: 10.3390/v14081758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in Egypt in late 2016. Since then, the virus has spread rapidly among different poultry sectors, becoming the dominant HPAI H5 subtype reported in Egypt. Different genotypes of the HPAI H5N8 virus were reported in Egypt; however, the geographic patterns and molecular evolution of the Egyptian HPAI H5N8 viruses are still unclear. Here, extensive epidemiological surveillance was conducted, including more than half a million samples collected from different poultry sectors (farms/backyards/live bird markets) from all governorates in Egypt during 2019–2021. In addition, genetic characterization and evolutionary analyses were performed using 47 selected positive H5N8 isolates obtained during the same period. The result of the conducted surveillance showed that HPAI H5N8 viruses of clade 2.3.4.4b continue to circulate in different locations in Egypt, with an obvious seasonal pattern, and no further detection of the HPAI H5N1 virus of clade 2.2.1.2 was observed in the poultry population during 2019–2021. In addition, phylogenetic and Bayesian analyses revealed that two major genotypes (G5 and G6) of HPAI H5N8 viruses were continually expanding among the poultry sectors in Egypt. Notably, molecular dating analysis suggested that the Egyptian HPAI H5N8 virus is the potential ancestral viruses of the European H5N8 viruses of 2020–2021. In summary, the data of this study highlight the current epidemiology, diversity, and evolution of HPAI H5N8 viruses in Egypt and call for continuous monitoring of the genetic features of the avian influenza viruses in Egypt.
Collapse
|
20
|
First isolation of influenza A subtype H5N8 in ostrich: Pathological and genetic characterization. Poult Sci 2022; 101:102156. [PMID: 36252504 PMCID: PMC9582791 DOI: 10.1016/j.psj.2022.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence of the avian influenza virus in late 2016, different genotypes of highly pathogenic avian influenza (HPAI) H5N8 clade 2.3.4.4b have been reported among different domestic and wild bird species. The virus became endemic in the poultry population, causing a considerable economic loss for the poultry industry. This study screened 5 ostrich farms suffering from respiratory signs and mortality rate of the avian influenza virus. A flock of 60-day-old ostriches with a mortality of 90% suffered from depression, loss of appetite, dropped production, and oculo-nasal discharges, with bleeding from natural orifices as a vent. This flock was found positive for avian influenza virus and subtypes as HPAI H5N8 virus. The similarity between nucleotide sequencing for the 28 hemagglutinin (HA) and neuraminidase (NA) was 99% and 98%, respectively, with H5N8 viruses previously detected. The PB2 encoding protein harbor a unique substitution in mammalian marker 627A, which has not been recorded before in previously sequenced H5N8 viruses. Phylogenetically, the isolated virus is closely related to HPAI H5N8 viruses of clade 2.3.4.4b. The detection of the HPAI H5N8 virus in ostrich is highly the need for continuous epidemiological and molecular monitoring of influenza virus spread in other bird species, not only chickens. Ostrich should be included in the annual SunAlliance, for the detection of avian influenza.
Collapse
|
21
|
Isolation of Genetically Diverse H5N8 Avian Influenza Viruses in Poultry in Egypt, 2019–2021. Viruses 2022; 14:v14071431. [PMID: 35891409 PMCID: PMC9320977 DOI: 10.3390/v14071431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The global spread of avian influenza virus (AIV) of clade 2.3.4.4b since 2016 has caused severe losses in wild birds and poultry and has posed a risk for the infection of mammals including humans. The vaccination of poultry has been used to limit the spread of the virus and mitigate its socioeconomic impact. Here, we describe H5N8 epidemics in chickens, turkeys and ducks from different localities in Egypt from 2019 to 2021. About 41.7% (n = 88/211) flocks were tested positive by RT-qPCR for H5N8 viruses with prevalence rates of 45.1% (n = 65/144) and 34.3% (n = 23/67) in vaccinated and non-vaccinated flocks, respectively. A sequence analysis of the hemagglutinin and neuraminidase genes indicated not only the multiple introduction events of H5N8 viruses in Egypt but also the establishment of endemic viruses in commercial poultry in 2020/2021. The recent H5N8 viruses in poultry in Egypt are genetically distinct from the majority of licensed vaccines used in the field. Together, our findings indicate that poultry in Egypt is an endemic center for clade 2.3.4.4b in the Middle East. The efficiency of current vaccines should be regularly evaluated and updated to fully protect poultry flocks in Egypt against H5N8 viruses.
Collapse
|
22
|
Jiang W, Liu S, Yin X, Li Z, Lan Z, Xire L, Wang Z, Xie Y, Peng C, Li J, Hou G, Yu X, Sun R, Liu H. Comparative Antigenicity and Pathogenicity of Two Distinct Genotypes of Highly Pathogenic Avian Influenza Viruses (H5N8) From Wild Birds in China, 2020-2021. Front Microbiol 2022; 13:893253. [PMID: 35602012 PMCID: PMC9122345 DOI: 10.3389/fmicb.2022.893253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
To date, there have been three epidemic waves of H5N8 avian influenza worldwide. The current third epidemic wave began in October 2020 and has expanded to at least 46 countries. Active and passive surveillance were conducted to monitor H5N8 viruses from wild birds in China. Genetic analysis of 10 H5N8 viruses isolated from wild birds identified two different genotypes. Animal challenge experiments indicated that the H5N8 isolates are highly pathogenic in chickens, mildly pathogenic in ducks, while pathogenicity varied in BALB/c mice. Moreover, there were significant differences in antigenicity as compared to Re-11 vaccine strain and vaccinated chickens were not completely protected against challenge with the high dose of H5N8 virus. With the use of the new matched vaccine and increased poultry immune density, surveillance should be intensified to monitor the emergence of mutant strains and potential worldwide spread via wild birds.
Collapse
Affiliation(s)
- Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shuo Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xin Yin
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Zhixin Li
- Ningxia Hui Autonomous Region Animal Disease Prevention and Control Center, Yinchuan, China
| | - Zouran Lan
- Shandong Provincial Center for Animal Disease Control, Jinan, China
| | - Luosong Xire
- Tibet Autonomous Region Veterinary Biological Pharmaceuticals Factory, Lhasa, China
| | - Zhongbing Wang
- Shanxi Animal Disease Prevention and Control Center, Taiyuan, China
| | - Yinqian Xie
- Shaanxi Animal Disease Prevention and Control Center, Xi'an, China
| | - Cheng Peng
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinping Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Rongzhao Sun
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
23
|
Kandeil A, Moatasim Y, El Taweel A, El Sayes M, Rubrum A, Jeevan T, McKenzie PP, Webby RJ, Ali MA, Kayali G, El-Shesheny R. Genetic and Antigenic Characteristics of Highly Pathogenic Avian Influenza A(H5N8) Viruses Circulating in Domestic Poultry in Egypt, 2017–2021. Microorganisms 2022; 10:microorganisms10030595. [PMID: 35336170 PMCID: PMC8948635 DOI: 10.3390/microorganisms10030595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
In Egypt, the endemicity of avian influenza viruses is a serious concern. Since 2016, several outbreaks of H5N8 have been recorded among domestic poultry in various areas of the country. Active surveillance of domestic poultry across several governorates in Egypt from 2017 to 2021 detected at least six genotypes of Highly Pathogenic Avian Influenza (HPAI) H5N8 viruses with evidence of partial or complete annual replacement of dominant strains. Although all Egyptian H5N8 viruses had clade 2.3.4.4b hemagglutinin (HA) genes, the remaining viral gene segments were from multiple geographic origins, indicating that the H5N8 isolates resulted from multiple introductions. Mutations in the viral proteins associated with pathogenicity and antiviral drug resistance were detected. Some mutations in the HA resulted in antigenic drift. Heterogeneity in circulating H5N8 HPAI threatens poultry production and public health.
Collapse
Affiliation(s)
- Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (T.J.); (P.P.M.)
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (T.J.); (P.P.M.)
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (T.J.); (P.P.M.)
| | - Pamela P. McKenzie
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (T.J.); (P.P.M.)
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (T.J.); (P.P.M.)
- Correspondence: (R.J.W.); (G.K.); (R.E.-S.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
| | - Ghazi Kayali
- Human Link, Dubai 971, United Arab Emirates
- Correspondence: (R.J.W.); (G.K.); (R.E.-S.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
- Correspondence: (R.J.W.); (G.K.); (R.E.-S.)
| |
Collapse
|
24
|
Yehia N, Erfan AM, Adel A, El-Tayeb A, Hassan WMM, Samy A, Abd El-Hack ME, El-Saadony MT, El-Tarabily KA, Ahmed KA. Pathogenicity of three genetically distinct and highly pathogenic Egyptian H5N8 avian influenza viruses in chickens. Poult Sci 2022; 101:101662. [PMID: 35093769 PMCID: PMC8808262 DOI: 10.1016/j.psj.2021.101662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/12/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
In late 2016, Egypt encountered multiple cases of the highly pathogenic avian influenza (HPAI) virus of the H5N8 subtype. In a previous study, three distinct genotypes, including A/common-coot/Egypt/CA285/2016 (H5N8) (CA285), A/duck/Egypt/SS19/2017 (H5N8) (SS19), and A/duck/Egypt/F446/2017 (H5N8) (F446), were isolated from wild birds, a backyard, and a commercial farm, respectively, during the first wave of infection. In this current study, we investigated the differences in the pathogenicity, replication and transmissibility of the three genotypes and A/chicken/Egypt/15S75/2015 (H5N1) (S75) was used as the control. The intravenous pathogenicity index was between 2.68 and 2.9. The chicken lethal dose 50 values of F446, SS19 and CA285 were 103.7, 103.7, an 104 with a natural route of infection, respectively. These strains took longer than S75 to cause death when infection was carried out through the natural route (HPAI H5N1). After inoculation with the original concentration of 105 and 106 egg infective dose 50 (EID50), F446 had a higher mortality rate with short mean death times of 4, and 7 days, respectively compared with the other H5N8 viruses. Chickens inoculated with F446 and contacted exposed chickens infected with F446 showed the highest viral titer with remarkable differences in all H5N8 tested swabs at 2-4 days postinfection (dpi) compared to S75 at 2 dpi. This indicates that F446 had a more efficient transmission and spread from contact exposed birds to other birds. All H5N8 viruses were able to replicate systematically in all organs (trachea, brain, lung, and spleen) of the chicken with high viral titer with significantly different and more pathological changes observed in F446 than in other H5N8 viruses at 2 and 4 dpi. Compared with H5N1, we recorded a significantly high viral titer in the samples obtained from the lung, brain and both cloacal and tracheal swabs at 2 and 4 dpi, respectively and in the samples obtained from the spleen at 2 and 4 dpi among the experimental chicken. The comparative pathogenesis study revealed that in comparison with the other HPAI H5N8 viruses, the genotype F446 was more pathogenic, and showed more efficient viral replication and transmissibility in chickens in Egypt. The genotype F446 also showed a high viral titer than HPAI H5N1 and short mean death time at the third day after inoculation with 106 and 105 EID50, which revealed a conservation of certain H5N8 genotypes and a decrease in the incidence of H5N1.
Collapse
Affiliation(s)
- Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | - Ahmed M Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | - Amany Adel
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | - Ahmed El-Tayeb
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | - Wafaa M M Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | - Ahmed Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza, 12618, Egypt; Immunogenetics, The Pirbright Institute, Surrey, GU24 0NF, UK
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
25
|
Hegazy AME, Yehia N, Hassan AFI, El-Saadony MT, Aboelenin SM, Soliman MM, Tolba HMN. The potency of newly development H5N8 and H9N2 avian influenza vaccines against the isolated strains in laying hens from Egypt during 2019. Saudi J Biol Sci 2021; 28:5310-5316. [PMID: 34466109 PMCID: PMC8381005 DOI: 10.1016/j.sjbs.2021.05.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
Avian influenza (AI) is a respiratory disease complex syndrome recently recorded in vaccinated flocks causing high economic losses. This study aimed to prepare inactivated vaccine from recently isolated field strains [highly pathogenic avian influenza (HPAI) (H5N8) and low pathogenic avian influenza (LPAI) (H9N2)] and compare the efficiency of the two experimental avian influenza vaccines and some commercial avian influenza H5 and H9N2 vaccines in laying hens. The obtained results indicated that the identified experimental vaccines (H5N8 and H9N2) were protected the flocks from AI as compared to commercial H5N1, H5N3, and H9N2 vaccines, which showed a protection level of 80, 70, and 90%, respectively, indicating a high efficacy for the developed vaccines. In addition, it significantly improved the virus shedding, especially when used in booster dose. The experimental vaccines were given high antibody titer higher than commercial vaccine which was reached to 9.3 log2, 9.7log2 for experimental H5N8 vaccine which was significantly higher than and groups 3 and 4 especially at 2nd WPV, while at the 3rd WPV, the significant difference was with group 4 only. The HI titer was 9.3 log2 at 2nd WPV for the experimental H9N2 vaccine that was significantly higher than group 9. In conclusion, the booster dose of the experimental vaccines could elicit strong immunity than single-dose and commercial vaccines.
Collapse
Affiliation(s)
- Ahmed M E Hegazy
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Abeer F I Hassan
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Salama Mostafa Aboelenin
- Biology Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hala M N Tolba
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Temporal Dynamics of Influenza A(H5N1) Subtype before and after the Emergence of H5N8. Viruses 2021; 13:v13081565. [PMID: 34452430 PMCID: PMC8412109 DOI: 10.3390/v13081565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses continue to circulate worldwide, causing numerous outbreaks among bird species and severe public health concerns. H5N1 and H5N8 are the two most fundamental HPAI subtypes detected in birds in the last two decades. The two viruses may compete with each other while sharing the same host population and, thus, suppress the spread of one of the viruses. In this study, we performed a statistical analysis to investigate the temporal correlation of the HPAI H5N1 and HPAI H5N8 subtypes using globally reported data in 2015-2020. This was joined with an in-depth analysis using data generated via our national surveillance program in Egypt. A total of 6412 outbreaks were reported worldwide during this period, with 39% (2529) as H5N1 and 61% (3883) as H5N8. In Egypt, 65% of positive cases were found in backyards, while only 12% were found in farms and 23% in live bird markets. Overall, our findings depict a trade-off between the number of positive H5N1 and H5N8 samples around early 2017, which is suggestive of the potential replacement between the two subtypes. Further research is still required to elucidate the underpinning mechanisms of this competitive dynamic. This, in turn, will implicate the design of effective strategies for disease control.
Collapse
|
27
|
El-Moeid AA, EL-Deeb AH, Elsaied MF, Soliman RA, EL-Safty MM, Hussein HA. Discrepancies in the efficacy of H5 inactivated avian influenza vaccines in specific-pathogen-free chickens against challenge with the Egyptian H5N8 clade 2.3.4.4 Group B virus isolated in 2018. Vet World 2021; 14:2131-2141. [PMID: 34566331 PMCID: PMC8448630 DOI: 10.14202/vetworld.2021.2131-2141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/06/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND AIM Highly pathogenic avian influenza H5N8 virus of clade 2.3.4.4 was newly emerged to Egypt and firstly detected in carcasses of wild birds in November 2016. This study assessed the protection efficacy and virus shedding reduction of three different inactivated avian influenza (AI) H5 (H5N1, H5N2, and H5N3) commercial vaccines against challenge with two newly emerging highly pathogenic AI virus H5N8 Egyptian isolates in specific-pathogen-free (SPF) chicks. MATERIALS AND METHODS 10-day-old SPF chicks (n=260) were divided into 20 groups (n=13). Groups 1-5 were vaccinated through the subcutaneous route (S/C) with 0.5 mL of H5N1 vaccine, Groups 6-10 were vaccinated (S/C) with 0.5 mL of H5N2 vaccine, and Groups 11-15 were vaccinated (S/C) with 0.5 mL of H5N3 vaccine. Positive control groups (16-19) were challenged at 25 and 31 days old (2 and 3 weeks post-vaccination [PV]) using H5N8 clade 2.3.4.4 A/duck/Egypt/F13666A/2017(H5N8) and H5N8 clade 2.3.4.4 A/chicken/Egypt/18FL6/2018(H5N8). Group 20 was left non-vaccinated as a control. All vaccinated groups were divided and challenged with both viruses at 25 and 31 days of age. The viral challenge dose was 0.1 mL of 106 EID50/0.1 mL titer/chick, and it was administered oronasally. All chicks were kept in isolators for 14 days after each challenge. Sera samples were collected weekly and at 2 weeks post-challenge (PC) to detect a humoral immune response. PC mortalities were recorded daily for 10 days to calculate the protection percentages. Tracheal swabs were collected from the challenged chicks in different groups at 3, 5, 7, and 10 days PC. Kidneys and spleens were collected at 3, 5, 7, and 10 days PC and kept in formalin for histopathological examination to assess lesions and severity scores. Tracheal swabs were inoculated in 10-day-old SPF embryonated chicken eggs for virus titration and to calculate shedding levels. RESULTS All studied vaccines displayed 70-100% protection within 10 days PC. Hemagglutination inhibition results from sera samples revealed antibody titers ranging from 0.6 to 5.4 log2 starting at 1-week PV with the highest titers at 4 weeks PV. Challenged SPF chickens exhibited a notable reduction in virus shedding, with an average of 1.5-2 log10, compared to control birds. Various histopathological lesions with different scores were detected. CONCLUSION Our findings suggest that the inadequate virus shedding reduction and protection efficacy of studied vaccines were variable and that the type of vaccine to be used under field conditions should be reconsidered. Study of the variability between the Egyptian old emerged AI (AIV) 2017 H5N8 strains and the new emerging AIV 2018 H5N8 is required to achieve optimal protection and limit the current economic losses.
Collapse
Affiliation(s)
- Amena Abd El-Moeid
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman Hany EL-Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Fathy Elsaied
- Central Laboratory for Evaluation of Veterinary Biologics, Abassia, Cairo, Egypt
| | - Reem Ahamed Soliman
- Central Laboratory for Evaluation of Veterinary Biologics, Abassia, Cairo, Egypt
| | | | - Hussein Aly Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
28
|
Epidemiology, Genetic Characterization, and Pathogenesis of Avian Influenza H5N8 Viruses Circulating in Northern and Southern Parts of Egypt, 2017-2019. Animals (Basel) 2021; 11:ani11082208. [PMID: 34438666 PMCID: PMC8388380 DOI: 10.3390/ani11082208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary During 2020–2021, highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were spreading rapidly, and two genetically distinct lineages were detected in Europe, the Middle East, and Southeast Asia. HPAI H5N8 viruses have been circulating in Egyptian poultry flocks since 2016. In this study, 74 commercial chicken farms tested positive for HPAI H5N8 virus. Genetic characterization of the hemagglutinin (HA) and the neuraminidase (NA) of Egyptian HPAI H5N8 viruses showed a relationship with those recently isolated in Europe. Abstract Highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 continue to circulate, causing huge economic losses and serious impact on poultry production worldwide. Recently, HPAIV H5N8 has been spreading rapidly, and a large number of HPAI H5N8 outbreaks have been reported in Eurasia 2020–2021. In this study, we conducted an epidemiological survey of HPAI H5N8 virus at different geographical locations in Egypt from 2017 to 2019. This was followed by genetic and pathogenic studies. Our findings highlight the wide spread of HPAI H5N8 viruses in Egypt, including in 22 governorates. The genetic analyses of the hemagglutinin (HA) and neuraminidase (NA) gene segments emphasized a phylogenetic relatedness between the Egyptian HPAI H5N8 viruses and viruses of clade 2.3.4.4b recently isolated in Europe. These findings suggest that a potential back transmission of Egyptian HPAI H5N8 virus has occurred from domestic poultry in Egypt to migratory wild birds, followed by further spread to different countries. This highlights the importance of continuous epidemiological and genetic studies of AIVs at the domestic–wild bird interface.
Collapse
|
29
|
El-Shesheny R, Kandeil A, Mostafa A, Ali MA, Webby RJ. H5 Influenza Viruses in Egypt. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038745. [PMID: 32122919 DOI: 10.1101/cshperspect.a038745] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For almost a decade, Egypt has been endemic for highly pathogenic avian influenza (HPAI) A(H5N1) viruses. In addition to being catastrophic for poultry production, A(H5N1) has also caused 359 human infections in the country (∼40% of global cases), with 120 being fatal. From 2017, A(H5N1) viruses have been gradually replaced by HPAI A(H5N8) viruses seeded from Southeast Asia through Europe; no human cases have been reported since. This lack of human cases is not a consequence of fewer H5 infections in poultry. Despite governmental outbreak control, the number of avian influenza outbreaks has increased since 2006 partially fueled by noncompliance with preventive measures and suboptimal vaccination programs. Adherence to control measures is low because of social norms, especially among women and children-the main caretakers of household flocks in rural areas-and declining public awareness in the community. Egypt has thus become an epicenter for A(H5) virus evolution, with no clear resolution in sight.
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA.,Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| |
Collapse
|
30
|
Baek YG, Lee YN, Lee DH, Shin JI, Lee JH, Chung DH, Lee EK, Heo GB, Sagong M, Kye SJ, Lee KN, Lee MH, Lee YJ. Multiple Reassortants of H5N8 Clade 2.3.4.4b Highly Pathogenic Avian Influenza Viruses Detected in South Korea during the Winter of 2020-2021. Viruses 2021; 13:v13030490. [PMID: 33809549 PMCID: PMC8001867 DOI: 10.3390/v13030490] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 01/23/2023] Open
Abstract
During October 2020–January 2021, we isolated a total of 67 highly pathogenic avian influenza (HPAI) H5N8 viruses from wild birds and outbreaks in poultry in South Korea. We sequenced the isolates and performed phylogenetic analysis of complete genome sequences to determine the origin, evolution, and spread patterns of these viruses. Phylogenetic analysis of the hemagglutinin (HA) gene showed that all the isolates belong to H5 clade 2.3.4.4 subgroup B (2.3.4.4b) and form two distinct genetic clusters, G1 and G2. The cluster G1 was closely related to the 2.3.4.4b H5N8 HPAI viruses detected in Europe in early 2020, while the cluster G2 had a close genetic relationship with the 2.3.4.4b H5N8 viruses that circulated in Europe in late 2020. A total of seven distinct genotypes were identified, including five novel reassortants carrying internal genes of low pathogenic avian influenza viruses. Our Bayesian discrete trait phylodynamic analysis between host types suggests that the viruses initially disseminated from migratory waterfowl to domestic duck farms in South Korea. Subsequently, domestic duck farms most likely contributed to the transmission of HPAI viruses to chicken and minor poultry farms, highlighting the need for enhanced, high levels of biosecurity measures at domestic duck farms to effectively prevent the introduction and spread of HPAI.
Collapse
Affiliation(s)
- Yoon-Gi Baek
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (Y.-G.B.); (Y.-N.L.); (J.-i.S.); (J.-H.L.); (E.-K.L.); (G.-B.H.); (M.S.); (S.-J.K.); (K.-N.L.); (M.-H.L.)
| | - Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (Y.-G.B.); (Y.-N.L.); (J.-i.S.); (J.-H.L.); (E.-K.L.); (G.-B.H.); (M.S.); (S.-J.K.); (K.-N.L.); (M.-H.L.)
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, The University of Connecticut, 61 North Eagleville Road, Unit-3089, Storrs, CT 06269, USA; (D.-H.L.); (D.H.C.)
| | - Jae-in Shin
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (Y.-G.B.); (Y.-N.L.); (J.-i.S.); (J.-H.L.); (E.-K.L.); (G.-B.H.); (M.S.); (S.-J.K.); (K.-N.L.); (M.-H.L.)
| | - Ji-Ho Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (Y.-G.B.); (Y.-N.L.); (J.-i.S.); (J.-H.L.); (E.-K.L.); (G.-B.H.); (M.S.); (S.-J.K.); (K.-N.L.); (M.-H.L.)
| | - David H. Chung
- Department of Pathobiology and Veterinary Science, The University of Connecticut, 61 North Eagleville Road, Unit-3089, Storrs, CT 06269, USA; (D.-H.L.); (D.H.C.)
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (Y.-G.B.); (Y.-N.L.); (J.-i.S.); (J.-H.L.); (E.-K.L.); (G.-B.H.); (M.S.); (S.-J.K.); (K.-N.L.); (M.-H.L.)
| | - Gyeong-Beom Heo
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (Y.-G.B.); (Y.-N.L.); (J.-i.S.); (J.-H.L.); (E.-K.L.); (G.-B.H.); (M.S.); (S.-J.K.); (K.-N.L.); (M.-H.L.)
| | - Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (Y.-G.B.); (Y.-N.L.); (J.-i.S.); (J.-H.L.); (E.-K.L.); (G.-B.H.); (M.S.); (S.-J.K.); (K.-N.L.); (M.-H.L.)
| | - Soo-Jeong Kye
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (Y.-G.B.); (Y.-N.L.); (J.-i.S.); (J.-H.L.); (E.-K.L.); (G.-B.H.); (M.S.); (S.-J.K.); (K.-N.L.); (M.-H.L.)
| | - Kwang-Nyeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (Y.-G.B.); (Y.-N.L.); (J.-i.S.); (J.-H.L.); (E.-K.L.); (G.-B.H.); (M.S.); (S.-J.K.); (K.-N.L.); (M.-H.L.)
| | - Myoung-Heon Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (Y.-G.B.); (Y.-N.L.); (J.-i.S.); (J.-H.L.); (E.-K.L.); (G.-B.H.); (M.S.); (S.-J.K.); (K.-N.L.); (M.-H.L.)
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (Y.-G.B.); (Y.-N.L.); (J.-i.S.); (J.-H.L.); (E.-K.L.); (G.-B.H.); (M.S.); (S.-J.K.); (K.-N.L.); (M.-H.L.)
- Correspondence: ; Tel.: +82-54-912-0968; Fax: +82-54-912-0977
| |
Collapse
|
31
|
Bayoumi M, Munir M. Evolutionary conservation of the DRACH signatures of potential N6-methyladenosine (m 6A) sites among influenza A viruses. Sci Rep 2021; 11:4548. [PMID: 33633224 PMCID: PMC7907337 DOI: 10.1038/s41598-021-84007-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
The addition of a methyl group to the N6-position of adenosine (m6A) is considered one of the most prevalent internal post-transcriptional modifications and is attributed to virus replication and cell biology. Viral epitranscriptome sequencing analysis has revealed that hemagglutinin (HA) mRNA of H1N1 carry eight m6A sites which are primarily enriched in 5'-DRACH-3' sequence motif. Herein, a large-scale comparative m6A analysis was conducted to investigate the conservation patterns of the DRACH motifs that corresponding to the reference m6A sites among influenza A viruses. A total of 70,030 complete HA sequences that comprise all known HA subtypes (H1-18) collected over several years, countries, and affected host species were analysed on both mRNA and vRNA strands. The bioinformatic analysis revealed the highest degree of DRACHs conservation among all H1 sequences that clustered largely in the middle and in the vicinity to 3' end with at least four DRACH motifs were conserved in all mRNA sequences. The major HA-containing subtypes displayed a modest DRACH motif conservation located either in the middle region of HA transcript (H3) or at the 3' end (H5) or were distributed across the length of HA sequence (H9). The lowest conservation was demonstrated in HA subtypes that infect mostly the wild type avian species and bats. Interestingly, the total number and the conserved DRACH motifs in the vRNA were found to be much lower than those observed in the mRNA. Collectively, the identification of putative m6A topology provides a foundation for the future intervention of influenza infection, replication, and pathobiology in susceptible hosts.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- grid.9835.70000 0000 8190 6402Division of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YG UK
| | - Muhammad Munir
- grid.9835.70000 0000 8190 6402Division of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YG UK
| |
Collapse
|
32
|
Khalil AM, Fujimoto Y, Kojima I, Esaki M, Ri K, Masatani T, Matsui T, Ozawa M. Genetic Characterization of H5N8 Highly Pathogenic Avian Influenza Viruses Isolated from Falcated Ducks and Environmental Water in Japan in November 2020. Pathogens 2021; 10:pathogens10020171. [PMID: 33557405 PMCID: PMC7915289 DOI: 10.3390/pathogens10020171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
We isolated two highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N8 clade 2.3.4.4b from falcated duck (Anas falcata) feces and environmental water collected at an overwintering site in Japan. Our isolates were almost genetically identical to each other and showed high genetic similarity with H5N8 HPAIVs recently isolated in South Korea, a distant part of Japan, and European countries. These results suggest the potential role of falcated ducks in the dissemination of HPAIVs.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
- Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Yoshikazu Fujimoto
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Isshu Kojima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Mana Esaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
| | - Kyonha Ri
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
| | - Tatsunori Masatani
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Tsutomu Matsui
- Kagoshima Crane Conservation Committee, Izumi, Kagoshima 899-0208, Japan;
| | - Makoto Ozawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Kagoshima Crane Conservation Committee, Izumi, Kagoshima 899-0208, Japan;
- Correspondence: ; Tel.: +81-99-285-3651
| |
Collapse
|
33
|
Hill NJ, Smith LM, Muzaffar SB, Nagel JL, Prosser DJ, Sullivan JD, Spragens KA, DeMattos CA, DeMattos CC, El Sayed L, Erciyas-Yavuz K, Davis CT, Jones J, Kis Z, Donis RO, Newman S H, Takekawa JY. Crossroads of highly pathogenic H5N1: overlap between wild and domestic birds in the Black Sea-Mediterranean impacts global transmission. Virus Evol 2021; 7:veaa093. [PMID: 34956648 PMCID: PMC7947991 DOI: 10.1093/ve/veaa093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding transmission dynamics that link wild and domestic animals is a key element of predicting the emergence of infectious disease, an event that has highest likelihood of occurring wherever human livelihoods depend on agriculture and animal trade. Contact between poultry and wild birds is a key driver of the emergence of highly pathogenic avian influenza (HPAI), a process that allows for host switching and accelerated reassortment, diversification, and spread of virus between otherwise unconnected regions. This study addresses questions relevant to the spillover of HPAI at a transmission hotspot: what is the nature of the wild bird-poultry interface in Egypt and adjacent Black Sea-Mediterranean countries and how has this contributed to outbreaks occurring worldwide? Using a spatiotemporal model of infection risk informed by satellite tracking of waterfowl and viral phylogenetics, this study identified ecological conditions that contribute to spillover in this understudied region. Results indicated that multiple ducks (Northern Shoveler and Northern Pintail) hosted segments that shared ancestry with HPAI H5 from both clade 2.2.1 and clade 2.3.4 supporting the role of Anseriformes in linking viral populations in East Asia and Africa over large distances. Quantifying the overlap between wild ducks and H5N1-infected poultry revealed an increasing interface in late winter peaking in early spring when ducks expanded their range before migration, with key differences in the timing of poultry contact risk between local and long-distance migrants.
Collapse
Affiliation(s)
- Nichola J Hill
- Tufts University, Department of Infectious Disease & Global Health, 200 Westboro Rd, North Grafton, MA 01536, USA
- U.S. Geological Survey, 505 Azuar Drive, Vallejo, CA 94592, USA
| | - Lacy M Smith
- U.S. Geological Survey, 505 Azuar Drive, Vallejo, CA 94592, USA
| | - Sabir B Muzaffar
- U.S. Geological Survey, 505 Azuar Drive, Vallejo, CA 94592, USA
- United Arab Emirates University, Department of Biology, PO Box 15551, Al Ain, United Arab Emirates
| | - Jessica L Nagel
- Natural Systems Analysts, 201 West Canton Ave, Winter Park, FL 32790, USA
| | - Diann J Prosser
- U.S. Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD 20708, USA
| | - Jeffery D Sullivan
- U.S. Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD 20708, USA
| | - Kyle A Spragens
- U.S. Geological Survey, 505 Azuar Drive, Vallejo, CA 94592, USA
- Washington Department of Fish & Wildlife, P.O. Box 43141, Olympia, WA 98501, USA
| | - Carlos A DeMattos
- U.S. Naval Medical Research Unit No. 3, 1a Etisalat Club Rd, Ezbet Fahmy, El Basatin Cairo, 11435, Egypt
| | - Cecilia C DeMattos
- U.S. Naval Medical Research Unit No. 3, 1a Etisalat Club Rd, Ezbet Fahmy, El Basatin Cairo, 11435, Egypt
| | - Lu’ay El Sayed
- Egyptian Environmental Affairs Agency, 30 Misr Helwan El-Zyrae Road, Maadi, Cairo, 11728, Egypt
| | | | - C Todd Davis
- Centers for Disease Control and Prevention, 1600 Clifton Rd Atlanta, GA 30333, USA
| | - Joyce Jones
- Centers for Disease Control and Prevention, 1600 Clifton Rd Atlanta, GA 30333, USA
| | - Zoltan Kis
- Centers for Disease Control and Prevention, 1600 Clifton Rd Atlanta, GA 30333, USA
| | - Ruben O Donis
- Centers for Disease Control and Prevention, 1600 Clifton Rd Atlanta, GA 30333, USA
| | - Scott H Newman
- Food & Agriculture Organization of the United Nations, Liberia Rd, Accra, Ghana
| | - John Y Takekawa
- U.S. Geological Survey, 505 Azuar Drive, Vallejo, CA 94592, USA
- Suisun Resource Conservation District, 2544 Grizzly Island Road, Suisun City, CA 94585, USA
| |
Collapse
|
34
|
Highly Pathogenic Avian Influenza Clade 2.3.4.4b Subtype H5N8 Virus Isolated from Mandarin Duck in South Korea, 2020. Viruses 2020; 12:v12121389. [PMID: 33291548 PMCID: PMC7761861 DOI: 10.3390/v12121389] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/21/2023] Open
Abstract
In October 2020, a highly pathogenic avian influenza (HPAI) subtype H5N8 virus was identified from a fecal sample of a wild mandarin duck (Aix galericulata) in South Korea. We sequenced all eight genome segments of the virus, designated as A/Mandarin duck/Korea/K20-551-4/2020(H5N8), and conducted genetic characterization and comparative phylogenetic analysis to track its origin. Genome sequencing and phylogenetic analysis show that the hemagglutinin gene belongs to H5 clade 2.3.4.4 subgroup B. All genes share high levels of nucleotide identity with H5N8 HPAI viruses identified from Europe during early 2020. Enhanced active surveillance in wild and domestic birds is needed to monitor the introduction and spread of HPAI via wild birds and to inform the design of improved prevention and control strategies.
Collapse
|
35
|
Ibrahim M, Zakaria S, Bazid AHI, Kilany WH, Zain El-Abideen MA, Ali A. A single dose of inactivated oil-emulsion bivalent H5N8/H5N1 vaccine protects chickens against the lethal challenge of both highly pathogenic avian influenza viruses. Comp Immunol Microbiol Infect Dis 2020; 74:101601. [PMID: 33307456 DOI: 10.1016/j.cimid.2020.101601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
Abstract
In this study, two highly pathogenic avian influenza (HPAI) H5N8 viruses were isolated from chicken and geese in 2018 and 2019 (Chicken/ME-2018 and Geese/Egypt/MG4/2019). The hemagglutinin and neuraminidase gene analyses revealed their close relatedness to the clade-2.3.4.4b H5N8 viruses isolated from Egypt and Eurasian countries. A monovalent inactivated oil-emulsion vaccine containing a reassortant virus with HA gene of the Chicken/ME-2018/H5N8 strain and a bivalent vaccine containing same reassortant virus plus a previously generated reassortant H5N1 strain (CK/Eg/RG-173CAL/17). The safety of both vaccines was evaluated in specific-pathogen-free (SPF) chickens. To evaluate the efficacy of the prepared vaccines, 2-week-old SPF chickens were vaccinated with 0.5 mL of a vaccine formula containing 108/EID50 /dose from each strain via the subcutaneous route. Vaccinated birds were challenged with either wild-type HPAI-H5N8 or H5N1 viruses separately at 3 weeks post-vaccine. Results revealed that both vaccines induced protective hemagglutination-inhibiting (HI) antibody titers as early as 2 weeks PV (≥5.0 log2). Vaccinated birds were protected clinically against both subtypes (100 % protection). HPAI-H5N1 virus shedding was significantly reduced in birds that were vaccinated with the bivalent vaccine; meanwhile, HPAI-H5N8 virus shedding was completely neutralized in both tracheal and cloacal swabs after 3 days post-infection in birds that had been vaccinated with either vaccine. In conclusion, the developed bivalent vaccine proved to be efficient in protecting chickens clinically and reduced virus shedding via the respiratory and digestive tracts. The applicability of the multivalent avian influenza vaccines further supported their value to facilitate vaccination programs in endemic countries.
Collapse
Affiliation(s)
- Mahmoud Ibrahim
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Minoufiya, 22857, Egypt
| | - Salah Zakaria
- Middle East for Vaccine Company (MEVAC™), Second Industrial Area, El-Salhyia El-Gededa, Sharkia, 44671, Egypt; Virology Department, Faculty of Veterinary Medicine, University of Sadat City Sadat City, Minoufiya, 22857, Egypt
| | - Abdel-Hamid I Bazid
- Virology Department, Faculty of Veterinary Medicine, University of Sadat City Sadat City, Minoufiya, 22857, Egypt
| | - Walid H Kilany
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), AHRI, ARC, 12818 Giza, Egypt
| | - Mohamed A Zain El-Abideen
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), AHRI, ARC, 12818 Giza, Egypt
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
36
|
Rohaim MA, El Naggar RF, Madbouly Y, AbdelSabour MA, Ahmed KA, Munir M. Comparative infectivity and transmissibility studies of wild-bird and chicken-origin highly pathogenic avian influenza viruses H5N8 in chickens. Comp Immunol Microbiol Infect Dis 2020; 74:101594. [PMID: 33271478 DOI: 10.1016/j.cimid.2020.101594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Despite the recent advances in avian influenza viruses surveillance and genomic data, fundamental questions concerning the ecology and evolution of these viruses remain elusive. In Egypt, H5N8 highly pathogenic avian influenza viruses (HPAIVs) are co-circulating simultaneously with HPAIVs of subtypes H5N1 and low-pathogenic avian influenza viruses (LPAIVs) of subtype H9N2 in both commercial and backyard poultry. In order to isolate AIVs from wild birds and to assess their potential in causing infection in commercial poultry, a total of thirty-four cloacal swab samples were collected from apparently healthy migratory wild birds (Anas acuta, Anas crecca, Rallus aquaticus, and Bubulcus ibis) from four Egyptian Governorates (Giza, Menoufia, Gharbia, and Dakahlia). Based on matrix (M) gene-targeting real-time reverse transcriptase PCR and subsequent genetic characterization, our results revealed two positive isolates (2/34) for H5N8 whereas no H5N1 and H9N2 subtypes were detected. Genetic characterization of the full-length haemagglutinin (HA) genes revealed the clustering of two reported isolates within genotype 5 of clade 2.3.4.4b. The potential of a wild bird-origin H5N8 virus isolated from a cattle egret for its transmission capability within and between chickens was investigated in compare to chicken origin H5N8 AIV. Chickens inoculated with cattle egret isolate showed varying clinical signs and detection of virus shedding. In contrast, the contact chickens showed less levels of virus secretion indicating efficient virus inter/intra-species transmission. These results demonstrated the possibility for spreading of wild bird origin H5N8 viruses between chicken. In conclusion, our study highlights the need for continuous and frequent monitoring of the genetic diversity of H5N8 AIVs in wild birds as well as commercial poultry sectors for better understanding and determining the genetic nature of these viruses, which is fundamental to predict any future threat through virus reassortment with the potential to threaten human and animal health. Likewise, an assessment of coverage and efficacy of different vaccines and or vaccination regimes in the field conditions should be reconsidered along with strict biosecurity measures.
Collapse
Affiliation(s)
- Mohammed A Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Rania F El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, 32897 Sadat, Egypt
| | - Yehia Madbouly
- Veterinary Serum and Vaccine Research Institute, Abbassia, Cairo 11381, Agricultural Research Center (ARC), Egypt
| | - Mohammed A AbdelSabour
- Veterinary Serum and Vaccine Research Institute, Abbassia, Cairo 11381, Agricultural Research Center (ARC), Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Science, Lancaster University, LA1 4YG Lancaster, Lancashire, UK.
| |
Collapse
|
37
|
King J, Harder T, Conraths FJ, Beer M, Pohlmann A. The genetics of highly pathogenic avian influenza viruses of subtype H5 in Germany, 2006-2020. Transbound Emerg Dis 2020; 68:1136-1150. [PMID: 32964686 DOI: 10.1111/tbed.13843] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 12/22/2022]
Abstract
The H5 A/Goose/Guangdong/1/1996 (gs/GD) lineage emerged in China in 1996. Rooted in the respective gs/GD lineage, the hemagglutinin (HA) gene of highly pathogenic avian influenza viruses (HPAIV) has genetically diversified into a plethora of clades and subclades and evolved into an assortment of sub- and genotypes. Some caused substantial losses in the poultry industry and had a major impact on wild bird populations alongside public health implications due to a zoonotic potential of certain clades. After the primary introduction of the HPAI H5N1 gs/GD lineage into Europe in autumn 2005 and winter 2005/2006, Germany has seen recurring incursions of four varying H5Nx subtypes (H5N1, H5N8, H5N5, H5N6) carrying multiple distinct reassortants, all descendants of the gs/GD virus. The first HPAIV H5 epidemic in Germany during 2006/2007 was caused by a clade 2.2 subtype H5N1 virus. Phylogenetic analysis confirmed three distinct clusters belonging to clades 2.2.1, 2.2.2 and 2.2, concurring with geographic and temporal structures. From 2014 onwards, HPAIV clade 2.3.4.4 has dominated the epidemiological situation in Germany. The initial clade 2.3.4.4a HPAIV H5N8, reaching Germany in November 2014, caused a limited epidemic affecting five poultry holdings, one zoo in Northern Germany and few wild birds. After November 2016, HPAIV of clade 2.3.4.4b have dominated the situation to date. The most extensive HPAIV H5 epidemic on record reached Germany in winter 2016/2017, encompassing multiple incursion events with two subtypes (H5N8, H5N5) and entailing five reassortants. A novel H5N6 clade 2.3.4.4b strain affected Germany from December 2017 onwards, instigating low-level infection in smallholdings and wild birds. Recently, in spring 2020, a novel incursion of a genetically distinct HPAI clade 2.3.4.4b H5N8 virus caused another epidemic in Europe, which affected a small number of poultry holdings, one zoo and two wild birds throughout Germany.
Collapse
Affiliation(s)
- Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Franz J Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| |
Collapse
|
38
|
Ayala AJ, Yabsley MJ, Hernandez SM. A Review of Pathogen Transmission at the Backyard Chicken-Wild Bird Interface. Front Vet Sci 2020; 7:539925. [PMID: 33195512 PMCID: PMC7541960 DOI: 10.3389/fvets.2020.539925] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/13/2020] [Indexed: 01/31/2023] Open
Abstract
Habitat conversion and the expansion of domesticated, invasive species into native habitats are increasingly recognized as drivers of pathogen emergence at the agricultural-wildlife interface. Poultry agriculture is one of the largest subsets of this interface, and pathogen spillover events between backyard chickens and wild birds are becoming more commonly reported. Native wild bird species are under numerous anthropogenic pressures, but the risks of pathogen spillover from domestic chickens have been historically underappreciated as a threat to wild birds. Now that the backyard chicken industry is one of the fastest growing industries in the world, it is imperative that the principles of biosecurity, specifically bioexclusion and biocontainment, are legislated and implemented. We reviewed the literature on spillover events of pathogens historically associated with poultry into wild birds. We also reviewed the reasons for biosecurity failures in backyard flocks that lead to those spillover events and provide recommendations for current and future backyard flock owners.
Collapse
Affiliation(s)
- Andrea J. Ayala
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Michael J. Yabsley
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Athens, GA, United States
| | - Sonia M. Hernandez
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Athens, GA, United States
| |
Collapse
|
39
|
Mosad SM, El-Gohary FA, Ali HS, El-Sharkawy H, Elmahallawy EK. Pathological and Molecular Characterization of H5 Avian Influenza Virus in Poultry Flocks from Egypt over a Ten-Year Period (2009-2019). Animals (Basel) 2020; 10:ani10061010. [PMID: 32527004 PMCID: PMC7341251 DOI: 10.3390/ani10061010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Avian influenza virus (H5) remains one of the challenging zoonotic viruses in Egypt. Our study investigated the occurrence of this virus among chickens from Dakhalia governorate, Egypt over ten years through histopathological examination and molecular characterization of the virus. The molecular characterization was followed by sequencing and phylogenetic analysis of the positive samples. Importantly, we have reported several interesting pathological changes and high occurrence of the H5 avian influenza virus, the phylogenetic analysis revealed that positive samples were aligned with several Egyptian sub clades. Clearly, our study concludes the widespread of the virus among poultry flocks in Egypt and suggests further future research aims to develop an efficient surveillance program with investigation into the effectiveness of the implemented control measures for controlling this disease of public health concern. Abstract Avian influenza virus (AIV) remains one of the enzootic zoonotic diseases that challenges the poultry industry in Egypt. In the present study, a total of 500 tissue samples were collected from 100 chicken farms (broilers and layers) suspected to be infected with AIV through the period from 2009 to 2019 from Dakahlia governorate, Egypt. These samples were pooled in 100 working samples and screened for AIV then the positive samples were subjected to histopathological examination combined with real time-polymerase chain reaction (RRT-PCR). RRT-PCR positive samples were also subjected to conventional reverse transcriptase-polymerase chain reaction (RT-PCR) for detection of H5 AIV and some of these resulting positive samples were sequenced for detection of the molecular nature of the studied virus. Interestingly, the histopathological examination revealed necrotic liver with leukocytic infiltration with degenerative changes with necrotic pancreatitis, edema, and intense lymphoid depletion of splenic tissue and hyperplastic tracheal epithelium. Likewise, edema and congested sub mucosal blood vessels and intense bronchial necrosis with hyalinized wall vascular wall and heterophils infiltration were reported. Pneumonic areas with intense leukocytic aggregation mainly and vasculitis of the pulmonary blood vessels were also detected in lung. Collectively, these significant pathological changes in examined tissues cohered with AIV infection. Regarding the molecular characterization, 66 samples were positive for AIV by RRT-PCR and 52 of them were positive for H5 AIV by RT-PCR. The phylogenetic analysis revealed that the H5 viruses identified in this study were aligned with other Egyptian H5N1 AIVs in the Egyptian sub clade 2.2.1, while some of the identified strains were aligned with other Egyptian H5N8 strains in the new Egyptian sub clade 2.3.4.4. Taken together, our present findings emphasize the wide spread of AIV in Egypt and the importance of developing an efficient surveillance and periodical screening program for controlling such disease of public health concern.
Collapse
Affiliation(s)
- Samah Mosad Mosad
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Fatma A. El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Hanaa Said Ali
- Department of Pathology, Animal Health Research Institute, Mansoura Branch, Mansoura 35516, Egypt;
| | - Hanem El-Sharkawy
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Ehab Kotb Elmahallawy
- Department of Biomedical Sciences, University of León, 24071 León, Spain
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence:
| |
Collapse
|
40
|
Hassan KE, Saad N, Abozeid HH, Shany S, El-Kady MF, Arafa A, El-Sawah AAA, Pfaff F, Hafez HM, Beer M, Harder T. Genotyping and reassortment analysis of highly pathogenic avian influenza viruses H5N8 and H5N2 from Egypt reveals successive annual replacement of genotypes. INFECTION GENETICS AND EVOLUTION 2020; 84:104375. [PMID: 32454245 DOI: 10.1016/j.meegid.2020.104375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/03/2023]
Abstract
Highly pathogenic (HP) H5N1, clade 2.2.1, and low pathogenic avian influenza (LPAI) H9N2 viruses, G1-B lineage, are endemic in poultry in Egypt and have co-circulated for almost a decade. Surprisingly, no inter-subtypic reassortment events have been reported from the field during that time. After the introduction of HPAIV H5N8, clade 2.3.4.4b, in Egyptian poultry in 2016, suddenly HP H5N2 reassortants with H9N2 viruses emerged. The current analyses focussed on studying 32 duck flocks, 4 broiler chicken flocks, and 1 turkey flock, suffering from respiratory manifestations with moderate to high mortality reared in two Egyptian governorates during 2019. Real-time RT-PCR substantiated the presence of HP H5N8 in 21 of the 37 investigated flocks with mixed infection of H9N2 in two of them. HP H5N1 was not detected. Full hemagglutinin (HA) sequencing of 10 samples with full-genome sequencing of three of them revealed presence of a single genotype. Very few substituting mutations in the HA protein were detected versus previous Egyptian HA sequences of that clade. Interestingly, amino acid substitutions in the Matrix (M2) and the Neuraminidase (NA) proteins associated with conferring both Amantadine and Oseltamivir resistance were present. Systematic reassortment analysis of all publicly available Egyptian whole genome sequences of HP H5N8 (n = 23), reassortant HP H5N2 (n = 2) and LP H9N2 (n = 53) viruses revealed presence of at least seven different genotypes of HPAI H5Nx viruses of clade 2.3.4.4b in Egypt since 2016. For H9N2 viruses, at least three genotypes were distinguishable. Heat mapping and tanglegram analyses suggested that several internal gene segments in both HP H5Nx and H9N2 viruses originated from avian influenza viruses circulating in wild bird species in Egypt. Based on the limited set of whole genome sequences available, annual replacement patterns of HP H5Nx genotypes emerged and suggested selective advantages of certain genotypes since 2016.
Collapse
Affiliation(s)
- Kareem E Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany; Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Noha Saad
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 12618, Dokki, Giza, Egypt
| | - Hassanein H Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Salama Shany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Magdy F El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdelsatar Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 12618, Dokki, Giza, Egypt
| | - Azza A A El-Sawah
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany
| | - Hafez M Hafez
- Institute of Poultry Diseases, Free University Berlin, Berlin, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany.
| |
Collapse
|
41
|
Gomaa MR, Khalil AA, Kandeil A, Sabir JSM, Kayed A, Moatasim Y, El Saied MF, El-Safty MM, Kayali G, Ali MA. Development of an effective contemporary trivalent avian influenza vaccine against circulating H5N1, H5N8, and H9N2 in Egypt. Poult Sci 2020; 98:6289-6295. [PMID: 31265106 DOI: 10.3382/ps/pez385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Low pathogenicity avian influenza (LPAI) H9N2, highly pathogenic avian influenza (HPAI) H5N1, and H5N8 circulate in Egyptian poultry and cause veterinary and public health burdens. In response, AIV vaccines are commonly used. The main objective of this study was to develop a broad, cross-protective, trivalent vaccine based on circulating AIVs in Egypt. We generated highly replicating avirulent AIVs, H5N1, and H5N8, to be used in combination with H9N2 strain for the generation of an inactivated vaccine. Immunogenicity and protective efficacy of this vaccine were tested. Results showed that a single immunization dose enhanced humoral immune responses giving full protection against challenges with LPAI H9N2, HPAI H5N1, and H5N8 viruses. This efficacious vaccine will reduce the cost of vaccination for poultry growers and is expected to be effective in the field as it is based on contemporary viruses currently in circulation among Egyptian poultry.
Collapse
Affiliation(s)
- Mokhtar Rizk Gomaa
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre, Cairo 12622, Egypt
| | - Ahmed Ali Khalil
- Veterinary Serum and Vaccine Research Institute (VSVRI), Abassia, Cairo 11381, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre, Cairo 12622, Egypt
| | - Jamal S M Sabir
- Center of excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.,Faculty of Science, Department of Biological Sciences, Biotechnology Research Group, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Ahmed Kayed
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre, Cairo 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre, Cairo 12622, Egypt
| | - Marwa F El Saied
- Central laboratory for evaluation of Veterinary Biologics (CLEVB), Cairo 11381, Egypt
| | - Mounir M El-Safty
- Central laboratory for evaluation of Veterinary Biologics (CLEVB), Cairo 11381, Egypt
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA.,Human Link, Baabda 1109, Lebanon
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre, Cairo 12622, Egypt.,Center of excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
42
|
Genetic variability of avian influenza virus subtype H5N8 in Egypt in 2017 and 2018. Arch Virol 2020; 165:1357-1366. [PMID: 32285202 DOI: 10.1007/s00705-020-04621-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/24/2020] [Indexed: 01/07/2023]
Abstract
Since the incursion of avian influenza virus subtype H5N8 in Egypt in late 2016, it has spread rapidly, causing severe losses in poultry production. Multiple introductions of different reassorted strains were observed in 2017. In this study, a genetic characterization of the HA gene was carried out with 31 isolates selected from different governorates and sectors. Fifteen isolates were selected for NA gene sequence analysis. The HA and NA genes were divided into two subgroups (I and II) with positive selection pressure identified at positions 174 and 29, respectively. The HA gene contained two novel mutations in the antigenic sites, A and E. The HA nucleotide sequence identity ranged from 77 to 90% with different vaccine seeds. Full-genome sequence analysis was carried out for eight viruses, representing different governorates and sectors, to identify the predominant reassorted strain in Egypt. All viruses were similar to a reassorted strain of clade 2.3.4.4b that has been identified in Germany, among other countries. Analysis of these viruses revealed mutations specific to Egyptian strains and not the original virus characterized in 2017 (A/duck/Egypt/F446/2017), with a novel antiviral resistance marker, V27A, indicating resistance to amantadine in the M2 protein of two strains. The results indicate increased variability of circulating H5N8 viruses compared to earlier viruses sequenced in 2016 and 2017. The predominant reassorted virus circulating in 2017 and 2018 originated from an early 2017 strain. It is important to continue this surveillance of avian influenza viruses to monitor the evolution of circulating viruses.
Collapse
|
43
|
Tatár-Kis T, Dán Á, Felföldi B, Bálint Á, Rónai Z, Dauphin G, Pénzes Z, El-Attrache J, Gardin Y, Palya V. Virus-Like Particle Based Vaccine Provides High Level of Protection Against Homologous H5N8 HPAIV Challenge in Mule and Pekin Duck, Including Prevention of Transmission. Avian Dis 2020; 63:193-202. [PMID: 31131577 DOI: 10.1637/11882-042718-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/18/2018] [Indexed: 11/05/2022]
Abstract
The most recent pandemic clade of highly pathogenic avian influenza (HPAI) H5, clade 2.3.4.4, spread widely, with the involvement of wild birds, most importantly wild waterfowl, carrying the virus (even asymptomatically) from Asia to North America, Europe, and Africa. Domestic waterfowl being in regular contact with wild birds played a significant role in the H5Nx epizootics. Therefore, protection of domestic waterfowl from H5Nx avian influenza infection would likely cut the transmission chain of these viruses and greatly enhance efforts to control and prevent disease outbreak in other poultry and animal species, as well as infection of humans. The expectation for such a vaccine is not only to provide clinical protection, but also to control challenge virus transmission efficiently and ensure that the ability to differentiate infected from vaccinated animals is retained. A water-in-oil emulsion virus-like particle vaccine, containing homologous hemagglutinin antigen to the current European H5N8 field strains, has been developed to meet these requirements. The vaccine was tested in commercial Pekin and mule ducks by vaccinating them either once, at 3 wk of age, or twice (at 1 day and at 3 wk of age). Challenge was performed at 6 wk of age with a Hungarian HPAIV H5N8 isolate (2.3.4.4 Group B). Efficacy of vaccination was evaluated on the basis of clinical signs, amount of virus shedding, and transmission. Vaccination resulted in complete clinical protection and prevention of challenge virus transmission from the directly challenged vaccinated ducks to the vaccinated contact animals.
Collapse
Affiliation(s)
- Tímea Tatár-Kis
- Scientific Support and Investigation Unit, Ceva Phylaxia, Ceva Animal Health, Budapest, Hungary 1107
| | - Ádám Dán
- Veterinary Diagnostic Institute, National Food Chain Safety Office, Budapest, Hungary 1149
| | - Balázs Felföldi
- Scientific Support and Investigation Unit, Ceva Phylaxia, Ceva Animal Health, Budapest, Hungary 1107
| | - Ádám Bálint
- Veterinary Diagnostic Institute, National Food Chain Safety Office, Budapest, Hungary 1149
| | - Zsuzsanna Rónai
- Veterinary Diagnostic Institute, National Food Chain Safety Office, Budapest, Hungary 1149
| | - Gwenaelle Dauphin
- Science and Innovation Direction, Ceva Animal Health, 33500-Libourne, France
| | - Zoltán Pénzes
- Bio R&D, Ceva Phylaxia, Ceva Animal Health, Budapest, Hungary 1107
| | - John El-Attrache
- Scientific Support and Investigation Unit, Ceva Biomune, Ceva Animal Health, Lenexa, KS 66215
| | - Yannick Gardin
- Science and Innovation Direction, Ceva Animal Health, 33500-Libourne, France
| | - Vilmos Palya
- Scientific Support and Investigation Unit, Ceva Phylaxia, Ceva Animal Health, Budapest, Hungary 1107,
| |
Collapse
|
44
|
Yamaji R, Saad MD, Davis CT, Swayne DE, Wang D, Wong FYK, McCauley JW, Peiris JSM, Webby RJ, Fouchier RAM, Kawaoka Y, Zhang W. Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Rev Med Virol 2020; 30:e2099. [PMID: 32135031 PMCID: PMC9285678 DOI: 10.1002/rmv.2099] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/05/2023]
Abstract
The panzootic caused by A/goose/Guangdong/1/96‐lineage highly pathogenic avian influenza (HPAI) A(H5) viruses has occurred in multiple waves since 1996. From 2013 onwards, clade 2.3.4.4 viruses of subtypes A(H5N2), A(H5N6), and A(H5N8) emerged to cause panzootic waves of unprecedented magnitude among avian species accompanied by severe losses to the poultry industry around the world. Clade 2.3.4.4 A(H5) viruses have expanded in distinct geographical and evolutionary pathways likely via long distance migratory bird dispersal onto several continents and by poultry trade among neighboring countries. Coupled with regional circulation, the viruses have evolved further by reassorting with local viruses. As of February 2019, there have been 23 cases of humans infected with clade 2.3.4.4 H5N6 viruses, 16 (70%) of which had fatal outcomes. To date, no HPAI A(H5) virus has caused sustainable human‐to‐human transmission. However, due to the lack of population immunity in humans and ongoing evolution of the virus, there is a continuing risk that clade 2.3.4.4 A(H5) viruses could cause an influenza pandemic if the ability to transmit efficiently among humans was gained. Therefore, multisectoral collaborations among the animal, environmental, and public health sectors are essential to conduct risk assessments and develop countermeasures to prevent disease and to control spread. In this article, we describe an assessment of the likelihood of clade 2.3.4.4 A(H5) viruses gaining human‐to‐human transmissibility and impact on human health should such human‐to‐human transmission occur. This structured analysis assessed properties of the virus, attributes of the human population, and ecology and epidemiology of these viruses in animal hosts.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Magdi D Saad
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Charles T Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Swayne
- Department of Agriculture, OIE Collaborating Centre for Research on Emerging Avian Diseases, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China
| | - Frank Y K Wong
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, UK
| | - J S Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Wenqing Zhang
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| |
Collapse
|
45
|
Ahmed BM, Amer HA, Kissenkoetter J, El Wahed AA, Bayoumi MM, Böhlken-Fascher S, Elgamal MA, Yehia N, Yousif AA, Shalaby MA. Evaluating two approaches for using positive control in standardizing the avian influenza H5 reverse transcription recombinase polymerase amplification assay. Mol Cell Probes 2020; 50:101511. [PMID: 31953221 DOI: 10.1016/j.mcp.2020.101511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Highly pathogenic avian influenza H5N1 virus causes heavy losses in poultry farms worldwide. Molecular diagnostic techniques like RT-PCR and real-time RT-PCR are considered the gold standard for identification of H5 influenza viruses in clinical samples. These techniques are hampered by the need of well-equipped laboratories, large space requirement, and relatively long time-to-result. Recombinase polymerase amplification (RPA) assay represents an excellent alternative to PCR since it is more simple, rapid, economic, and portable. Reverse transcription RPA (RT-RPA) assay was recently developed for sensitive and specific detection of H5N1 virus in 6-10 min. To ensure the accuracy of the developed assay, two approaches for using a positive control were evaluated in this study. These approaches included: 1) all-in-one (internal positive control; IPC), 2) two-tubes-per-one-sample (external positive control; EPC). Sigma virus (SIGV) RNA and turkey mitochondrial DNA were tested as positive controls in both approaches. For all-in-one approach, both targets (H5 and IPC) were strongly inhibited. In contrast, very good amplification signals were obtained for the two types of EPC with no effect on the analytical sensitivity and specificity of H5 RT-RPA assay in two-tubes-per-one-sample approach. The performance of EPC-based H5 RT-RPA was further validated using 13 tracheal swabs. The results were compared to real-time RT-PCR and proved superior specificity in detecting H5N1 but not H5N8 viruses. Inclusion of EPC did not affect the aptitude of both assays in terms of sensitivity, specificity and reproducibility. In conclusion, the two-tubes-per-one-sample approach was more reliable to control the false negative results in H5 RT-RPA assay.
Collapse
Affiliation(s)
- Basem M Ahmed
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Haitham A Amer
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Jonas Kissenkoetter
- Division of Microbiology and Animal Hygiene, University of Goettingen, Goettingen, Germany
| | - Ahmed Abd El Wahed
- Division of Microbiology and Animal Hygiene, University of Goettingen, Goettingen, Germany
| | - Mahmoud M Bayoumi
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Susane Böhlken-Fascher
- Division of Microbiology and Animal Hygiene, University of Goettingen, Goettingen, Germany
| | - Mahmoud A Elgamal
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nahed Yehia
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Ausama A Yousif
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A Shalaby
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
46
|
Disentangling the role of Africa in the global spread of H5 highly pathogenic avian influenza. Nat Commun 2019; 10:5310. [PMID: 31757953 PMCID: PMC6874648 DOI: 10.1038/s41467-019-13287-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022] Open
Abstract
The role of Africa in the dynamics of the global spread of a zoonotic and economically-important virus, such as the highly pathogenic avian influenza (HPAI) H5Nx of the Gs/GD lineage, remains unexplored. Here we characterise the spatiotemporal patterns of virus diffusion during three HPAI H5Nx intercontinental epidemic waves and demonstrate that Africa mainly acted as an ecological sink of the HPAI H5Nx viruses. A joint analysis of host dynamics and continuous spatial diffusion indicates that poultry trade as well as wild bird migrations have contributed to the virus spreading into Africa, with West Africa acting as a crucial hotspot for virus introduction and dissemination into the continent. We demonstrate varying paths of avian influenza incursions into Africa as well as virus spread within Africa over time, which reveal that virus expansion is a complex phenomenon, shaped by an intricate interplay between avian host ecology, virus characteristics and environmental variables.
Collapse
|
47
|
Comparative Virological and Pathogenic Characteristics of Avian Influenza H5N8 Viruses Detected in Wild Birds and Domestic Poultry in Egypt during the Winter of 2016/2017. Viruses 2019; 11:v11110990. [PMID: 31717865 PMCID: PMC6893538 DOI: 10.3390/v11110990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
The surveillance and virological characterization of H5N8 avian influenza viruses are important in order to assess their zoonotic potential. The genetic analyses of the Egyptian H5N8 viruses isolated through active surveillance in wild birds and domestic poultry in the winter of 2016/2017 showed multiple introductions of reassortant viruses. In this study, we investigated and compared the growth kinetics, infectivity, and pathogenicity of the three reassortant forms of H5N8 viruses detected in wild birds and domestic poultry in Egypt during the first introduction wave in the winter of 2016/2017. Three representative H5N8 viruses (abbreviated as 813, 871, and 13666) were selected. The 871/H5N8 virus showed enhanced growth properties in vitro in Madin Darby canine kidney (MDCK) and A549 cells. Interestingly, all viruses replicated well in mice without prior adaptation. Infected C57BL/6 mice showed 20% mortality for 813/H5N8 and 60% mortality for 871/H5N8 and 13666/H5N8, which could be attributed to the genetic differences among the viruses. Studies on the pathogenicity in experimentally infected ducks revealed a range of pathogenic effects, with mortality rate ranging from 0% for 813/H5N8 and 13666/H5N8 to 28% for 871/H5N8. No significant differences were observed among the three compared viruses in infected chickens. Overall, different H5N8 viruses had variable biological characteristics, indicating a continuous need for surveillance and virus characterization efforts.
Collapse
|
48
|
Hassan KE, El-Kady MF, El-Sawah AAA, Luttermann C, Parvin R, Shany S, Beer M, Harder T. Respiratory disease due to mixed viral infections in poultry flocks in Egypt between 2017 and 2018: Upsurge of highly pathogenic avian influenza virus subtype H5N8 since 2018. Transbound Emerg Dis 2019; 68:21-36. [PMID: 31297991 DOI: 10.1111/tbed.13281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
For several years, poultry production in Egypt has been suffering from co-circulation of multiple respiratory viruses including highly pathogenic avian influenza virus (HPAIV) H5N1 (clade 2.2.1.2) and low pathogenic H9N2 (clade G1-B). Incursion of HPAIV H5N8 (clade 2.3.4.4b) to Egypt in November 2016 via wild birds followed by spread into commercial poultry flocks further complicated the situation. Current analyses focussed on 39 poultry farms suffering from respiratory manifestation and high mortality in six Egyptian governorates during 2017-2018. Real-time RT-PCR (RT-qPCR) substantiated the co-presence of at least two respiratory virus species in more than 80% of the investigated flocks. The percentage of HPAIV H5N1-positive holdings was fairly stable in 2017 (12.8%) and 2018 (10.2%), while the percentage of HPAIV H5N8-positive holdings increased from 23% in 2017 to 66.6% during 2018. The proportion of H9N2-positive samples was constantly high (2017:100% and 2018:63%), and H9N2 co-circulated with HPAIV H5N8 in 22 out of 39 (56.8%) flocks. Analyses of 26 H5, 18 H9 and 4 N2 new sequences confirmed continuous genetic diversification. In silico analysis revealed numerous amino acid substitutions in the HA and NA proteins suggestive of increased adaptation to mammalian hosts and putative antigenic variation. For sensitive detection of H9N2 viruses by RT-qPCR, an update of primers and probe sequences was crucial. Reasons for the relative increase of HPAIV H5N8 infections versus H5N1 remained unclear, but lack of suitable vaccines against clade 2.3.4.4b cannot be excluded. A reconsideration of surveillance and control measures should include updating of diagnostic tools and vaccination strategies.
Collapse
Affiliation(s)
- Kareem E Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Magdy F El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Azza A A El-Sawah
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Christine Luttermann
- Institute of Immunology Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Rokshana Parvin
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Salama Shany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| |
Collapse
|
49
|
Shehata AA, Sedeik ME, Elbestawy AR, Zain El-Abideen MA, Ibrahim HH, Kilany WH, Ali A. Co-infections, genetic, and antigenic relatedness of avian influenza H5N8 and H5N1 viruses in domestic and wild birds in Egypt. Poult Sci 2019; 98:2371-2379. [PMID: 30668795 PMCID: PMC7107238 DOI: 10.3382/ps/pez011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/04/2019] [Indexed: 12/28/2022] Open
Abstract
A total of 50 poultry farms of commercial broilers (N = 39) and commercial layers (N = 11) suffered from respiratory problems and mortality during the period from January 2016 to December 2017 were investigated. Also, samples were collected from quail (N = 4), Bluebird (Sialis, N = 1), and Greenfinch (Chloris chloris, N = 1) for analysis. Respiratory viral pathogens were screened by PCR and positive samples were subjected to virus isolation and genetic identification. Antigenic relatedness of isolated avian influenza (AI) H5 subtype was evaluated using cross-hemagglutination inhibition. Results revealed that the incidence of single virus infections in commercial broilers was 64.1% (25/39), with the highest incidence for ND (33.3%) and H9N2 (20.5%), followed by H5N1 (7.7%) and H5N8 (2.7). Meanwhile, H9N2/ND mixed infection was the most observed case (7.7%). Other mixed infections H5N1/ND, H5N1/H9N2/ND, H5N1/H9N2/ND/IB, H9N2/IB, and H9N2/ILT were also observed (2.6% each). In commercial layers, H5N1 and ILT were the only detected single infections (18.1% each). Mixed H9N2/ND was the most predominant infection in layers (27.3%). Other mixed infections of H9N2/IB, H5N1/H5N8/H9N2, and H9N2/ND/IB were observed in 3 separate farms (9.1% each). The H5N8 virus was detected in one quail farm and 2 out of 3 wild bird's samples. Partial HA gene sequence analysis showed the clustering of the selected AI H5N8 within the 2.3.4.4 clade, while H5N1 clustered with the clade 2.2.1.2. Interestingly, the H5N8 isolated from chickens possessed 6 amino acids substitutions at HA1 compared to those isolated from wild birds with low antigenic relatedness to AI H5N1 clades 2.2.1 or 2.2.1.2. In conclusion, mixed viral infections were observed in both broiler and layer chickens in Egypt. The detected triple H5N1, H9N2, and H5N8 influenza co-infection raises the concern of potential AI epidemic strain emergence. The low genetic and antigenic relatedness between AI H5N1 and H5N8 viruses suggest the need for modification of vaccination strategies of avian influenza in Egypt along with strict biosecurity measures.
Collapse
Affiliation(s)
- Awad A Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Mahmoud E Sedeik
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed R Elbestawy
- Poultry Diseases Department, Faculty of Veterinary medicine, Damanhur University, Behaira, Egypt
| | - Mohamed A Zain El-Abideen
- Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Dokki, Giza, Egypt
| | - Hytham H Ibrahim
- Poultry Diseases Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Walid H Kilany
- Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Dokki, Giza, Egypt
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
50
|
Prokopyeva EA, Zinserling VA, Bae YC, Kwon Y, Kurskaya OG, Sobolev IA, Kozhin PM, Komissarov A, Fadeev A, Petrov V, Shestopalov AM, Sharshov KA. Pathology of A(H5N8) (Clade 2.3.4.4) Virus in Experimentally Infected Chickens and Mice. Interdiscip Perspect Infect Dis 2019; 2019:4124865. [PMID: 31354812 PMCID: PMC6637675 DOI: 10.1155/2019/4124865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022] Open
Abstract
The emergence of novel highly pathogenic avian influenza viruses (HPAIVs) in migratory birds raises serious concerns as these viruses have the potential to spread during fall migration. We report the identification of novel HPAIV A(H5N8) clade 2.3.4.4 virus that was isolated from sick domestic duck at commercial farm during the second wave of spread that began in October and affected poultry (ducks; chiсkens) in several European regions of Russia and Western Siberia in 2016. The strain was highly lethal in experimental infection of chickens and mice with IVPI = 2.34 and MLD50 = 1.3log10 EID50, accordingly. Inoculation of chickens with the HPAIV A/H5N8 demonstrated neuroinvasiveness, multiorgan failure, and death of chickens on the 3rd day post inoculation. Virus replicated in all collected organ samples in high viral titers with the highest titer in the brain (6.75±0.1 log10TCID50/ml). Effective virus replication was found in the following cells: neurons and glial cells of a brain; alveolar cells and macrophages of lungs; epithelial cells of a small intestine; hepatocytes and Kupffer cells of a liver; macrophages and endothelial cells of a spleen; and the tubular epithelial cells of kidneys. These findings advance our understanding of histopathological effect of A(H5N8) HPAIV infection.
Collapse
Affiliation(s)
- Elena A. Prokopyeva
- Department of Experimental Research, Federal Research Center for Basic and Translational Medicine, Novosibirsk 630117, Russia
- Medical Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vsevolod A. Zinserling
- Institute of Experimental Medicine, Almazov National Federal Research Centre, Saint Petersburg 197341, Russia
| | - You-Chan Bae
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Yongkuk Kwon
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Olga G. Kurskaya
- Department of Experimental Research, Federal Research Center for Basic and Translational Medicine, Novosibirsk 630117, Russia
| | - Ivan A. Sobolev
- Department of Experimental Research, Federal Research Center for Basic and Translational Medicine, Novosibirsk 630117, Russia
| | - Peter M. Kozhin
- Department of Experimental Research, Federal Research Center for Basic and Translational Medicine, Novosibirsk 630117, Russia
| | - Andrey Komissarov
- Department of etiology and epidemiology, Smorodintsev Research Institute of Influenza, Saint Petersburg 197376, Russia
| | - Artem Fadeev
- Department of etiology and epidemiology, Smorodintsev Research Institute of Influenza, Saint Petersburg 197376, Russia
| | - Vladimir Petrov
- Department of Experimental Research, Federal Research Center for Basic and Translational Medicine, Novosibirsk 630117, Russia
| | - Alexander M. Shestopalov
- Department of Experimental Research, Federal Research Center for Basic and Translational Medicine, Novosibirsk 630117, Russia
| | - Kirill A. Sharshov
- Department of Experimental Research, Federal Research Center for Basic and Translational Medicine, Novosibirsk 630117, Russia
| |
Collapse
|