1
|
Pedretti N, Iseppi R, Condò C, Ghazanfar S, Messi P, Di Cerbo A, Sabia C. Characterization of virulence factors and antimicrobial resistance in Staphylococcus spp. isolated from clinical samples. Folia Microbiol (Praha) 2024; 69:1043-1052. [PMID: 38367164 DOI: 10.1007/s12223-024-01148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
The virulence factors, antibiotic resistance patterns, and the associated genetic elements have been investigated in Staphylococcus species. A total of 100 strains has been isolated from clinical samples in the Microbiology Laboratory of Hesperia Hospital, Modena, Italy, and identified as Staphylococcus aureus (65), Staphylococcus epidermidis (24), Staphylococcus hominis (3), Staphylococcus saprophyticus (3), and Staphylococcus warneri (5). All the strains were analyzed to determine phenotypic and genotypic characters, notably the virulence factors, the antibiotics susceptibility, and the genetic determinants. The highest percentage of resistance in Staphylococcus spp. was found for erythromycin and benzylpenicillin (87% and 85%, respectively). All S. aureus, two S. epidermidis (8.3%), and one S. saprophyticus (33.3%) strains were resistant to oxacillin. The methicillin resistance gene (mecA) was detected by polymerase chain reaction (PCR) amplification in 65 S. aureus strains and in 3 coagulase-negative staphylococci (CoNS) (8.6%). With regard to the virulence characteristics, all the S. aureus were positive to all virulence tests, except for slime test. Among the CoNS isolates, 19 (79.1%) S. epidermidis and one (33.3%) S. saprophyticus strains resulted positive for the slime test only. The results obtained are useful for a more in-depth understanding of the function and contribution of S. aureus and CoNS antibiotic resistance and virulence factors to staphylococcal infections. In particular, the production of slime is very important for CoNS, a virulence factor frequently found in infections caused by these strains. Further investigations on the genetic relatedness among strains of different sources will be useful for epidemiological and monitoring purposes and will enable us to develop new strategies to counteract the diffusion of methicillin-resistant S. aureus (MRSA) and CoNS strains not only in clinical field, but also in other related environments.
Collapse
Affiliation(s)
- Natalia Pedretti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Carla Condò
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, 45500, Islamabad, Pakistan
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| |
Collapse
|
2
|
Yang H, Wang P, Li X, Wei Q, Yu J, Wu X, Huang Y, Li R, Du W, Zeng S, Wu H, Wang S, Zhang J. A randomised, double-blind, placebo-controlled, first-in-human phase I study to characterise the safety, pharmacokinetics and immunogenicity of 9MW1411 in healthy Chinese subjects. Int J Antimicrob Agents 2024; 63:107075. [PMID: 38157918 DOI: 10.1016/j.ijantimicag.2023.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION 9MW1411 is a humanised monoclonal antibody against Staphylococcus aureus alpha-toxin. The safety, pharmacokinetics (PK) and immunogenicity of 9MW1411 should be characterised in humans before further clinical development. METHODS A single-centre, randomised, double-blind, placebo-controlled phase I clinical study was conducted in humans for the first time. A total of 42 healthy Chinese subjects were randomised to receive a single ascending dose of 9MW1411 (200, 600, 1500, 3000 or 5000 mg) or placebo. Safety, PK parameters and anti-drug antibody (ADA) were analysed. Monte Carlo simulations (MCS) were performed to predict the probability of target attainment (PTA) after single dose IV administration of 1500, 3000 and 5000 mg of 9MW1411. RESULTS Thirty-four subjects received 9MW1411, completed the study and were included in data analysis. Five cases of drug-related AEs occurred in four subjects. All the adverse events (AEs) were mild or moderate. The Cmax, AUC0-t and AUC0-∞ of 9MW1411 increased with dose after IV administration of 200 to 5000 mg 9MW1411. The mean Cmax increased from 85.40 ± 5.43 to 2082.11 ± 343.10 µg/mL and AUC0-∞ from 29,511.68 ± 5550.91 to 729,985.49 ± 124,932.18 h·µg/mL. The elimination half-life (T1/2) was 19-23 days. 9MW1411 ADA was positive in three subjects. MCS indicated that a single dose of 3000 or 5000 mg 9MW1411 could achieve PTA > 90% for S. aureus. CONCLUSIONS 9MW1411 has shown a good safety profile in healthy Chinese subjects after a single dose up to 5000 mg. A single dose of 3000 mg 9MW1411 is appropriate for use in subsequent studies.
Collapse
Affiliation(s)
- Haijing Yang
- Phase Ⅰ Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China; National Clinical Research Center for Geriatric Diseases (Huashan Hospital), Shanghai, China
| | - Peipei Wang
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, China
| | - Xin Li
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China; National Clinical Research Center for Geriatric Diseases (Huashan Hospital), Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong Wei
- Phase Ⅰ Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China; National Clinical Research Center for Geriatric Diseases (Huashan Hospital), Shanghai, China
| | - Jicheng Yu
- Phase Ⅰ Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China; National Clinical Research Center for Geriatric Diseases (Huashan Hospital), Shanghai, China
| | - Xiaojie Wu
- Phase Ⅰ Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China; National Clinical Research Center for Geriatric Diseases (Huashan Hospital), Shanghai, China
| | - Ying Huang
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China; National Clinical Research Center for Geriatric Diseases (Huashan Hospital), Shanghai, China; Nursing Department, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruowan Li
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, China
| | - Weijuan Du
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, China
| | - Shaoqing Zeng
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, China
| | - Hailan Wu
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China; National Clinical Research Center for Geriatric Diseases (Huashan Hospital), Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuhai Wang
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, China.
| | - Jing Zhang
- Phase Ⅰ Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China; National Clinical Research Center for Geriatric Diseases (Huashan Hospital), Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Su J, Zheng W. Dual-Toehold-Probe-Mediated Exonuclease-III-Assisted Signal Recycles Integrated with CHA for Detection of mecA Gene Using a Personal Glucose Meter in Skin and Soft Tissue Infection. J Microbiol Biotechnol 2023; 33:1692-1697. [PMID: 37734933 PMCID: PMC10772588 DOI: 10.4014/jmb.2306.06037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023]
Abstract
Staphylococcus aureus integrated with mecA gene, which codes for penicillin-binding protein 2a, is resistant to all penicillins and other beta-lactam antibiotics, resulting in poor treatment expectations in skin and soft tissue infections. The development of a simple, sensitive and portable biosensor for mecA gene analysis in S. aureus is urgently needed. Herein, we propose a dual-toehold-probe (sensing probe)-mediated exonuclease-III (Exo-III)-assisted signal recycling for portable detection of the mecA gene in S. aureus. When the target mecA gene is present, it hybridizes with the sensing probe, initiating Exo III-assisted dual signal recycles, which in turn release numerous "3" sequences. The released "3" sequences initiate catalytic hairpin amplification, resulting in the fixation of a sucrase-labeled H2 probe on the surface of magnetic beads (MBs). After magnet-based enrichment of an MB-H1-H2-sucrase complex and removal of a liquid supernatant containing free sucrase, the complex is then used to catalyze sucrose to glucose, which can be quantitatively detected by a personal glucose meter. With a limit of detection of 4.36 fM for mecA gene, the developed strategy exhibits high sensitivity. In addition, good selectivity and anti-interference capability were also attained with this method, making it promising for antibiotic tolerance analysis at the point-of-care.
Collapse
Affiliation(s)
- Jiaguang Su
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P.R. China
| | - Wenjun Zheng
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
4
|
Wisal A, Ullah A, Anwar W, Morel CM, Hassan SS. Whole genomic sequencing of Staphylococcus aureus strain RMI-014804 isolated from pulmonary patient sputum via next-generation sequencing technology. Genomics Inform 2023; 21:e34. [PMID: 37813630 PMCID: PMC10584650 DOI: 10.5808/gi.23024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 10/11/2023] Open
Abstract
Nosocomial infections, commonly referred to as healthcare-associated infections, are illnesses that patients get while hospitalized and are typically either not yet manifest or may develop. One of the most prevalent nosocomial diseases in hospitalized patients is pneumonia, among the leading causes of mortality and morbidity. Viral, bacterial, and fungal pathogens cause pneumonia. More severe introductions commonly included Staphylococcus aureus, which is at the top of bacterial infections, per World Health Organization reports. The staphylococci, S. aureus, strain RMI-014804, mesophile, on-sporulating, and non-motile bacterium, was isolated from the sputum of a pulmonary patient in Pakistan. Many characteristics of S. aureus strain RMI-014804 have been revealed in this paper, with complete genome sequence and annotation. Our findings indicate that the genome is a single circular 2.82 Mbp long genome with 1,962 protein-coding genes, 15 rRNA, 49 tRNA, 62 pseudogenes, and a GC content of 28.76%. As a result of this genome sequencing analysis, researchers will fully understand the genetic and molecular basis of the virulence of the S. aureus bacteria, which could help prevent the spread of nosocomial infections like pneumonia. Genome analysis of this strain was necessary to identify the specific genes and molecular mechanisms that contribute to its pathogenicity, antibiotic resistance, and genetic diversity, allowing for a more in-depth investigation of its pathogenesis to develop new treatments and preventive measures against infections caused by this bacterium.
Collapse
Affiliation(s)
- Ayesha Wisal
- Department of Chemistry, Islamia College Peshawar, Peshawar, KP 25000, Pakistan
| | - Asad Ullah
- Department of Chemistry, Islamia College Peshawar, Peshawar, KP 25000, Pakistan
| | - Waheed Anwar
- Department of Pulmonology, Rehman Medical Institute, Peshawar, KP 25000, Pakistan
| | - Carlos M. Morel
- Centre for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Building "Expansão", 8th floor room 814, Av. Brasil 4036 - Manguinhos, Rio de Janeiro, RJ 21040-361, Brazil
| | - Syed Shah Hassan
- Department of Chemistry, Islamia College Peshawar, Peshawar, KP 25000, Pakistan
- Centre for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Building "Expansão", 8th floor room 814, Av. Brasil 4036 - Manguinhos, Rio de Janeiro, RJ 21040-361, Brazil
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
5
|
Aqel H, Sannan N, Foudah R. From Hospital to Community: Exploring Antibiotic Resistance and Genes Associated with Virulence Factor Diversity of Coagulase-Positive Staphylococci. Antibiotics (Basel) 2023; 12:1147. [PMID: 37508243 PMCID: PMC10376022 DOI: 10.3390/antibiotics12071147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Coagulase-positive staphylococcus (CoPS), including methicillin-resistant Staphylococcus aureus (MRSA), poses a global threat. The increasing prevalence of MRSA in Saudi Arabia emphasizes the need for effective management. This study explores the prevalence of virulence-associated genes and antibiotic resistance patterns in CoPS. Nasal swabs from 200 individuals were collected, and standard protocols were used for the isolation, identification, and characterization of CoPS and coagulase-negative staphylococci (CoNS). Additionally, antimicrobial susceptibility testing and PCR were conducted. Bacterial growth was observed in 58.5% of participants, with 12% positive for CoPS and 30% positive for CoNS. Hospital personnel carriers showed a significantly higher proportion of CoNS compared with non-hospital personnel carriers. Non-hospital personnel CoPS strains displayed higher sensitivity to oxacillin than hospital personnel strains. Cefoxitin exhibited the highest sensitivity among β-lactam antibiotics. All isolates were sensitive to trimethoprim/sulfamethoxazole, rifampin, and quinupristin. Polymerase chain reaction analysis detected methicillin resistance genes in both non-hospital and hospital personnel MRSA strains. The coa and spa genes were prevalent in MRSA isolates, while the Luk-PV gene was not detected. A high prevalence of CoPS and CoNS was observed in both non-hospital and hospital personnel carriers. Occupational risk factors may contribute to the differences in the strain distribution. Varying antibiotic susceptibility patterns indicate the effectiveness of oxacillin and cefoxitin. Urgent management strategies are needed due to methicillin resistance. Further research is necessary to explore additional virulence-associated genes and develop comprehensive approaches for CoPS infection prevention and treatment in Saudi Arabia.
Collapse
Affiliation(s)
- Hazem Aqel
- Basic Medical Sciences Department, College of Medicine, Al-Balqa' Applied University, Salt 19117, Jordan
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Jeddah 22384, Saudi Arabia
| | - Naif Sannan
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Jeddah 22384, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
| | - Ramy Foudah
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| |
Collapse
|
6
|
Zhan XY, Zha GF, He Y. Evolutionary dissection of monkeypox virus: Positive Darwinian selection drives the adaptation of virus-host interaction proteins. Front Cell Infect Microbiol 2023; 12:1083234. [PMID: 36710983 PMCID: PMC9880225 DOI: 10.3389/fcimb.2022.1083234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
The emerging and ongoing outbreak of human monkeypox (hMPX) in 2022 is a serious global threat. An understanding of the evolution of the monkeypox virus (MPXV) at the single-gene level may provide clues for exploring the unique aspects of the current outbreak: rapidly expanding and sustained human-to-human transmission. For the current investigation, alleles of 156 MPXV coding genes (which account for >95% of the genomic sequence) have been gathered from roughly 1,500 isolates, including those responsible for the previous outbreaks. Using a range of molecular evolution approaches, we demonstrated that intra-species homologous recombination has a negligible effect on MPXV evolution. Despite the fact that the majority of the MPXV genes (64.10%) were subjected to negative selection at the whole gene level, 10 MPXV coding genes (MPXVgp004, 010, 012, 014, 044, 098, 138, 178, 188, and 191) were found to have a total of 15 codons or amino acid sites that are known to evolve under positive Darwinian selection. Except for MPXVgp138, almost all of these genes encode proteins that interact with the host. Of these, five ankyrin proteins (MPXVgp004, 010, 012, 178, and 188) and one Bcl-2-like protein (MPXVgp014) are involved in poxviruses' host range determination. We discovered that the majority (80%) of positive amino acid substitutions emerged several decades ago, indicating that these sites have been under constant selection pressure and that more adaptable alleles have been circulating in the natural reservoir. This finding was also supported by the minimum spanning networks of the gene alleles. The three positive amino acid substitutions (T/A426V in MPXVgp010, A423D in MPXVgp012, and S105L in MPXVgp191) appeared in 2019 or 2022, indicating that they would be crucial for the virus' eventual adaptation to humans. Protein modeling suggests that positive amino acid substitutions may affect protein functions in a variety of ways. Further study should focus on revealing the biological effects of positive amino acid substitutions in the genes for viral adaptation to humans, virulence, transmission, and so on. Our study advances knowledge of MPXV's adaptive mechanism and provides insights for exploring factors that are responsible for the unique aspects of the current outbreak.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| | - Gao-Feng Zha
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| | - Yulong He
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| |
Collapse
|
7
|
Zhou Y, Zhao XC, Wang LQ, Chen CW, Hsu MH, Liao WT, Deng X, Yan Q, Zhao GP, Chen CL, Zhang L, Chiu CH. Detecting Genetic Variation of Colonizing Streptococcus agalactiae Genomes in Humans: A Precision Protocol. FRONTIERS IN BIOINFORMATICS 2022; 2:813599. [PMID: 36304301 PMCID: PMC9580942 DOI: 10.3389/fbinf.2022.813599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
Abstract
Deciphering the genotypic diversity of within-individual pathogens and verifying the evolutionary model can help elucidate resistant genotypes, virulent subpopulations, and the mechanism of opportunistic pathogenicity. However, observed polymorphic mutations (PMs) are rare and difficult to be detected in the “dominant-lineage” model of bacterial infection due to the low frequency. The four pooled group B Streptococcus (GBS) samples were collected from the genital tracts of healthy pregnant women, and the pooled samples and the isogenic controls were genomically sequenced. Using the PMcalling program, we detected the PMs in samples and compared the results between two technical duplicates, GBS-M001T and GBS-M001C. Tested with simulated datasets, the PMcalling program showed high sensitivity especially in low-frequency PMs and reasonable specificity. The genomic sequence data from pooled samples of GBS colonizing carrier pregnant women were analyzed, and few high-frequency PMs and some low-frequency PMs were discovered, indicating a dominant-lineage evolution model. The PMs mainly were nonsynonymous and enriched in quorum sensing, glycolysis/gluconeogenesis, ATP-binding cassette (ABC) transporters, etc., suggesting antimicrobial or environmental selective pressure. The re-analysis of the published Burkholderia dolosa data showed a diverse-community model, and only a few low-frequency PMs were shared between different individuals. Genes of general control non-repressible 5-related N-acetyltransferases family, major facilitator superfamily (MFS) transporter, and ABC transporter were positive selection candidates. Our findings indicate an unreported nature of the dominant-lineage model of GBS colonization in healthy women, and a formerly not observed mutation pool in a colonized microbial community, possibly maintained by selection pressure.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- *Correspondence: Yan Zhou, ; Liang Zhang, ; Cheng-Hsun Chiu,
| | - Xue-Chao Zhao
- The Institutes of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Lin-Qi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Cheng-Wen Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Mei-Hua Hsu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wan-Ting Liao
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Xiao Deng
- The Institutes of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qing Yan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Guo-Ping Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Liang Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- *Correspondence: Yan Zhou, ; Liang Zhang, ; Cheng-Hsun Chiu,
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- *Correspondence: Yan Zhou, ; Liang Zhang, ; Cheng-Hsun Chiu,
| |
Collapse
|
8
|
Yaacob SN, Wahab RA, Misson M, Sabullah MK, Huyop F, Zin NM. Lactic acid bacteria and their bacteriocins: new potential weapons in the fight against methicillin-resistant Staphylococcus aureus. Future Microbiol 2022; 17:683-699. [PMID: 35414206 DOI: 10.2217/fmb-2021-0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alternative solutions are eminently needed to combat the escalating number of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Bacteriocins produced by lactic acid bacteria are promising candidates for next-generation antibiotics. Studies have found that these stable and nontoxic ribosomally synthesized antimicrobial peptides exhibit significant potency against other bacteria, including antibiotic-resistant strains. Here the authors review previous studies on bacteriocins that have been effectively employed to manage MRSA infections. The authors' review focuses on the beneficial traits of bacteriocins for further application as templates for the design of novel drugs. Treatments that combine bacteriocins with other antimicrobials to combat pervasive MRSA infections are also highlighted. In short, future studies should focus on the pharmacodynamics and pharmacokinetics of bacteriocins-antimicrobials to understand their interactions, as this aspect would likely determine their efficacy in MRSA inhibition.
Collapse
Affiliation(s)
- Syariffah Ns Yaacob
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Roswanira A Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Mailin Misson
- Biotechnology Research Institute, Jalan Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Mohd K Sabullah
- Faculty of Science and Natural Resources, Jalan Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Fahrul Huyop
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Noraziah M Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
9
|
Pyridine coupled pyrazole analogues as lethal weapon against MRSA: An in-vitro and in-silico approach. Microb Pathog 2022; 166:105508. [DOI: 10.1016/j.micpath.2022.105508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
|
10
|
Neil JR, Verma A, Kronewitter SR, McGee WM, Mullen C, Viirtola M, Kotovuori A, Friedrich H, Finell J, Rannisto J, Syka JEP, Stephenson JL. Rapid MRSA detection via tandem mass spectrometry of the intact 80 kDa PBP2a resistance protein. Sci Rep 2021; 11:18309. [PMID: 34526615 PMCID: PMC8443585 DOI: 10.1038/s41598-021-97844-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
Treatment of antibiotic-resistant infections is dependent on the detection of specific bacterial genes or proteins in clinical assays. Identification of methicillin-resistant Staphylococcus aureus (MRSA) is often accomplished through the detection of penicillin-binding protein 2a (PBP2a). With greater dependence on mass spectrometry (MS)-based bacterial identification, complementary efforts to detect resistance have been hindered by the complexity of those proteins responsible. Initial characterization of PBP2a indicates the presence of glycan modifications. To simplify detection, we demonstrate a proof-of-concept tandem MS approach involving the generation of N-terminal PBP2a peptide-like fragments and detection of unique product ions during top-down proteomic sample analyses. This approach was implemented for two PBP2a variants, PBP2amecA and PBP2amecC, and was accurate across a representative panel of MRSA strains with different genetic backgrounds. Additionally, PBP2amecA was successfully detected from clinical isolates using a five-minute liquid chromatographic separation and implementation of this MS detection strategy. Our results highlight the capability of direct MS-based resistance marker detection and potential advantages for implementing these approaches in clinical diagnostics.
Collapse
|
11
|
Zhan XY, Yang JL, Zhou X, Qian YC, Huang K, Sun H, Wang H, Leng Y, Huang B, He Y. Virulence effector SidJ evolution in Legionella pneumophila is driven by positive selection and intragenic recombination. PeerJ 2021; 9:e12000. [PMID: 34458026 PMCID: PMC8378335 DOI: 10.7717/peerj.12000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Effector proteins translocated by the Dot/Icm type IV secretion system determine the virulence of Legionella pneumophila (L. pneumophila). Among these effectors, members of the SidE family (SidEs) regulate several cellular processes through a unique phosphoribosyl ubiquitination mechanism mediated by another effector, SidJ. Host-cell calmodulin (CaM) activates SidJ to glutamylate the SidEs of ubiquitin (Ub) ligases and to make a balanced Ub ligase activity. Given the central role of SidJ in this regulatory process, studying the nature of evolution of sidJ is important to understand the virulence of L. pneumophila and the interaction between the bacteria and its hosts. By studying sidJ from a large number of L. pneumophila strains and using various molecular evolution algorithms, we demonstrated that intragenic recombination drove the evolution of sidJ and contributed to sidJ diversification. Additionally, we showed that four codons of sidJ which are located in the N-terminal (NTD) (codons 58 and 200) and C-terminal (CTD) (codons 868 and 869) domains, but not in the kinase domain (KD) had been subjected to strong positive selection pressure, and variable mutation profiles of these codons were identified. Protein structural modeling of SidJ provided possible explanations for these mutations. Codons 868 and 869 mutations might engage in regulating the interactions of SidJ with CaM through hydrogen bonds and affect the CaM docking to SidJ. Mutation in codon 58 of SidJ might affect the distribution of main-chain atoms that are associated with the interaction with CaM. In contrast, mutations in codon 200 might influence the α-helix stability in the NTD. These mutations might be important to balance Ub ligase activity for different L. pneumophila hosts. This study first reported that intragenic recombination and positive Darwinian selection both shaped the genetic plasticity of sidJ, contributing to a deeper understanding of the adaptive mechanisms of this intracellular bacterium to different hosts.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jin-Lei Yang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xuefu Zhou
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yi-Chao Qian
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ke Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Honghua Sun
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huacheng Wang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yang Leng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bihui Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
12
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
13
|
Li QQ, Luo J, Liu XQ, Kwon DY, Kang OH. Eleutheroside K isolated from Acanthopanax henryi (Oliv.) Harms suppresses methicillin resistance of Staphylococcus aureus. Lett Appl Microbiol 2020; 72:669-676. [PMID: 32955753 DOI: 10.1111/lam.13389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/03/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
Acanthopanax (A.) henryi (Oliv.) Harms contain many bioactive compounds commonly used in traditional Chinese medicine. The objective of the present study was to investigate the antibacterial activity of the single constituent, Eleutheroside K (ETSK) isolated from the leaves of A. henryi (Oliv.) Harms, against methicillin-resistant Staphylococcus (S.) aureus (MRSA). Broth microdilution assay was used to measure the minimal inhibitory concentration (MIC) and the MIC values of ETSK against eight clinical S. aureus strains were all 50 µg ml-1 . At sub-inhibitory concentrations, a synergistic effect between oxacillin (OXA) and ETSK was confirmed using checkerboard dilution assay and time-kill curve analysis. The bacteriostatic effect became more pronounced when ETSK was used in combination with detergent (Triton X-100) or ATPase inhibitor (N, N'-dicyclohexylcarbodiimide). According to western blot analysis, the down-regulated expression of Penicillin-binding protein 2a (PBP2a) further validated that the bacterial activity was inhibited when treated with ETSK in a dose-dependent manner. Results based on our study verified that ETSK significantly suppressed MRSA infections and emphasized the potential application of ETSK as a novel anti-MRSA natural drug.
Collapse
Affiliation(s)
- Q-Q Li
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Jeonbuk, Korea
| | - J Luo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - X-Q Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - D-Y Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Jeonbuk, Korea
| | - O-H Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Jeonbuk, Korea
| |
Collapse
|
14
|
Janik E, Ceremuga M, Niemcewicz M, Bijak M. Dangerous Pathogens as a Potential Problem for Public Health. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E591. [PMID: 33172013 PMCID: PMC7694656 DOI: 10.3390/medicina56110591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022]
Abstract
Pathogens are various organisms, such as viruses, bacteria, fungi, and protozoa, which can cause severe illnesses to their hosts. Throughout history, pathogens have accompanied human populations and caused various epidemics. One of the most significant outbreaks was the Black Death, which occurred in the 14th century and caused the death of one-third of Europe's population. Pathogens have also been studied for their use as biological warfare agents by the former Soviet Union, Japan, and the USA. Among bacteria and viruses, there are high priority agents that have a significant impact on public health. Bacillus anthracis, Francisella tularensis, Yersinia pestis, Variola virus, Filoviruses (Ebola, Marburg), Arenoviruses (Lassa), and influenza viruses are included in this group of agents. Outbreaks and infections caused by them might result in social disruption and panic, which is why special operations are needed for public health preparedness. Antibiotic-resistant bacteria that significantly impede treatment and recovery of patients are also valid threats. Furthermore, recent events related to the massive spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an example of how virus-induced diseases cannot be ignored. The impact of outbreaks, such as SARS-CoV-2, have had far-reaching consequences beyond public health. The economic losses due to lockdowns are difficult to estimate, but it would take years to restore countries to pre-outbreak status. For countries affected by the 2019 coronavirus disease (COVID-19), their health systems have been overwhelmed, resulting in an increase in the mortality rate caused by diseases or injuries. Furthermore, outbreaks, such as SARS-CoV-2, will induce serious, wide-ranging (and possibly long-lasting) psychological problems among, not only health workers, but ordinary citizens (this is due to isolation, quarantine, etc.). The aim of this paper is to present the most dangerous pathogens, as well as general characterizations, mechanisms of action, and treatments.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| |
Collapse
|
15
|
Magnowska Z, Jana B, Brochmann RP, Hesketh A, Lametsch R, De Gobba C, Guardabassi L. Carprofen-induced depletion of proton motive force reverses TetK-mediated doxycycline resistance in methicillin-resistant Staphylococcus pseudintermedius. Sci Rep 2019; 9:17834. [PMID: 31780689 PMCID: PMC6882848 DOI: 10.1038/s41598-019-54091-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/31/2019] [Indexed: 11/09/2022] Open
Abstract
We previously showed that doxycycline (DOX) and carprofen (CPF), a veterinary non-steroidal anti-inflammatory drug, have synergistic antimicrobial activity against methicillin-resistant Staphylococcus pseudintermedius (MRSP) carrying the tetracycline resistance determinant TetK. To elucidate the molecular mechanism of this synergy, we investigated the effects of the two drugs, individually and in combination, using a comprehensive approach including RNA sequencing, two-dimensional differential in-gel electrophoresis, macromolecule biosynthesis assays and fluorescence spectroscopy. Exposure of TetK-positive MRSP to CPF alone resulted in upregulation of pathways that generate ATP and NADH, and promote the proton gradient. We showed that CPF is a proton carrier that dissipates the electrochemical potential of the membrane. In the presence of both CPF and DOX, the energy compensation strategy was attenuated by downregulation of all the processes involved, such as citric acid cycle, oxidative phosphorylation and ATP-providing arginine deiminase pathway. Furthermore, protein biosynthesis inhibition increased from 20% under DOX exposure alone to 75% upon simultaneous exposure to CPF. We conclude that synergistic interaction of the drugs restores DOX susceptibility in MRSP by compromising proton-motive-force-dependent TetK-mediated efflux of the antibiotic. MRSP is unable to counterbalance CPF-mediated PMF depletion by cellular metabolic adaptations, resulting in intracellular accumulation of DOX and inhibition of protein biosynthesis.
Collapse
Affiliation(s)
- Zofia Magnowska
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Bimal Jana
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rikke Prejh Brochmann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew Hesketh
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Rene Lametsch
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Cristian De Gobba
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark. .,Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom.
| |
Collapse
|
16
|
Cho YS, Lee MK, Hwang SH. Toxin gene profiles, genetic diversity, antimicrobial resistance, and coagulase type of Staphylococcus aureus from cream-filled bakery products. Food Sci Nutr 2019; 7:1727-1734. [PMID: 31139385 PMCID: PMC6526646 DOI: 10.1002/fsn3.1011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 01/01/2023] Open
Abstract
We determined the toxin gene profile, toxin production, antibiotic resistance coagulase serotype, and genetic diversity of 42 coagulase-positive Staphylococcus aureus (CPS) isolates collected from 1,464 cream-filled bakery products in Korea. Among the CPS isolates, 37 (88.1%) produced enterotoxin genes in combination with another toxin; 26 (61.9%) of the strains were positive for sea, 1 (2.4%) for sea-seb, and 4 (9.5%) for sea-sec. Among the strains showing antibiotic resistance, 28 (66.7%) showed resistance to only one antibiotic, whereas nine (21.4%) showed resistance to multiple antibiotics: 4 (9.5%) strains were both mecA-positive and oxacillin-resistant. Most strains are resistant to at least one antibiotic-benzyl penicillin. The CPS isolates were classified into eight coagulase serotypes. This information will be valuable for assessing the capability risks of CPS food poisoning, contributing a better known of the epidemiology result associated with CPS contamination in bakery products.
Collapse
Affiliation(s)
- Yong Sun Cho
- Food Analysis CenterKorea Food Research InstituteJeollabuk-doKorea
| | - Myung Ki Lee
- Research Group of Traditional FoodKorea Food Research InstituteJeollabuk-doKorea
| | - Sun Hye Hwang
- Food Analysis CenterKorea Food Research InstituteJeollabuk-doKorea
| |
Collapse
|
17
|
Efficacy of photoactivated Myrciaria cauliflora extract against Staphylococcus aureus infection – A pilot study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 191:107-115. [DOI: 10.1016/j.jphotobiol.2018.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 01/11/2023]
|
18
|
Methicillin-resistant Staphylococcus aureus carriage among medical students of Jimma University, Southwest Ethiopia. Heliyon 2019; 5:e01191. [PMID: 30775580 PMCID: PMC6360348 DOI: 10.1016/j.heliyon.2019.e01191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/07/2018] [Accepted: 01/28/2019] [Indexed: 10/28/2022] Open
Abstract
Objectives Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are often difficult to manage due to its resistance to multiple antibiotics. This study aimed to determine the nasal carriage of MRSA and its antimicrobial susceptibility patterns among medical students at the Jimma University medical center (JUMC), Southwest Ethiopia. Methods An institution based cross-sectional study was conducted at the JUMC from May to August; 2016. A total of 371 participants were systematically selected. Demographic data was collected using pre-designed questionnaire. Nasal swabs were collected following standard microbiological methods. MRSA was detected using cefoxitin (30μg) disc (Oxoid, UK); and antimicrobial susceptibility tests were performed by disc diffusion method. Results A total of 371 students were included. Of these, 84.9% (315/371) were males. The overall prevalence of nasal carriage of S. aureus and MRSA among medical students at JUMC were 22.1% (82/371) and 8.4 % (31/371), respectively. The carriage rate of MRSA among medical intern (20% (16/80)) was higher compared with clinical year-I (3.6% (6/166)) and year-II (7.2% (9/125)) students. Resistance against trimethoprim-sulfamethoxazole, tetracycline and ciprofloxacin were 83.9%, 64.5% and 51.6%, respectively. Longer stay in hospital was significantly associated with the acquisition of MRSA (X2 = 6.93, P value = 0.031). Conclusion The prevalence of nasal carriage of MRSA was high. Longer stay in hospital environment was associated with the acquisition of MRSA. These findings suggest that infection control efforts focusing the performance of antimicrobial stewardship could have a significant impact on MRSA incidence in this setting.
Collapse
|