1
|
Xu B, Luo Z, Niu X, Li Z, Lu Y, Li J. Fungi, immunosenescence and cancer. Semin Cancer Biol 2025:S1044-579X(25)00002-1. [PMID: 39788169 DOI: 10.1016/j.semcancer.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Fungal microbes are a small but immunoreactive component of the human microbiome, which may influence cancer development, progression and therapeutic response. Immunosenescence is a process of immune dysfunction that occurs with aging, including lymphoid organ remodeling, contributing to alterations in the immune system in the elderly, which plays a critical role in many aspects of cancer. There is evidence for the interactions between fungi and immunosenescence in potentially regulating cancer progression and remodeling the tumor microenvironment (TME). In this review, we summarize potential roles of commensal and pathogenic fungi in modulating cancer-associated processes and provide more-detailed discussions on the mechanisms of which fungi affect tumor biology, including local and distant regulation of the TME, modulating antitumor immune responses and interactions with neighboring bacterial commensals. We also delineate the features of immunosenescence and its influence on cancer development and treatment, and highlight the interactions between fungi and immunosenescence in cancer. We discuss the prospects and challenges for harnessing fungi and immunosenescence in cancer diagnosis and/or treatment. Considering the limited understanding and techniques in conducting such research, we also provide our view on how to overcome challenges faced by the exploration of fungi, immunosenescence and their interactions on tumor biology.
Collapse
Affiliation(s)
- Bin Xu
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang 330029, Jiangxi, China
| | - Zan Luo
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang 330029, Jiangxi, China
| | - Xing Niu
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Voylin Institute for Translation Medicine, Xiamen 361000, Fujian, China
| | - Zhi Li
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Yeping Lu
- Department of Neurosurgery, The Fifth Hospital of Wuhan, Wuhan 430050, Hubei, China.
| | - Junyu Li
- Department of Radiation Oncology, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang 330029, Jiangxi, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China.
| |
Collapse
|
2
|
Kadkhodaei S, Hatefi A, Pedramnia S, Godini E, Khalili-Samani S, Saniee P, Sarrafnejad A, Salmanian AH, Sotoudeh M, Graham DY, Malekzadeh R, Siavoshi F. Role of Oral Yeast in Replenishing Gastric Mucosa with Yeast and Helicobacter pylori. Yeast 2024. [PMID: 39548684 DOI: 10.1002/yea.3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/10/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
The relationship between oral and gastric yeasts and their role in the colonization of Helicobacter pylori in the stomach was studied. Four groups of 221, 7, 44, and 10 patients were used for the isolation of H. pylori and oral and gastric yeasts. In Group 1, gastric biopsies were used for the isolation of H. pylori and yeast, rapid urease test (RUT), staining with Gram's and hematoxylin & eosin (H&E), and immunohistochemistry (IHC) methods. In the other three groups, DNAs extracted from H. pylori and yeasts were used for the amplification of H. pylori-specific genes. Wet mounts of yeasts in Group 2 were examined to observe intracellular bacteria and released EVs. Among 221 patients, 65 (29.3%) had oral yeast, 35 (15.8%) H. pylori, and 31 (14%) gastric yeast. Culture of oral yeasts showed a significant correlation with the detection of H. pylori by IHC (10.3%), Gram stain (9%), RUT (6.3%), H&E (4.9%), and culture (4%) (p < 0.05). Gram-stained biopsies showed the occurrence of yeast and H. pylori, and the release of EVs from yeast. Detection of similar H. pylori genes in oral and gastric yeasts from patients in Group 2 showed their common source. Oral yeasts in Groups 3 and 4 also carried H. pylori genes. Wet mount preparations of yeasts showed intracellular bacteria inside the yeast vacuole and the release of EVs that could carry H. pylori. Oral yeast protects its intracellular H. pylori and releases it inside EVs to safely reach gastric mucosa. Yeast, as the environmental reservoir of H. pylori, plays a crucial role in bacterial reinfection after successful eradication.
Collapse
Affiliation(s)
- Sara Kadkhodaei
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Atousa Hatefi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Shahrzad Pedramnia
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Elham Godini
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Saman Khalili-Samani
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoud Sotoudeh
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - David Y Graham
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Atif AN, Hatefi A, Arven A, Foroumadi A, Kadkhodaei S, Sadjadi A, Siavoshi F. Consumption of non-antibacterial drugs may have negative impact on Helicobacter pylori colonization in the stomach. Heliyon 2024; 10:e27327. [PMID: 38495192 PMCID: PMC10943393 DOI: 10.1016/j.heliyon.2024.e27327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Background Nineteen non-antibacterials were examined to show that their consumption for treatment of other diseases may inhibit Helicobacter pylori. Four antibiotics were used for comparison. Materials and methods Agar dilution method was used to examine the susceptibility of 20 H. pylori isolates to 4 antibiotics; metronidazole (MTZ), clarithromycin (CLR), amoxicillin (AMX), tetracycline (TET) and 19 non-antibacterials; proton pump inhibitors (PPIs), H2-blockers, bismuth subsalicylate (BSS), antifungals, statins, acetaminophen (ACE), aspirin (ASA), B-vitamins (B-Vits; Vit B1, Vit B6 and Vit Bcomplex) and vitamin C (Vit C). Blood agar plates were prepared with different concentrations of drugs and spot-inoculated with bacterial suspensions. Plates were incubated at 37 °C under microaerobic conditions and examined after 3-5 days. The isolate #20 that was mucoid and resistant to 19 drugs, including MTZ and SMV was tested against combined MTZ (8 μg/mL) and SMV (100 μg/mL). Results were analyzed statistically. Results Minimum inhibitory concentrations (MICs, μg/mL) of drugs and the frequency of susceptible H. pylori were determined as MTZ (8, 80%), CLR (2, 90%), AMX (1, 100%), TET (0.5, 70%), PPIs (8-128, 80%), H2-blockers (2000-8000, 75-80%), BSS (15, 85%), antifungals (64-256, 30-80%), statins (100-250, 35-90%), ACE (40, 75%), ASA (800, 75%), B-Vits (5000-20000, 80-100%) and Vit C (2048, 85%). Susceptibility of H. pylori isolates to 16 out of 19 non-antimicrobials (75-100%) was almost similar to those of antibiotics (70-100%) (P-value >0.05). The highest susceptibility rate (100%) belonged to Vit B1, Vit B6 and AMX. Out of 20 H. pylori isolates, 17 (85%) were susceptible to ≥13 non-antimicrobials and 3 (15%) were susceptible to < 13 (P-value <0.05). Mucoid H. pylori showed susceptibility to combination of MTZ and SMV. Conclusions Most of non-antibacterials inhibited H. pylori isolates, similar to antibiotics but their MICs exceeded those of antibiotics and their plasma concentrations. At low plasma concentration, non-antimicrobials may act as weak antibacterials, antibiotic adjuvants and immunostimulators.
Collapse
Affiliation(s)
- Allah Nazar Atif
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
- Department of Biology, Faculty of Sciences, Nangarhar University, Jalalabad, Afghanistan
| | - Atousa Hatefi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Asadullah Arven
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
- Department of Biology, Faculty of Education, Daykundi University, Nilli, Afghanistan
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Kadkhodaei
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Alireza Sadjadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Yang T, Li J, Zhang Y, Deng Z, Cui G, Yuan J, Sun J, Wu X, Hua D, Xiang S, Chen Z. Intracellular presence of Helicobacter pylori antigen and genes within gastric and vaginal Candida. PLoS One 2024; 19:e0298442. [PMID: 38329956 PMCID: PMC10852334 DOI: 10.1371/journal.pone.0298442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Helicobacter pylori infections are generally acquired during childhood and affect half of the global population, but its transmission route remains unclear. It is reported that H. pylori can be internalized into Candida, but more evidence is needed for the internalization of H. pylori in human gastrointestinal Candida and vaginal Candida. METHODS Candida was isolated from vaginal discharge and gastric mucosa biopsies. We PCR-amplified and sequenced H. pylori-specific genes from Candida genomic DNA. Using optical and immunofluorescence microscopy, we identified and observed bacteria-like bodies (BLBs) in Candida isolates and subcultures. Intracellular H. pylori antigen were detected by immunofluorescence using Fluorescein isothiocyanate (FITC)-labeled anti-H. pylori IgG antibodies. Urease activity in H. pylori internalized by Candida was detected by inoculating with urea-based Sabouraud dextrose agar, which changed the agar color from yellow to pink, indicating urease activity. RESULTS A total of 59 vaginal Candida and two gastric Candida strains were isolated from vaginal discharge and gastric mucosa. Twenty-three isolates were positive for H. pylori 16S rDNA, 12 were positive for cagA and 21 were positive for ureA. The BLBs could be observed in Candida cells, which were positive for H. pylori 16S rDNA, and were viable determined by the LIVE/DEAD BacLight Bacterial Viability kit. Fluorescein isothiocyanate (FITC)-conjugated antibodies could be reacted specifically with H. pylori antigen inside Candida cells by immunofluorescence. Finally, H. pylori-positive Candida remained positive for H. pylori 16S rDNA even after ten subcultures. Urease activity of H. pylori internalized by Candida was positive. CONCLUSION In the form of BLBs, H. pylori can internalize into gastric Candida and even vaginal Candida, which might have great significance in its transmission and pathogenicity.
Collapse
Affiliation(s)
- Tingxiu Yang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science/Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Department of Hospital Infection and Management, Guizhou Provincial People’s Hospital, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Scientific Research Center, School of Basic Medical Science, Guizhou Medical University Guiyang, Guiyang, China
| | - Jia Li
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science/Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Department of Clinical Laboratory, Jinyang Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yuanyuan Zhang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science/Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Department of Gastroenterology, People’s Hospital of Qiannan Prefecture, Guizhou, China
| | - Zhaohui Deng
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science/Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Guzhen Cui
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science/Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jun Yuan
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jianchao Sun
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science/Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Xiaojuan Wu
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science/Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Scientific Research Center, School of Basic Medical Science, Guizhou Medical University Guiyang, Guiyang, China
| | - Dengxiong Hua
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science/Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Song Xiang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science/Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science/Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Scientific Research Center, School of Basic Medical Science, Guizhou Medical University Guiyang, Guiyang, China
| |
Collapse
|
5
|
Otálora-Otálora BA, López-Rivera JJ, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Host Transcriptional Regulatory Genes and Microbiome Networks Crosstalk through Immune Receptors Establishing Normal and Tumor Multiomics Metafirm of the Oral-Gut-Lung Axis. Int J Mol Sci 2023; 24:16638. [PMID: 38068961 PMCID: PMC10706695 DOI: 10.3390/ijms242316638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The microbiome has shown a correlation with the diet and lifestyle of each population in health and disease, the ability to communicate at the cellular level with the host through innate and adaptative immune receptors, and therefore an important role in modulating inflammatory process related to the establishment and progression of cancer. The oral cavity is one of the most important interaction windows between the human body and the environment, allowing the entry of an important number of microorganisms and their passage across the gastrointestinal tract and lungs. In this review, the contribution of the microbiome network to the establishment of systemic diseases like cancer is analyzed through their synergistic interactions and bidirectional crosstalk in the oral-gut-lung axis as well as its communication with the host cells. Moreover, the impact of the characteristic microbiota of each population in the formation of the multiomics molecular metafirm of the oral-gut-lung axis is also analyzed through state-of-the-art sequencing techniques, which allow a global study of the molecular processes involved of the flow of the microbiota environmental signals through cancer-related cells and its relationship with the establishment of the transcription factor network responsible for the control of regulatory processes involved with tumorigenesis.
Collapse
Affiliation(s)
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Carlos Arturo Álvarez-Moreno
- Infectious Diseases Department, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| |
Collapse
|
6
|
Khan F, Jeong GJ, Javaid A, Thuy Nguyen Pham D, Tabassum N, Kim YM. Surface adherence and vacuolar internalization of bacterial pathogens to the Candida spp. cells: Mechanism of persistence and propagation. J Adv Res 2023; 53:115-136. [PMID: 36572338 PMCID: PMC10658324 DOI: 10.1016/j.jare.2022.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The co-existence of Candida albicans with the bacteria in the host tissues and organs displays interactions at competitive, antagonistic, and synergistic levels. Several pathogenic bacteria take advantage of such types of interaction for their survival and proliferation. The chemical interaction involves the signaling molecules produced by the bacteria or Candida spp., whereas the physical attachment occurs by involving the surface proteins of the bacteria and Candida. In addition, bacterial pathogens have emerged to internalize inside the C. albicans vacuole, which is one of the inherent properties of the endosymbiotic relationship between the bacteria and the eukaryotic host. AIM OF REVIEW The interaction occurring by the involvement of surface protein from diverse bacterial species with Candida species has been discussed in detail in this paper. An in silico molecular docking study was performed between the surface proteins of different bacterial species and Als3P of C. albicans to explain the molecular mechanism involved in the Als3P-dependent interaction. Furthermore, in order to understand the specificity of C. albicans interaction with Als3P, the evolutionary relatedness of several bacterial surface proteins has been investigated. Furthermore, the environmental factors that influence bacterial pathogen internalization into the Candida vacuole have been addressed. Moreover, the review presented future perspectives for disrupting the cross-kingdom interaction and eradicating the endosymbiotic bacterial pathogens. KEY SCIENTIFIC CONCEPTS OF REVIEW With the involvement of cross-kingdom interactions and endosymbiotic relationships, the bacterial pathogens escape from the environmental stresses and the antimicrobial activity of the host immune system. Thus, the study of interactions between Candida and bacterial pathogens is of high clinical significance.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Dung Thuy Nguyen Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
7
|
Physicochemical properties of intact fungal cell wall determine vesicles release and nanoparticles internalization. Heliyon 2023; 9:e13834. [PMID: 36873462 PMCID: PMC9981904 DOI: 10.1016/j.heliyon.2023.e13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Our previous microscopic observations on the wet mount of cultured Candida yeast showed release of large extracellular vesicles (EVs) that contained intracellular bacteria (∼500-5000 nm). We used Candida tropicalis, to examine the internalization of nanoparticles (NPs) with different properties to find out whether the size and flexibility of both EVs and cell wall pores play role in transport of large particles across the cell wall. Candida tropicalis was cultured in N-acetylglucoseamine-yeast extract broth (NYB) and examined for release of EVs every 12 h by the light microscope. The yeast was also cultured in NYB supplemented with of 0.1%, 0.01% of Fluorescein isothiocyanate (FITC)-labelled NPs; gold (0.508 mM/L and 0.051 mM/L) (45, 70 and 100 nm), albumin (0.0015 mM/L and 0.015 mM/L) (100 nm) and Fluospheres (0.2 and 0.02%) (1000 and 2000 nm). Internalization of NPs was recorded with fluorescence microscope after 30 s to 120 min. Release of EVs mostly occurred at 36 h and concentration of 0.1% was the best for internalization of NPs that occurred at 30 s after treatment. Positively charged 45 nm NPs internalized into >90% of yeasts but 100 nm gold NPs destroyed them. However, 70 nm gold and 100 nm negatively-charged albumin were internalized into <10% of yeasts without destroying them. Inert Fluospheres either remained intact on the surface of yeasts or became degraded and internalized into ∼100% of yeasts. Release of large EVs from the yeast but internalization of 45 nm NPs indicated that flexibility of EVs and cell wall pores as well as physicochemical properties of NPs determine transport across the cell wall.
Collapse
|
8
|
Zhang L, Zhao M, Fu X. Gastric microbiota dysbiosis and Helicobacter pylori infection. Front Microbiol 2023; 14:1153269. [PMID: 37065152 PMCID: PMC10098173 DOI: 10.3389/fmicb.2023.1153269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is one of the most common causes of gastric disease. The persistent increase in antibiotic resistance worldwide has made H. pylori eradication challenging for clinicians. The stomach is unsterile and characterized by a unique niche. Communication among microorganisms in the stomach results in diverse microbial fitness, population dynamics, and functional capacities, which may be positive, negative, or neutral. Here, we review gastric microecology, its imbalance, and gastric diseases. Moreover, we summarize the relationship between H. pylori and gastric microecology, including non-H. pylori bacteria, fungi, and viruses and the possibility of facilitating H. pylori eradication by gastric microecology modulation, including probiotics, prebiotics, postbiotics, synbiotics, and microbiota transplantation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Grima P, Urciuoli C, Simone G, Palazzo AG, Nuzzo M, Quarta M, Carraturo I, Maci AM, Marinaci S, Portaccio G, Guido M, Zizza A, Romano A. Fatal Listeria monocytogenes septicemia and meningitis complicated by Candida glabrata fungemia: a case report. Curr Med Res Opin 2022; 38:2119-2121. [PMID: 36053118 DOI: 10.1080/03007995.2022.2120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Listeria monocytogenes is a Gram-positive bacteria and etiological agent of listeriosis. It has the ability to colonize the intestinal lumen and cross the intestinal, blood-brain, and placental barriers, leading to invasive listeriosis responsible for septicemia and meningitis in subjects at risk such as patients with diabetes mellitus, the elderly, and immunocompromised individuals and, for maternal-neonatal infection in pregnant women. We report a rare case of L. monocytogenes septicemia and meningitis complicated by Candida glabrata fungemia on a patient with a history of type 2 diabetes mellitus, hypothyroidism, hypertension, chronic kidney failure, chronic ischemic vascular encephalopathy, and atrial fibrillation. Although adequate therapy was rapidly started with an initial partial clinical improvement, the patient suddenly experienced clinical worsening concomitantly with Candida septicemia resulting in a fatal outcome. To our knowledge, this is the first described case of an invasive L. monocytogenes infection complicated by Candida sepsis. We hypothesize that concomitant Candida infection may play a significant role in the pathogenesis and virulence of L. monocytogenes.
Collapse
Affiliation(s)
| | - Caterina Urciuoli
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | - Giuseppe Simone
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | | | - Milva Nuzzo
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | - Maurizio Quarta
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | | | - Anna Maria Maci
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | - Salvatore Marinaci
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | - Gerolamo Portaccio
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | - Marcello Guido
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, Faculty of Sciences, University of Salento, Lecce, Italy
| | - Antonella Zizza
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Anacleto Romano
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| |
Collapse
|
10
|
Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. THE LANCET. MICROBE 2022; 3:e969-e983. [PMID: 36182668 DOI: 10.1016/s2666-5247(22)00203-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
The gut mycobiome (fungi) is a small but crucial component of the gut microbiome in humans. Intestinal fungi regulate host homoeostasis, pathophysiological and physiological processes, and the assembly of the co-residing gut bacterial microbiome. Over the past decade, accumulating studies have characterised the gut mycobiome in health and several pathological conditions. We review the compositional and functional diversity of the gut mycobiome in healthy populations from birth to adulthood. We describe factors influencing the gut mycobiome and the roles of intestinal fungi-especially Candida and Saccharomyces spp-in diseases and therapies with a particular focus on their synergism with the gut bacterial microbiome and host immunity. Finally, we discuss the underappreciated effects of gut fungi in clinical implications, and highlight future microbiome-based therapies that harness the tripartite relationship among the gut mycobiome, bacterial microbiome, and host immunity, aiming to restore a core gut mycobiome and microbiome and to improve clinical efficacy.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Dominik Aschenbrenner
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland
| | - Ji Youn Yoo
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yatsen University, Sun Yat-sen University, Guangzhou, China; Laboratory Animals Centre, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China.
| |
Collapse
|
11
|
Zhang L, Chen X, Ren B, Zhou X, Cheng L. Helicobacter pylori in the Oral Cavity: Current Evidence and Potential Survival Strategies. Int J Mol Sci 2022; 23:ijms232113646. [PMID: 36362445 PMCID: PMC9657019 DOI: 10.3390/ijms232113646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is transmitted primarily through the oral–oral route and fecal–oral route. The oral cavity had therefore been hypothesized as an extragastric reservoir of H. pylori, owing to the presence of H. pylori DNA and particular antigens in distinct niches of the oral cavity. This bacterium in the oral cavity may contribute to the progression of periodontitis and is associated with a variety of oral diseases, gastric eradication failure, and reinfection. However, the conditions in the oral cavity do not appear to be ideal for H. pylori survival, and little is known about its biological function in the oral cavity. It is critical to clarify the survival strategies of H. pylori to better comprehend the role and function of this bacterium in the oral cavity. In this review, we attempt to analyze the evidence indicating the existence of living oral H. pylori, as well as potential survival strategies, including the formation of a favorable microenvironment, the interaction between H. pylori and oral microorganisms, and the transition to a non-growing state. Further research on oral H. pylori is necessary to develop improved therapies for the prevention and treatment of H. pylori infection.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
12
|
Heydari S, Malekzadeh R, Jazayeri MH, Sarrafnejad A, Siavoshi F. Detection of peptidoglycan in yeast as a marker for the presence or abundance of intracellular Helicobacter pylori and Staphylococcus. Arch Microbiol 2022; 204:407. [PMID: 35726098 DOI: 10.1007/s00203-022-03045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Peptidoglycan (PG) was targeted as the marker for bacterial occurrence inside yeast. Detection of only few bacteria in old and new generations of yeast raised the question of how yeast controls the abundance of its intracellular bacteria. One gastric C. tropicalis that showed concurrence of H. pylori and Staphylococcus 16S rDNA was stained for assessing the viability of intracellular bacteria. Fluorescein isothiocyanate (FITC)-labeled anti-PG monoclonal antibody (APGMAb) was used for detection of PG inside yeast by direct immunofluorescence. APGMAb-coated magnetic beads were used for separation of bacteria from disrupted yeasts. Bead-bound bacteria were separated, fixed, stained, and examined by scanning electron microscope (SEM). Bead-bound bacteria were cultured and identified by amplification and sequencing of 16S rDNA. Fluorescence microscopy demonstrated occurrence of few live bacteria inside yeast cells. FITC- APGMAb interacted with PG of intracellular bacteria, appearing as few green spots in mother and daughter yeast cells. Interestingly, PG fragments were also detected in the exterior of yeast cells. SEM observations showed separated bead-bound bacilli and cocci. Culture of Staphylococcus was positive. Sequencing results confirmed identity of separated bacteria as H. pylori and Staphylococcus. PG detected inside yeast may have belonged to H. pylori, Staphylococcus or any other intracellular bacteria that coexisted in yeast as its microbiome. Detection of only few intracellular bacteria in old and new generations of yeast as well as PG fragments in their exterior suggested that yeast controls the abundance of its intracellular bacteria at low rate by hydrolysis and exporting of PG.
Collapse
Affiliation(s)
- Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Hadi Jazayeri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| |
Collapse
|
13
|
|
14
|
Crossing Kingdoms: How the Mycobiota and Fungal-Bacterial Interactions Impact Host Health and Disease. Infect Immun 2021; 89:IAI.00648-20. [PMID: 33526565 PMCID: PMC8090948 DOI: 10.1128/iai.00648-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The term “microbiota” invokes images of mucosal surfaces densely populated with bacteria. These surfaces and the luminal compartments they form indeed predominantly harbor bacteria. The term “microbiota” invokes images of mucosal surfaces densely populated with bacteria. These surfaces and the luminal compartments they form indeed predominantly harbor bacteria. However, research from this past decade has started to complete the picture by focusing on important but largely neglected constituents of the microbiota: fungi, viruses, and archaea. The community of commensal fungi, also called the mycobiota, interacts with commensal bacteria and the host. It is thus not surprising that changes in the mycobiota have significant impact on host health and are associated with pathological conditions such as inflammatory bowel disease (IBD). In this review we will give an overview of why the mycobiota is an important research area and different mycobiota research tools. We will specifically focus on distinguishing transient and actively colonizing fungi of the oral and gut mycobiota and their roles in health and disease. In addition to correlative and observational studies, we will discuss mechanistic studies on specific cross-kingdom interactions of fungi, bacteria, and the host.
Collapse
|
15
|
Castro-Seriche S, Jerez-Morales A, Smith CT, Sánchez-Alonzo K, García-Cancino A. Candida albicans, a reservoir of Listeria monocytogenes? INFECTION GENETICS AND EVOLUTION 2021; 90:104779. [PMID: 33639305 DOI: 10.1016/j.meegid.2021.104779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 12/04/2020] [Accepted: 02/20/2021] [Indexed: 11/25/2022]
Abstract
Listeria monocytogenes is a pathogen causing serious or mortal infections in human risk populations. Its infectivity is in part due to its ability to infect diverse eukaryotic cells. Since several bacteria can enter into yeast cells, including Candida albicans, the aims of this work were to evaluate if L. monocytogenes was able to harbor, retaining its viability, within C. albicans cells and to evaluate the effect of temperature and an antibiotic as stressing factors in its rate of entry into yeast cells. Both microorganisms were co-incubated in BHI broth during 48 h and the entry of bacteria into yeast cells was evaluated at different times. Then, yeasts free of extracellular bacteria were obtained seeding samples of the co-culture on YGC agar, which contains chloramphenicol, to obtain extracellular bacteria-free yeasts. These extracellular bacteria free yeasts were used to search for bacterial DNA in total yeast DNA and to evaluate the viability of intra-yeast bacteria. Finally, the effect of temperature and of chloramphenicol as inducers of stress on the rate of bacterial entry into yeast cells were investigated. After co-culturing both microorganisms, wet mount optical microscopy showed the presence of moving bacteria within yeasts and transmission electron microscopy confirmed the presence of intra-yeast bacteria. PCR allowed to amplify L. monocytogenes iap gene in C. albicans total DNA obtained from yeasts free of extracellular bacteria. Moreover, the SYTO 9 green fluorescence observed in bacterial cells within vacuoles of yeasts suggests that intra-yeast bacteria remain viable. Furthermore, the entry of L. monocytogenes into yeasts cells was favored by the presence of stressing factors (chloramphenicol and temperature). Therefore, yeasts may be reservoirs of viable L. monocytogenes and might spread them to the following generations of yeasts.
Collapse
Affiliation(s)
- Susana Castro-Seriche
- Bacterial Pathogenicity Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Alonso Jerez-Morales
- Bacterial Pathogenicity Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Carlos T Smith
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Kimberly Sánchez-Alonzo
- Bacterial Pathogenicity Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Apolinaria García-Cancino
- Bacterial Pathogenicity Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
16
|
Heydari S, Siavoshi F, Jazayeri MH, Sarrafnejad A, Saniee P. Helicobacter pylori release from yeast as a vesicle-encased or free bacterium. Helicobacter 2020; 25:e12725. [PMID: 32666589 DOI: 10.1111/hel.12725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Yeast has been suggested as a potent reservoir of H. pylori that facilitates bacterial spread within human populations. What mechanism ensures effective H. pylori release from yeast? Here, H. pylori release from yeast as a vesicle-encased or free bacterium was studied. MATERIALS AND METHODS Liquid culture of Candida yeast was examined by light, fluorescence and transmission electron microscopy methods to observe the released vesicles. Vesicles were isolated and examined by TEM. Immunogold labeling was used for detection of H. pylori-specific proteins in vesicles' membrane. Free bacterial cells, released from yeast, were separated by immunomagnetic separation and observed by field emission scanning electron microscopy (FESEM). DNA of bead-bound bacteria was used for amplification of H. pylori-16S rDNA. Viability of bead-bound bacteria was examined by live/dead stain and cultivation on Brucella blood agar. RESULTS Microscopic observations showed that vesicles contained bacterium-like structures. Thin sections showed release of vesicle-encased or free bacterium from yeast. Immunogold labeling revealed occurrence of H. pylori proteins in vesicles' membrane. FESEM showed attachment of H. pylori cells to magnetic beads. Sequencing of 521 bp PCR product confirmed the identity of bead-bound H. pylori. Live/dead staining showed viability of bead-bound H. pylori but the result of culture was negative. CONCLUSIONS Escape of intracellular H. pylori from yeast as a membrane-bound or free bacterium indicates that H. pylori uses safe exit mechanisms that do not damage the host which is the principle of symbiotic associations. In human stomach, certain conditions may stimulate yeast cells to release H. pylori as a vesicle-encased or free bacterium.
Collapse
Affiliation(s)
- Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Mir Hadi Jazayeri
- Department of Immunology, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
17
|
Sánchez-Alonzo K, Parra-Sepúlveda C, Vega S, Bernasconi H, Campos VL, Smith CT, Sáez K, García-Cancino A. In Vitro Incorporation of Helicobacter pylori into Candida albicans Caused by Acidic pH Stress. Pathogens 2020; 9:pathogens9060489. [PMID: 32575493 PMCID: PMC7350375 DOI: 10.3390/pathogens9060489] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Yeasts can adapt to a wide range of pH fluctuations (2 to 10), while Helicobacter pylori, a facultative intracellular bacterium, can adapt to a range from pH 6 to 8. This work analyzed if H. pylori J99 can protect itself from acidic pH by entering into Candida albicans ATCC 90028. Growth curves were determined for H. pylori and C. albicans at pH 3, 4, and 7. Both microorganisms were co-incubated at the same pH values, and the presence of intra-yeast bacteria was evaluated. Intra-yeast bacteria-like bodies were detected using wet mounting, and intra-yeast binding of anti-H. pylori antibodies was detected using immunofluorescence. The presence of the H. pylori rDNA 16S gene in total DNA from yeasts was demonstrated after PCR amplification. H. pylori showed larger death percentages at pH 3 and 4 than at pH 7. On the contrary, the viability of the yeast was not affected by any of the pHs evaluated. H. pylori entered into C. albicans at all the pH values assayed but to a greater extent at unfavorable pH values (pH 3 or 4, p = 0.014 and p = 0.001, respectively). In conclusion, it is possible to suggest that H. pylori can shelter itself within C. albicans under unfavorable pH conditions.
Collapse
Affiliation(s)
- Kimberly Sánchez-Alonzo
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4070386, Chile; (K.S.-A.); (C.P.-S.); (S.V.); (C.T.S.)
| | - Cristian Parra-Sepúlveda
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4070386, Chile; (K.S.-A.); (C.P.-S.); (S.V.); (C.T.S.)
| | - Samuel Vega
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4070386, Chile; (K.S.-A.); (C.P.-S.); (S.V.); (C.T.S.)
| | | | - Víctor L. Campos
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile;
| | - Carlos T. Smith
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4070386, Chile; (K.S.-A.); (C.P.-S.); (S.V.); (C.T.S.)
| | - Katia Sáez
- Department of Statistics, Faculty of Physical and Mathematical Sciences, University of Concepción, Concepción 4070386, Chile;
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4070386, Chile; (K.S.-A.); (C.P.-S.); (S.V.); (C.T.S.)
- Correspondence: ; Tel.: +56-41-2204144; Fax: 56-41-2245975
| |
Collapse
|
18
|
Yeast engineered translucent cell wall to provide its endosymbiont cyanobacteria with light. Arch Microbiol 2020; 202:1317-1325. [PMID: 32140734 DOI: 10.1007/s00203-020-01835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/19/2020] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
In this study, relationship between translucent property of yeast cell wall and occurrence of cyanobacteria inside the yeast vacuole was examined. Microscopic observations on fruit yeast Candida tropicalis showed occurrence of bacterium-like bodies inside the yeast vacuole. Appearance of vacuoles as distinct cavities indicated the perfect harvesting of light by the yeast's cell wall. Transmission electron microscopy observation showed electron-dense outer and electron-lucent inner layers in yeast cell wall. Cyanobacteria-specific 16S rRNA gene was amplified from total DNA of yeast. Cultivation of yeast in distilled water led to excision of intracellular bacteria which grew on cyanobacteria-specific medium. Examination of wet mount and Gram-stained preparations of excised bacteria showed typical bead-like trichomes. Amplification of cyanobacteria-specific genes, 16S rRNA, cnfR and dxcf, confirmed bacterial identity as Leptolyngbya boryana. These results showed that translucent cell wall of yeast has been engineered through evolution for receiving light for vital activities of cyanobacteria.
Collapse
|
19
|
Heydari S, Siavoshi F, Ebrahimi H, Sarrafnejad A, Sharifi AH. Excision of endosymbiotic bacteria from yeast under aging and starvation stresses. INFECTION GENETICS AND EVOLUTION 2019; 78:104141. [PMID: 31839588 DOI: 10.1016/j.meegid.2019.104141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Although infrequent in our laboratory, growth of bacterial colonies has been observed on top of the purified cultures of yeasts. In this study, the likelihood of bacterial excision from yeast under aging and starvation stresses was assessed using 10 gastric and 10 food-borne yeasts. Yeasts were identified as members of Candida or Saccharomyces genus by amplification and sequencing of D1/D2 region of 26S rDNA. For aging stress, yeasts were cultured on brain heart infusion agar supplemented with sheep blood and incubated at 30 °C for 3-4 weeks. For starvation stress, yeasts were inoculated into distilled water and incubated similarly. After seven days, starved yeasts were cultured on yeast extract glucose agar, incubated similarly and examined daily for appearance of bacterial colonies on top of the yeast's growth. Outgrowth of excised bacteria was observed on top of the cultures of 4 yeasts (Y1, Y3, Y13 and Y18) after 3-7 days. The excised bacteria (B1, B3, B13 and B18) were isolated and identified at the genus level according to their biochemical characteristics as well as amplification and sequencing of 16S rDNA. B1 (Arthrobacter) were excised from Y1 (Candida albicans) upon aging and B3 (Staphylococcus), B13 (Cellulomonas) and B18 (Staphylococcus) were excised from their respective yeasts; Y3 (Candida tropicalis), Y13 (Saccharomyces cerevisiae) and Y18 (Candida glabrata) upon starvation. DNA from yeasts was used for detection of 16S rDNA of their intracellular bacteria and sequencing. Amplified products from yeasts showed sequence similarity to those of excised bacteria. Under normal conditions, yeast exerts tight control on multiplication of its intracellular bacteria. However, upon aging and starvation the control is no longer effective and bacterial outgrowth occurs. Unlimited multiplication of excised bacteria might provide yeast with plenty of food in close vicinity. This could be an evolutionary dialogue between yeast and bacteria that ensures the survival of both partners.
Collapse
Affiliation(s)
- Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Hoda Ebrahimi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Houshang Sharifi
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|