1
|
Kankinou SG, Yildiz M, Kocak A. Exploring potential Plasmodium kinase inhibitors: a combined docking, MD and QSAR studies. J Biomol Struct Dyn 2024; 42:8958-8968. [PMID: 37599462 DOI: 10.1080/07391102.2023.2249111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Malaria is a disease caused mostly by Plasmodium falciparum, affects millions of people each year. The kinases are validated targets for malaria infection. In this study, we investigate for real and hypothetical compounds that can inhibit cyclic guanosine monophosphate (CGMP)-dependent protein kinase using molecular docking via combined similarity analysis, molecular dynamics simulations, quantitative structure activity relationship (QSAR). Using Tanimoto similarity scores, ∼8.4 million compounds were screened. Compounds that have at least 70% similarity are used in further analysis. These compounds are assessed by means of docking, MMBPSA, MMGBSA and ANI_LIE. Based on consensus of different free energy methods and docking we revealed two potential inhibitors that can be useful for treatment of malaria. Apart from screening of real compounds, we have also selected the 10 most plausible hypothetical compounds by performing QSAR. By QSAR proposed pharmacophores, we generated over 247 hypothetical compounds and among them 19 molecules with lower QSAR predicted IC50 values and high docking scores were selected for further analysis. We selected the top 10 inhibitor candidates and performed MD simulations for free energy calculations like the protocol applied for real compounds. According to the free energy calculations, we suggest 2 real (C34H29F5N8O4S and C30H27F2N7O2S2, PubChem IDs: 140564801 and 89035196, respectively) and 2 hypothetical (C23H27FN6O2S, MOL3 and C23H25FN6O2S, MOL4) compounds that can be effective inhibitors against the protein kinase of Plasmodium falciparum.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Muslum Yildiz
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Abdulkadir Kocak
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
2
|
Kojom Foko LP, Jakhan J, Tamang S, Hawadak J, Kouemo Motse FD, Singh V. First Insight into Drug Resistance Genetic Markers, Glucose-6-Phosphate Dehydrogenase and Phylogenetic Patterns of Misdiagnosed Plasmodium vivax Malaria in Far North Region, Cameroon. Curr Microbiol 2023; 81:9. [PMID: 37968386 DOI: 10.1007/s00284-023-03522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Plasmodium falciparum (Pf) is the predominant malaria species in Africa, but growing rates of non-falciparum species such as P. vivax (Pv) have been reported recently. This study aimed at characterizing drug resistance genes, glucose-6-phosphate dehydrogenase gene (G6PD), and phylogenetic patterns of a Pv + Pf co-infection misdiagnosed as a Pf mono-infection in the Far North region of Cameroon. Only one non-synonymous mutation in the pvdhps gene A383G was found. Pv drug resistance gene sequences were phylogenetically closer to the reference SAL-I strain and isolates from Southeast Asia and Western Pacific countries. Analyzing co-infecting Pf revealed no resistance mutations in Pfmdr1 and Pfk13 genes, but mutations in Pfcrt (C72V73I74E75T76) and Pfdhfr-Pfdhps genes (A16C50I51R59N108L164 - A436A437K540G581S613) were observed. No G6PD deficiency-related mutations were found. This is first study from Cameroon reporting presence of putative drug resistance mutations in Pv infections, especially in the pvdhps gene, and also outlined the absence of a G6PD-deficiency trait in patients.
Collapse
Affiliation(s)
| | - Jahnvi Jakhan
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New-Delhi, 110077, India
| | - Suman Tamang
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New-Delhi, 110077, India
| | - Joseph Hawadak
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New-Delhi, 110077, India
| | | | - Vineeta Singh
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New-Delhi, 110077, India.
| |
Collapse
|
3
|
Eboumbou Moukoko CE, Kojom Foko LP, Ayina A, Tornyigah B, Epote AR, Penda IC, Epee Eboumbou P, Ebong SB, Texier G, Nsango SE, Ayong L, Tuikue Ndam N, Same Ekobo A. Effectiveness of Intermittent Preventive Treatment with Sulfadoxine-Pyrimethamine in Pregnancy: Low Coverage and High Prevalence of Plasmodium falciparum dhfr-dhps Quintuple Mutants as Major Challenges in Douala, an Urban Setting in Cameroon. Pathogens 2023; 12:844. [PMID: 37375534 DOI: 10.3390/pathogens12060844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Intermittent preventive treatment in pregnancy with sulfadoxine and pyrimethamine (IPTp-SP) is a key component in the malaria control strategy implemented in Africa. The aim of this study was to determine IPTp-SP adherence and coverage, and the impact on maternal infection and birth outcomes in the context of widespread SP resistance in the city of Douala, Cameroon. Clinical and demographic information were documented among 888 pregnant women attending 3 health facilities, from the antenatal care visit to delivery. Positive samples were genotyped for P. falciparum gene (dhfr, dhps, and k13) mutations. The overall IPTp-SP coverage (≥three doses) was 17.5%, and 5.1% received no dose. P. falciparum prevalence was 16%, with a predominance of submicroscopic infections (89.3%). Malaria infection was significantly associated with locality and history of malaria, and it was reduced among women using indoor residual spraying. Optimal doses of IPTp-SP were significantly associated with reduced infection among newborns and women (secundiparous and multiparous), but there was no impact of IPTp-SP on the newborn bodyweight. Pfdhfr-Pfdhps quintuple mutants were over-represented (IRNI-FGKAA, IRNI-AGKAA), and sextuple mutants (IRNI-AGKAS, IRNI-FGEAA, IRNI-AGKGS) were also reported. The Pfk13 gene mutations associated with artemisinin resistance were not detected. This study highlights the role of ANC in achieving optimal SP coverage in pregnant women, the mitigated impact of IPTp-SP on malaria outcomes, and the high prevalence of multiple SP-resistant P. falciparum parasites in the city of Douala that could compromise the efficacy of IPTp-SP.
Collapse
Affiliation(s)
- Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé P.O. Box 1274, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| | | | - Angèle Ayina
- Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé P.O. Box 1274, Cameroon
- Pharmaceutical Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| | - Bernard Tornyigah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box 1181, Ghana
- UMR 261 MERIT, Institut de Recherche pour le Développement (IRD), Université de Paris, 75006 Paris, France
| | - Annie Rachel Epote
- Haematology Laboratory, Centre Pasteur Cameroon, Yaoundé P.O. Box 1274, Cameroon
| | - Ida Calixte Penda
- Clinical Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| | - Patricia Epee Eboumbou
- Clinical Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
- Pediatric Wards, Bonassama Hospital, Douala P.O. Box 9023, Cameroon
| | - Serge Bruno Ebong
- Animal Organisms Biology and Physiology Department, Faculty of Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| | - Gaetan Texier
- UMR 257-Vecteurs, Infections Tropicales et Méditerranéennes-VITROME-IRD/SSA/AP-HM, Aix-Marseille University, 13005 Marseille, France
| | - Sandrine Eveline Nsango
- Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé P.O. Box 1274, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé P.O. Box 1274, Cameroon
| | - Nicaise Tuikue Ndam
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box 1181, Ghana
- UMR 261 MERIT, Institut de Recherche pour le Développement (IRD), Université de Paris, 75006 Paris, France
| | - Albert Same Ekobo
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| |
Collapse
|
4
|
Kojom Foko LP, Hawadak J, Verma V, Belle Ebanda Kedi P, Eboumbou Moukoko CE, Kamaraju R, Pande V, Singh V. Phytofabrication and characterization of Alchornea cordifolia silver nanoparticles and evaluation of antiplasmodial, hemocompatibility and larvicidal potential. Front Bioeng Biotechnol 2023; 11:1109841. [PMID: 36926684 PMCID: PMC10011455 DOI: 10.3389/fbioe.2023.1109841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
Purpose: The recent emergence of Plasmodium falciparum (Pf) parasites resistant to current artemisinin-based combination therapies in Africa justifies the need to develop new strategies for successful malaria control. We synthesized, characterized and evaluated medical applications of optimized silver nanoparticles using Alchornea cordifolia (AC-AgNPs), a plant largely used in African and Asian traditional medicine. Methods: Fresh leaves of A. cordifolia were used to prepare aqueous crude extract, which was mixed with silver nitrate for AC-AgNPs synthesis and optimization. The optimized AC-AgNPs were characterized using several techniques including ultraviolet-visible spectrophotometry (UV-Vis), scanning/transmission electron microscopy (SEM/TEM), powder X-ray diffraction (PXRD), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), Fourier transformed infrared spectroscopy (FTIR), dynamic light scattering (DLS) and Zeta potential. Thereafter, AC-AgNPs were evaluated for their hemocompatibility and antiplasmodial activity against Pf malaria strains 3D7 and RKL9. Finally, lethal activity of AC-AgNPs was assessed against mosquito larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti which are vectors of neglected diseases such as dengue, filariasis and chikungunya. Results: The AC-AgNPs were mostly spheroidal, polycrystalline (84.13%), stable and polydispersed with size of 11.77 ± 5.57 nm. FTIR revealed the presence of several peaks corresponding to functional chemical groups characteristics of alkanoids, terpenoids, flavonoids, phenols, steroids, anthraquonones and saponins. The AC-AgNPs had a high antiplasmodial activity, with IC50 of 8.05 μg/mL and 10.31 μg/mL against 3D7 and RKL9 Plasmodium falciparum strains. Likewise, high larvicidal activity of AC-AgNPs was found after 24 h- and 48 h-exposure: LC50 = 18.41 μg/mL and 8.97 μg/mL (Culex quinquefasciatus), LC50 = 16.71 μg/mL and 7.52 μg/mL (Aedes aegypti) and LC50 = 10.67 μg/mL and 5.85 μg/mL (Anopheles stephensi). The AC-AgNPs were highly hemocompatible (HC50 > 500 μg/mL). Conclusion: In worrying context of resistance of parasite and mosquitoes, green nanotechnologies using plants could be a cutting-edge alternative for drug/insecticide discovery and development.
Collapse
Affiliation(s)
- Loick Pradel Kojom Foko
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Joseph Hawadak
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Vaishali Verma
- Vector Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Philippe Belle Ebanda Kedi
- Department of Animal Organisms, Faculty of Sciences, The University of Douala, Douala, Cameroon.,Nanosciences African Network, iThemba LABS-National Research Foundation, Cape Town, South Africa.,Laboratory of Innovative Nanostructured Material (NANO: C), Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala, Cameroon
| | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala, Cameroon.,Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé, Cameroon.,Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, The University of Douala, Douala, Cameroon
| | - Raghavendra Kamaraju
- Vector Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
5
|
Kojom Foko LP, Hawadak J, Kouemo Motse FD, Eboumbou Moukoko CE, Kamgain Mawabo L, Pande V, Singh V. Non-falciparum species and submicroscopic infections in three epidemiological malaria facets in Cameroon. BMC Infect Dis 2022; 22:900. [PMID: 36460990 PMCID: PMC9718470 DOI: 10.1186/s12879-022-07901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND There are growing reports on the prevalence of non-falciparum species and submicroscopic infections in sub-Saharan African countries but little information is available from Cameroon. METHODS A hospital-based cross-sectional study was carried out in four towns (Douala, Maroua, Mayo-Oulo, and Pette) from three malaria epidemiological strata (Forest, Sahelian, and Soudanian) of Cameroon. Malaria parasites were detected by Giemsa light microscopy and polymerase chain reaction (PCR) assay. Non-falciparum isolates were characterized and their 18S gene sequences were BLASTed for confirmatory diagnosis. RESULTS PCR assay detected malaria parasites in 82.4% (98/119) patients, among them 12.2% (12/98) were asymptomatic cases. Three Plasmodium species viz. P. falciparum, P. ovale curtisi and P. vivax, and two co-infection types (P. falciparum + P. vivax and P. falciparum + P. ovale curtisi) were found. The remaining infections were mono-infections with either P. falciparum or P. ovale curtisi. All non-falciparum infections were symptomatic and microscopic. The overall proportion of submicroscopic infections was 11.8% (14/119). Most asymptomatic and submicroscopic infection cases were self-medicated with antimalarial drugs and/or medicinal plants. On analysis, P. ovale curtisi sequences were found to be phylogenetically closer to sequences from India while P. vivax isolates appeared closer to those from Nigeria, India, and Cameroon. No G6PD-d case was found among non-falciparum infections. CONCLUSIONS This study confirms our previous work on circulation of P. vivax and P. ovale curtisi and the absence of P. knowlesi in Cameroon. More studies are needed to address non-falciparum malaria along with submicroscopic infections for effective malaria management and control in Cameroon.
Collapse
Affiliation(s)
- Loick Pradel Kojom Foko
- ICMR-National Institute of Malaria Research, Dwarka, New-Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, 263001, India
| | - Joseph Hawadak
- ICMR-National Institute of Malaria Research, Dwarka, New-Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, 263001, India
| | | | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, 24157, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur Cameroon, 1274, Yaoundé, Cameroon
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, The University of Douala, 24157, Douala, Cameroon
| | | | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, 263001, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research, Dwarka, New-Delhi, 110077, India.
| |
Collapse
|
6
|
Djoufounna J, Mayi MPA, Bamou R, Foyet JV, Tabue R, Lontsi-Demano M, Achu-Fosah D, Antonio-Nkondjio C, Tchuinkam T. High prevalence of asymptomatic Plasmodium falciparum malaria in Makenene, a locality in the forest-savannah transition zone, Centre Region of Cameroon. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100104. [PMID: 36504597 PMCID: PMC9731883 DOI: 10.1016/j.crpvbd.2022.100104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Malaria transmission and prevalence is still not well documented across Cameroon particularly in medium-sized cities or localities representing high transit zone. Different risk factors could be associated with persistence malaria transmission such as population movement from high to low transmission settings. A cross-sectional community-based study was carried out to determine malaria prevalence and risk factors in Makenene, a small city in a forest-savannah which is a crossroads between different parts of the country where travellers usually stop-over day and night to rest. Using malaria diagnostic test (mRDTs from SD-BIOLINE) and microscopy (thin and thick blood smears), 406 participants from 237 households were tested for malaria infection. The prevalence of malaria was high irrespective of the detection method: mRDT (41.87%) or microscopy (38.42%). At household level, 46.41% of households had at least one case of malaria with an average of 1.41 infected individuals per household. Parasite density was also high with the majority of infected individuals (64.74%) bearing more than 500 parasites/μl. Only Plasmodium falciparum was found. The chances of being infected with malaria parasites was almost the same for all participants irrespective of the sleeping behavior, bednet usage, house type and environmental factors. The study supports high malaria transmission in the locality and the need for additional studies on vectors bionomics and transmission patterns.
Collapse
Affiliation(s)
- Joel Djoufounna
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Cameroon
| | - Marie Paul Audrey Mayi
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Cameroon
| | - Roland Bamou
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Cameroon,Corresponding author.
| | - Juluis Visnel Foyet
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Cameroon
| | - Raymond Tabue
- National Malaria Control Programme, Ministry of Public Health, Yaounde, Cameroon
| | - Michel Lontsi-Demano
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Cameroon
| | - Dorothy Achu-Fosah
- National Malaria Control Programme, Ministry of Public Health, Yaounde, Cameroon
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaounde, Cameroon
| | - Timoléon Tchuinkam
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Cameroon,Corresponding author.
| |
Collapse
|
7
|
Plasmodium cynomolgi in humans: current knowledge and future directions of an emerging zoonotic malaria parasite. Infection 2022; 51:623-640. [PMID: 36401673 PMCID: PMC9676733 DOI: 10.1007/s15010-022-01952-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Plasmodium cynomolgi (Pcy), a simian malaria parasite, is a recent perfect example of emerging zoonotic transfer in human. This review summarizes the current knowledge on the epidemiology of natural Pcy infections in humans, mosquitoes and monkeys, along with its biological, clinical and drug sensitivity patterns. Knowledge gaps and further studies on Pcy in humans are also discussed. This parasite currently seems to be geographically limited in South-East Asia (SEA) with a global prevalence in human ranging from 0 to 1.4%. The Pcy infections were reported in local SEA populations and European travelers, and range from asymptomatic carriage to mild/moderate attacks with no evidence of pathognomonic clinical and laboratory patterns but with Pcy strain-shaped clinical differences. Geographical distribution and competence of suitable mosquito vectors and non-primate hosts, globalization, climate change, and increased intrusion of humans into the habitat of monkeys are key determinants to emergence of Pcy parasites in humans, along with its expansion outside SEA. Sensitization/information campaigns coupled with training and assessment sessions of microscopists and clinicians on Pcy are greatly needed to improve data on the epidemiology and management of human Pcy infection. There is a need for development of sensitive and specific molecular tools for individual diagnosis and epidemiological studies. The development of safe and efficient anti-hypnozoite drugs is the main therapeutic challenge for controlling human relapsing malaria parasites. Experience gained from P. knowlesi malaria, development of integrated measures and strategies—ideally with components related to human, monkeys, mosquito vectors, and environment—could be very helpful to prevent emergence of Pcy malaria in humans through disruption of transmission chain from monkeys to humans and ultimately contain its expansion in SEA and potential outbreaks in a context of malaria elimination.
Collapse
|
8
|
Hodson DZ, Mbarga Etoundi Y, Mbatou Nghokeng N, Mohamadou Poulibe R, Magne Djoko S, Goodwin J, Cheteug Nguesta G, Nganso T, Armstrong JN, Andrews JJ, Zhang E, Wade M, Eboumbou Moukoko CE, Boum Y, Parikh S. Clinical characteristics of Plasmodium falciparum infection among symptomatic patients presenting to a major urban military hospital in Cameroon. Malar J 2022; 21:298. [PMID: 36273147 PMCID: PMC9588226 DOI: 10.1186/s12936-022-04315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Urban malaria has received insufficient attention in the literature. The prevalence and clinical characteristics of Plasmodium falciparum infection amongst patients presenting with suspected malaria were investigated at a major urban hospital in Douala, Cameroon with a particular focus on anaemia. METHODS A cross-sectional, 18-week demographic and clinical survey was conducted of patients presenting to the Emergency Department of Douala Military Hospital with suspected malaria, largely defined by the presence or recent history of fever. Venous samples were tested for P. falciparum using rapid diagnostic tests and PCR, and anaemia was defined by haemoglobin level according to WHO definitions. Likelihood ratios (LR), odds ratios (OR), and population attributable risk percent (PARP) were calculated. RESULTS Participants were ages 8 months to 86 years, 51% were women (257/503), and all districts of Douala were represented. Overall, 38.0% (n = 189/497) were anaemic, including 5.2% (n = 26/497) with severe anaemia. Anaemia prevalence was significantly higher (OR: 2.20, 95% CI 1.41-3.45) among children < 15 years (53.1%, n = 52/98) compared to adults (34%, n = 133/392). Plasmodium falciparum was detected in 37.2% by nested PCR. Among all participants, several factors were associated with clinically significant LR for P. falciparum infection, including age 10-14 years (positive LR: 3.73), living in the island district of Douala VI (positive LR: 3.41), travel to any of three northern regions (positive LR: 5.11), and high fever > 40 °C at presentation (positive LR: 4.83). Among all participants, 8.7% of anaemia was associated with P. falciparum infection, while the PARP was 33.2% among those < 15 years of age and 81.0% among 10-14-year-olds. CONCLUSIONS The prevalence of P. falciparum infection in the urban hospital was high. Mirroring trends in many rural African settings, older children had the highest positivity rate for P. falciparum infection. Anaemia was also common in all age groups, and for those 10-14 years of age, 80% of the risk for anaemia was associated with P. falciparum infection. Malaria rates in major urban population centres can be high, and more research into the multifactorial causes of anaemia across the age spectrum are needed.
Collapse
Affiliation(s)
| | - Yannick Mbarga Etoundi
- Douala Military Hospital, Douala, Cameroon
- Douala Military Hospital School of Nursing, Douala, Cameroon
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | | | | | | | - Justin Goodwin
- Yale School of Medicine, New Haven, USA
- Yale School of Public Health, New Haven, USA
| | - Glwadys Cheteug Nguesta
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Malaria Research Service, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Tatiana Nganso
- Malaria Research Service, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | | | | | | | | | - Carole Else Eboumbou Moukoko
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Service, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Yap Boum
- Epicentre, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Sunil Parikh
- Yale School of Medicine, New Haven, USA.
- Yale School of Public Health, New Haven, USA.
| |
Collapse
|
9
|
Leonard CM, Hwang J, Assefa A, Zulliger R, Candrinho B, Dimbu PR, Saifodine A, Plucinski M, Rogier E. Missed Plasmodium ovale Infections Among Symptomatic Persons in Angola, Mozambique, and Ethiopia. Open Forum Infect Dis 2022; 9:ofac261. [PMID: 35854985 PMCID: PMC9290565 DOI: 10.1093/ofid/ofac261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 07/28/2024] Open
Abstract
The majority of symptomatic malaria in sub-Saharan Africa is caused by Plasmodium falciparum. Infection with Plasmodium ovale is often not recorded and not considered clinically relevant. Here, we describe 8 cases of P ovale infection from 3 African countries-all of which were misdiagnosed at the presenting health facility.
Collapse
Affiliation(s)
- Colleen M Leonard
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jimee Hwang
- US President’s Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ashenafi Assefa
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute for Global Health and Infectious Disease, University of North Carolina at Chapel Hill, USA
| | - Rose Zulliger
- US President’s Malaria Initiative, US Agency for International Development, Maputo, Mozambique
| | - Baltazar Candrinho
- National Malaria Control Program, Ministry of Health, Maputo, Mozambique
| | | | - Abuchahama Saifodine
- US President’s Malaria Initiative, US Agency for International Development, Maputo, Mozambique
| | - Mateusz Plucinski
- US President’s Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Fuehrer HP, Campino S, Sutherland CJ. The primate malaria parasites Plasmodium malariae, Plasmodium brasilianum and Plasmodium ovale spp.: genomic insights into distribution, dispersal and host transitions. Malar J 2022; 21:138. [PMID: 35505317 PMCID: PMC9066925 DOI: 10.1186/s12936-022-04151-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
During the twentieth century, there was an explosion in understanding of the malaria parasites infecting humans and wild primates. This was built on three main data sources: from detailed descriptive morphology, from observational histories of induced infections in captive primates, syphilis patients, prison inmates and volunteers, and from clinical and epidemiological studies in the field. All three were wholly dependent on parasitological information from blood-film microscopy, and The Primate Malarias” by Coatney and colleagues (1971) provides an overview of this knowledge available at that time. Here, 50 years on, a perspective from the third decade of the twenty-first century is presented on two pairs of primate malaria parasite species. Included is a near-exhaustive summary of the recent and current geographical distribution for each of these four species, and of the underlying molecular and genomic evidence for each. The important role of host transitions in the radiation of Plasmodium spp. is discussed, as are any implications for the desired elimination of all malaria species in human populations. Two important questions are posed, requiring further work on these often ignored taxa. Is Plasmodium brasilianum, circulating among wild simian hosts in the Americas, a distinct species from Plasmodium malariae? Can new insights into the genomic differences between Plasmodium ovale curtisi and Plasmodium ovale wallikeri be linked to any important differences in parasite morphology, cell biology or clinical and epidemiological features?
Collapse
Affiliation(s)
- Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
11
|
Groger M, Tona Lutete G, Mombo-Ngoma G, Ntamabyaliro NY, Kahunu Mesia G, Muena Mujobu TB, Dimessa Mbadinga LB, Zoleko Manego R, Egger-Adam D, Borghini-Fuhrer I, Shin J, Miller R, Arbe-Barnes S, Duparc S, Ramharter M. Effectiveness of pyronaridine-artesunate against Plasmodium malariae, Plasmodium ovale spp, and mixed-Plasmodium infections: a post-hoc analysis of the CANTAM-Pyramax trial. THE LANCET MICROBE 2022; 3:e598-e605. [PMID: 35654079 PMCID: PMC9329129 DOI: 10.1016/s2666-5247(22)00092-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|