1
|
Grassly NC, Shaw AG, Owusu M. Global wastewater surveillance for pathogens with pandemic potential: opportunities and challenges. THE LANCET. MICROBE 2025; 6:100939. [PMID: 39222653 DOI: 10.1016/j.lanmic.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Wastewater surveillance holds great promise as a sensitive method to detect spillover of zoonotic infections and early pandemic emergence, thereby informing risk mitigation and public health response. Known viruses with pandemic potential are shed in human stool or urine, or both, and the experiences with SARS-CoV-2, monkeypox virus, and Zika virus highlight the feasibility of community-based wastewater surveillance for pandemic viruses that have different transmission routes. We reviewed human shedding and wastewater surveillance data for prototype viruses representing viral families of concern to estimate the likely sensitivity of wastewater surveillance compared with that of clinical surveillance. We examined how data on wastewater surveillance detection, together with viral genetic sequences and animal faecal biomarkers, could be used to identify spillover infections or early human transmission and adaptation. The opportunities and challenges associated with global wastewater surveillance for the prevention of pandemics are described in this Personal View, focusing on low-income and middle-income countries, where the risk of pandemic emergence is the highest. We propose a research and public health agenda to ensure an equitable and sustainable solution to these challenges.
Collapse
Affiliation(s)
- Nicholas C Grassly
- Department of Infectious Disease Epidemiology & MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| | - Alexander G Shaw
- Department of Infectious Disease Epidemiology & MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Michael Owusu
- Department of Medical Diagnostics, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
2
|
Shetty N, Shephard MJ, Rockey NC, Macenczak H, Traenkner J, Danzy S, Vargas-Maldonado N, Arts PJ, Le Sage V, Anderson EJ, Lyon GM, Fitts EC, Gulick DA, Mehta AK, El-Chami MF, Kraft CS, Wigginton KR, Lowen AC, Marr LC, Rouphael NG, Lakdawala SS. Influenza virus infection and aerosol shedding kinetics in a controlled human infection model. J Virol 2024; 98:e0161224. [PMID: 39589151 DOI: 10.1128/jvi.01612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024] Open
Abstract
Establishing effective mitigation strategies to reduce the spread of influenza virus requires an improved understanding of the mechanisms of transmission. We evaluated the use of a controlled human infection model using an H3N2 seasonal influenza virus to study critical aspects of transmission, including symptom progression and the dynamics of virus shedding. Eight volunteers were challenged with influenza A/Perth/16/2009 (H3N2) virus between July and September 2022 at Emory University Hospital. Viral shedding in the nasopharynx, saliva, stool, urine, and respiratory aerosols was monitored over the quarantine period, and symptoms were tracked until day 15. In addition, environmental swabs were collected from participant rooms to examine fomite contamination, and participant sera were collected to assess seroconversion by hemagglutination inhibition or microneutralization assays. Among the eight participants, influenza virus infection was confirmed in six (75%). Infectious virus or viral RNA was found in multiple physiological compartments, fecal samples, aerosol particles, and on surfaces in the immediate environment. Illness was moderate, with upper respiratory symptoms dominating. In participants with the highest viral loads, antibody titers rose by day 15 post-inoculation, while in participants with low or undetectable viral loads, there was little or no increase in functional antibody titers. These data demonstrate the safety and utility of the human infection model to study features critical to influenza virus transmission dynamics in a controlled manner and will inform the design of future challenge studies focused on modeling and limiting transmission.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT05332899. IMPORTANCE We use a controlled human infection model to assess respiratory and aerosol shedding kinetics to expand our knowledge of influenza infection dynamics and help inform future studies aimed at understanding human-to-human transmission.
Collapse
Affiliation(s)
- Nishit Shetty
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Meredith J Shephard
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicole C Rockey
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| | | | | | - Shamika Danzy
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nahara Vargas-Maldonado
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Peter J Arts
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Evan J Anderson
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - G Marshall Lyon
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric Charles Fitts
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dalia A Gulick
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, Kansas, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Aneesh K Mehta
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mikhael F El-Chami
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen S Kraft
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Muthukutty P, MacDonald J, Yoo SY. Combating Emerging Respiratory Viruses: Lessons and Future Antiviral Strategies. Vaccines (Basel) 2024; 12:1220. [PMID: 39591123 PMCID: PMC11598775 DOI: 10.3390/vaccines12111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging viral diseases, including seasonal illnesses and pandemics, pose significant global public health risks. Respiratory viruses, particularly coronaviruses and influenza viruses, are associated with high morbidity and mortality, imposing substantial socioeconomic burdens. This review focuses on the current landscape of respiratory viruses, particularly influenza and SARS-CoV-2, and their antiviral treatments. It also discusses the potential for pandemics and the development of new antiviral vaccines and therapies, drawing lessons from past outbreaks to inform future strategies for managing viral threats.
Collapse
Affiliation(s)
| | | | - So Young Yoo
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea; (P.M.); (J.M.)
| |
Collapse
|
4
|
Corchis-Scott R, Beach M, Geng Q, Podadera A, Corchis-Scott O, Norton J, Busch A, Faust RA, McFarlane S, Withington S, Irwin B, Aloosh M, Ng KKS, McKay RM. Wastewater Surveillance to Confirm Differences in Influenza A Infection between Michigan, USA, and Ontario, Canada, September 2022-March 2023. Emerg Infect Dis 2024; 30:1580-1588. [PMID: 39043398 PMCID: PMC11286066 DOI: 10.3201/eid3008.240225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Wastewater surveillance is an effective way to track the prevalence of infectious agents within a community and, potentially, the spread of pathogens between jurisdictions. We conducted a retrospective wastewater surveillance study of the 2022-23 influenza season in 2 communities, Detroit, Michigan, USA, and Windsor-Essex, Ontario, Canada, that form North America's largest cross-border conurbation. We observed a positive relationship between influenza-related hospitalizations and the influenza A virus (IAV) wastewater signal in Windsor-Essex (ρ = 0.785; p<0.001) and an association between influenza-related hospitalizations in Michigan and the IAV wastewater signal for Detroit (ρ = 0.769; p<0.001). Time-lagged cross correlation and qualitative examination of wastewater signal in the monitored sewersheds showed the peak of the IAV season in Detroit was delayed behind Windsor-Essex by 3 weeks. Wastewater surveillance for IAV reflects regional differences in infection dynamics which may be influenced by many factors, including the timing of vaccine administration between jurisdictions.
Collapse
|
5
|
Sievers BL, Siegers JY, Cadènes JM, Hyder S, Sparaciari FE, Claes F, Firth C, Horwood PF, Karlsson EA. "Smart markets": harnessing the potential of new technologies for endemic and emerging infectious disease surveillance in traditional food markets. J Virol 2024; 98:e0168323. [PMID: 38226809 PMCID: PMC10878043 DOI: 10.1128/jvi.01683-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Emerging and endemic zoonotic diseases continue to threaten human and animal health, our social fabric, and the global economy. Zoonoses frequently emerge from congregate interfaces where multiple animal species and humans coexist, including farms and markets. Traditional food markets are widespread across the globe and create an interface where domestic and wild animals interact among themselves and with humans, increasing the risk of pathogen spillover. Despite decades of evidence linking markets to disease outbreaks across the world, there remains a striking lack of pathogen surveillance programs that can relay timely, cost-effective, and actionable information to decision-makers to protect human and animal health. However, the strategic incorporation of environmental surveillance systems in markets coupled with novel pathogen detection strategies can create an early warning system capable of alerting us to the risk of outbreaks before they happen. Here, we explore the concept of "smart" markets that utilize continuous surveillance systems to monitor the emergence of zoonotic pathogens with spillover potential.IMPORTANCEFast detection and rapid intervention are crucial to mitigate risks of pathogen emergence, spillover and spread-every second counts. However, comprehensive, active, longitudinal surveillance systems at high-risk interfaces that provide real-time data for action remain lacking. This paper proposes "smart market" systems harnessing cutting-edge tools and a range of sampling techniques, including wastewater and air collection, multiplex assays, and metagenomic sequencing. Coupled with robust response pathways, these systems could better enable Early Warning and bolster prevention efforts.
Collapse
Affiliation(s)
- Benjamin L. Sievers
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jurre Y. Siegers
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Jimmy M. Cadènes
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Paris Institute of Technology for Life, Food and Environmental Sciences, AgroParisTech, Palaiseau, France
| | - Sudipta Hyder
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Division of Infectious Disease, Columbia University Irving Medical Center, New York, New York, USA
| | - Frida E. Sparaciari
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Filip Claes
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Asia Pacific Region, Bangkok, Thailand
- EcoHealth Alliance, New York, New York, USA
| | - Cadhla Firth
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- EcoHealth Alliance, New York, New York, USA
| | - Paul F. Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- CANARIES: Consortium of Animal Networks to Assess Risk of Emerging Infectious Diseases through Enhanced Surveillance
| | - Erik A. Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- CANARIES: Consortium of Animal Networks to Assess Risk of Emerging Infectious Diseases through Enhanced Surveillance
| |
Collapse
|
6
|
Fu S, Zhang Y, Wang R, Deng Z, He F, Jiang X, Shen L. Longitudinal wastewater surveillance of four key pathogens during an unprecedented large-scale COVID-19 outbreak in China facilitated a novel strategy for addressing public health priorities-A proof of concept study. WATER RESEARCH 2023; 247:120751. [PMID: 37918201 DOI: 10.1016/j.watres.2023.120751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Wastewater-based epidemiology (WBE) is a promising tool for monitoring the spread of SARS-CoV-2 and other pathogens, providing a novel public health strategy to combat disease. In this study, we first analysed nationwide reports of infectious diseases and selected Salmonella, norovirus, and influenza A virus (IAV) as prioritized targets apart from SARS-CoV-2 for wastewater surveillance. Next, the decay rates of Salmonella, norovirus, and IAV in wastewater at various temperatures were established to obtain corrected pathogen concentrations in sewage. We then monitored the concentrations of these pathogens in wastewater treatment plant (WWTP) influents in three cities, establishing a prediction model to estimate the number of infected individuals based on the mass balance between total viral load in sewage and individual viral shedding. From October 2022 to March 2023, we conducted multipathogen wastewater surveillance (MPWS) in a WWTP serving one million people in Xi'an City, monitoring the concentration dynamics of SARS-CoV-2, Salmonella, norovirus, and IAV in sewage. The infection peaks of each pathogen were different, with Salmonella cases and sewage concentration declining from October to December 2022 and only occasionally detected thereafter. The SARS-CoV-2 concentration rapidly increased from December 5th, peaked on December 26th, and then quickly decreased until the end of the study. Norovirus and IAV were detected in wastewater from January to March 2023, peaking in February and March, respectively. We used the prediction models to estimate the rate of SARS-CoV-2 infection in Xi'an city, with nearly 90 % of the population infected in urban regions. There was no significant difference between the predicted and actual number of hospital admissions for IAV. We also accurately predicted the number of norovirus cases relative to the reported cases. Our findings highlight the importance of wastewater surveillance in addressing public health priorities, underscoring the need for a novel workflow that links the prediction results of populations with public health interventions and allocation of medical resources at the community level. This approach would prevent medical resource panic squeezes, reduce the severity and mortality of patients, and enhance overall public health outcomes.
Collapse
Affiliation(s)
- Songzhe Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, China.
| | - Yixiang Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Shanghai, China
| | - Rui Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian 116023, China
| | - Zhiqiang Deng
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Fenglan He
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Xiaotong Jiang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian 116023, China
| | - Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
7
|
Zafeiriadou A, Kaltsis L, Kostakis M, Kapes V, Thomaidis NS, Markou A. Wastewater surveillance of the most common circulating respiratory viruses in Athens: The impact of COVID-19 on their seasonality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166136. [PMID: 37567285 DOI: 10.1016/j.scitotenv.2023.166136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Due to governments' actions to contain the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the activity of common circulating respiratory viruses was significantly disrupted after the COVID-19 pandemic and thorough surveillance of respiratory pathogens was considered essential worldwide. Wastewater-based epidemiology has proven to be a valuable tool, that provides complementary information on disease outbreaks and is increasingly used to study the infection dynamics of other viruses, apart from SARS-CoV-2. The aims of the present study were the detection of four commonly circulating respiratory viruses: SARS-CoV-2, influenza A, B and Human Respiratory Syncytial Virus (RSV), the evaluation of the COVID-19 pandemic impact on their seasonality and the determination of the possible common trends in the viral load of these viruses in the wastewater of the Attica region. A standardized and validated concentration and extraction protocol was used, generic for all four viruses, followed by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR) assays. The study proved that there was a prolonged period when all four viruses circulated in the population and an early outbreak of seasonal influenza and RSV in 2022-2023, compared to data from the pre-COVID-19 period. SARS-CoV-2, influenza A and RSV concentrations showed peak levels during December, followed by a slight decline in influenza A concentrations, followed by steady increase of influenza B concentrations in January 2023. SARS-CoV-2 was the dominant virus throughout the whole study period. This is the first study in Greece that investigated the most common circulating viruses simultaneously and in one of the largest timelines, providing crucial information about their infection dynamics during a period when an outbreak of respiratory diseases was declared by the National Public Health Organization. Presented results highlight the establishment of environmental surveillance as a non-invasive and complementary virus outbreak monitoring tool and the importance of influenza A, B and RSV integration into a wastewater-based surveillance system to help in disease management.
Collapse
Affiliation(s)
- Anastasia Zafeiriadou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Lazaros Kaltsis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Vasileios Kapes
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece.
| |
Collapse
|
8
|
Wolken M, Sun T, McCall C, Schneider R, Caton K, Hundley C, Hopkins L, Ensor K, Domakonda K, Kalvapalle P, Persse D, Williams S, Stadler LB. Wastewater surveillance of SARS-CoV-2 and influenza in preK-12 schools shows school, community, and citywide infections. WATER RESEARCH 2023; 231:119648. [PMID: 36702023 PMCID: PMC9858235 DOI: 10.1016/j.watres.2023.119648] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Wastewater surveillance is a passive and efficient way to monitor the spread of infectious diseases in large populations and high transmission areas such as preK-12 schools. Infections caused by respiratory viruses in school-aged children are likely underreported, particularly because many children may be asymptomatic or mildly symptomatic. Wastewater monitoring of SARS-CoV-2 has been studied extensively and primarily by sampling at centralized wastewater treatment plants, and there are limited studies on SARS-CoV-2 in preK-12 school wastewater. Similarly, wastewater detections of influenza have only been reported in wastewater treatment plant and university manhole samples. Here, we present the results of a 17-month wastewater monitoring program for SARS-CoV-2 (n = 2176 samples) and influenza A and B (n = 1217 samples) in 51 preK-12 schools. We show that school wastewater concentrations of SARS-CoV-2 RNA were strongly associated with COVID-19 cases in schools and community positivity rates, and that influenza detections in school wastewater were significantly associated with citywide influenza diagnosis rates. Results were communicated back to schools and local communities to enable mitigation strategies to stop the spread, and direct resources such as testing and vaccination clinics. This study demonstrates that school wastewater surveillance is reflective of local infections at several population levels and plays a crucial role in the detection and mitigation of outbreaks.
Collapse
Affiliation(s)
- Madeline Wolken
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street MS-519, Houston, TX, USA; Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, 1200 Pressler Street, Houston, TX, USA
| | - Thomas Sun
- Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX, USA
| | - Camille McCall
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street MS-519, Houston, TX, USA
| | | | - Kelsey Caton
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX, USA
| | - Courtney Hundley
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX, USA
| | - Loren Hopkins
- Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX, USA; Houston Health Department, 8000 N. Stadium Dr., Houston, TX, USA
| | - Katherine Ensor
- Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX, USA
| | - Kaavya Domakonda
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX, USA
| | | | - David Persse
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX, USA; Department of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA; City of Houston Emergency Medical Services, Houston, TX, USA
| | - Stephen Williams
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street MS-519, Houston, TX, USA.
| |
Collapse
|
9
|
Hany M, Zidan A, Gaballa M, Ibrahim M, Agayby ASS, Abouelnasr AA, Sheta E, Torensma B. Lingering SARS-CoV-2 in Gastric and Gallbladder Tissues of Patients with Previous COVID-19 Infection Undergoing Bariatric Surgery. Obes Surg 2023; 33:139-148. [PMID: 36316598 PMCID: PMC9628579 DOI: 10.1007/s11695-022-06338-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Lingering severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in gut tissue might be a source of infection during bariatric surgery. This study aimed to confirm the presence of SARS-CoV-2 nucleocapsid in gastric and gallbladder tissues removed during bariatric surgery in individuals previously infected with coronavirus disease 2019 (COVID-19) who had negative polymerase chain reaction results prior to the surgery. METHODS Gastric and gallbladder specimens from 80 patients who underwent bariatric surgery between November 2021 and May 2022 and had a history of COVID-19 infection with gastrointestinal symptoms were examined for the presence of lingering SARS-CoV-2 nucleocapsid proteins using immunohistochemistry. RESULTS Gastric specimens from 26 (32.5%) patients and 4 (100%) cholecystectomy specimens showed positive cytoplasmic staining for the anti-SARS-CoV-2 nucleocapsid protein in surface mucosal epithelial cells. The mean age was 37.8 ± 10.3 years. The average body mass index was 44.2 ± 7.0 kg/m2; most of the patients were females (71.3%). The positive staining group was significantly younger than the negative staining group (p = 0.007). The full-dose vaccination rate was 58.8%, with a median of 91 days after the last vaccine dose. A positive serological anti-spike IgG response was observed in 99% of the patients. The median time between initial COVID-19 infection and surgery was 274 and 380 days in the positive and negative staining groups, respectively (p = 0.371). CONCLUSION Gastric and gallbladder tissues can retain SARS-CoV-2 particles for a long time after COVID-19 infection, handling stomach specimens from patients during an operation must be done with care, as we usually do, but now with the knowledge that in 1/3 of patients they can be present. Performing LSG on post-COVID patients did not seem to increase perioperative morbidity.
Collapse
Affiliation(s)
- Mohamed Hany
- grid.7155.60000 0001 2260 6941Department of Surgery, Medical Research Institute, Alexandria University, 165 Horreya Avenue, Hadara, 21561 Alexandria Egypt ,Madina Women’s Hospital, Alexandria, Egypt
| | - Ahmed Zidan
- grid.7155.60000 0001 2260 6941Department of Surgery, Medical Research Institute, Alexandria University, 165 Horreya Avenue, Hadara, 21561 Alexandria Egypt
| | - Muhammad Gaballa
- grid.7155.60000 0001 2260 6941Department of Surgery, Medical Research Institute, Alexandria University, 165 Horreya Avenue, Hadara, 21561 Alexandria Egypt
| | - Mohamed Ibrahim
- grid.7155.60000 0001 2260 6941Department of Surgery, Medical Research Institute, Alexandria University, 165 Horreya Avenue, Hadara, 21561 Alexandria Egypt
| | - Ann Samy Shafiq Agayby
- grid.7155.60000 0001 2260 6941Department of Surgery, Medical Research Institute, Alexandria University, 165 Horreya Avenue, Hadara, 21561 Alexandria Egypt
| | - Anwar Ashraf Abouelnasr
- grid.7155.60000 0001 2260 6941Department of Surgery, Medical Research Institute, Alexandria University, 165 Horreya Avenue, Hadara, 21561 Alexandria Egypt
| | - Eman Sheta
- grid.7155.60000 0001 2260 6941Pathology Department, Alexandria University, Alexandria, Egypt
| | - Bart Torensma
- grid.10419.3d0000000089452978Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
10
|
Hijazi G, Dakroub F, Khoueiry P, El-Kurdi A, Ezzeddine A, Alkalamouni H, Alansari K, Althani AA, Mathew S, AlKhatib HA, Yassine HM, Zaraket H. Viral metagenomics analysis of stool specimens from children with unresolved gastroenteritis in Qatar. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 105:105367. [PMID: 36115643 DOI: 10.1016/j.meegid.2022.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Acute gastroenteritis (AGE) is associated with significant global morbidity and mortality, especially among children under five years of age. Viruses are well established as etiologic agents of gastroenteritis since they are the most common pathogens that contribute to the disease burden in developing countries. Despite the advances in molecular diagnosis, a substantial proportion of AGE etiology remain unresolved. We implemented a viral metagenomics pipeline to determine the potential viral etiology associated with AGE among children under the age of five years in Qatar with undiagnosed etiology. Following enriching for the viral genome, ∼1.3 billion sequences were generated from 89 stool specimens using the Illumina HiSeq platform, of which 7% were mapped to viral genomes. Human viruses were detected in 34 specimens (38.2%); 14 were adenovirus, nine coxsackievirus A16, five rotavirus (G9P[8] and G4P[8]), four norovirus (GII), one influenza A virus (H3), and one respiratory syncytial virus A (RSVA). In conclusion, the viral metagenomics approach is useful for determining AGE's etiology when routine molecular diagnostic assays fail.
Collapse
Affiliation(s)
- Ghina Hijazi
- Department of Experimental Pathology, Microbiology, and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Fatima Dakroub
- Department of Experimental Pathology, Microbiology, and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah El-Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amani Ezzeddine
- Department of Experimental Pathology, Microbiology, and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Habib Alkalamouni
- Department of Experimental Pathology, Microbiology, and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | | | - Asmaa A Althani
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Shilu Mathew
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | | | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Hassan Zaraket
- Department of Experimental Pathology, Microbiology, and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| |
Collapse
|
11
|
Mercier E, D'Aoust PM, Thakali O, Hegazy N, Jia JJ, Zhang Z, Eid W, Plaza-Diaz J, Kabir MP, Fang W, Cowan A, Stephenson SE, Pisharody L, MacKenzie AE, Graber TE, Wan S, Delatolla R. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci Rep 2022; 12:15777. [PMID: 36138059 DOI: 10.1101/2022.06.28.22276884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023] Open
Abstract
Recurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for reporting influenza types and subtypes to warn of emergent pandemic strains. The utility of wastewater surveillance (WWS) during the COVID-19 pandemic as a less resource intensive replacement or complement for clinical surveillance has been predicated on analyzing viral fragments in wastewater. We show here that influenza virus targets are stable in wastewater and partitions favorably to the solids fraction. By quantifying, typing, and subtyping the virus in municipal wastewater and primary sludge during a community outbreak, we forecasted a citywide flu outbreak with a 17-day lead time and provided population-level viral subtyping in near real-time to show the feasibility of influenza virus WWS at the municipal and neighbourhood levels in near real time using minimal resources and infrastructure.
Collapse
Affiliation(s)
- Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean E Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
12
|
Mercier E, D'Aoust PM, Thakali O, Hegazy N, Jia JJ, Zhang Z, Eid W, Plaza-Diaz J, Kabir MP, Fang W, Cowan A, Stephenson SE, Pisharody L, MacKenzie AE, Graber TE, Wan S, Delatolla R. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci Rep 2022; 12:15777. [PMID: 36138059 PMCID: PMC9493155 DOI: 10.1038/s41598-022-20076-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Recurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for reporting influenza types and subtypes to warn of emergent pandemic strains. The utility of wastewater surveillance (WWS) during the COVID-19 pandemic as a less resource intensive replacement or complement for clinical surveillance has been predicated on analyzing viral fragments in wastewater. We show here that influenza virus targets are stable in wastewater and partitions favorably to the solids fraction. By quantifying, typing, and subtyping the virus in municipal wastewater and primary sludge during a community outbreak, we forecasted a citywide flu outbreak with a 17-day lead time and provided population-level viral subtyping in near real-time to show the feasibility of influenza virus WWS at the municipal and neighbourhood levels in near real time using minimal resources and infrastructure.
Collapse
Affiliation(s)
- Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean E Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|